Fundamentals of Computational Neuroscience (2nd Edition): Figures

From Hallab
Jump to navigation Jump to search

The second edition of Fundamentals of Computational Neuroscience is now available at Oxford University Press and Amazon.ca.

Appendices

MATLABfirst.pdf
MATLABfirstColor.pdf
MatlabDesktop.pdf
MatlabDesktopColor.pdf
MatlabFigure.pdf
MatlabFigureColor.pdf
Octave.pdf
SciLab.pdf
appendix_math1.pdf
appendix_math2.pdf
appendix_numinte.pdf
appendix_numinte_color.pdf
comm_channel.pdf
dis_arbitrary.pdf
dis_binomial.pdf
dis_chisquare.pdf
dis_exponential.pdf
dis_lognormal.pdf
dis_poisson.pdf
dis_transformation.pdf
dis_uniform.pdf
figHisto.pdf
info_hand.pdf
info_hand2.pdf
info_it1.pdf
info_spiketrain.pdf
info_spiketrain2.pdf
info_surprise.pdf
sparseness.pdf

Chapter 1

Figures

anticipatingBrain1.pdf
deco2.pdf
levels_of_org2.pdf
model1.pdf
model2.pdf

Chapter 2

action_potential.pdf
circuit_hh.pdf
circuit_syn.pdf
compartment.pdf
hh1.pdf
hh2A.pdf
hh2B.pdf
hh_ion.pdf
ion_channels.pdf
matlab_hh.pdf
matlab_wilson.pdf
neuron.pdf
neuron_sim.pdf
neuron_sim2.pdf
synapse1.pdf
synapse2.pdf
wilson.pdf

Chapter 3

adrian.pdf
alpha1.pdf
alpha2.pdf
alpha2.pdf
buracas.pdf
decharms_merzenich.pdf
epsilon1.pdf
epsilon2.pdf
epsilon3.pdf
if_fast.pdf
if_gauss.pdf
if_isi.pdf
if_node.pdf
if_poisson.pdf
inte_coincidence.pdf
isi_hist.pdf
izhikevich_neuron.pdf
leaky_if.pdf
mean_firing_if.pdf
modulation.pdf
noise_models.pdf
phys_gain.pdf
rate_population.pdf
rate_temporal.pdf
table_transf.pdf
tuning.pdf

Chapter 4

Figures

asso2.pdf
associative_learning.pdf
associative_net.pdf
associative_node.pdf
calcium.pdf
f_prepost.pdf
f_prepost2.pdf
hebb1_distribution.pdf
hebb_stdp.pdf
if_STDP_Song.pdf
if_crosscorr.pdf
oja.pdf
oja_node.pdf
plasticity1.pdf
plasticity2.pdf
signaling.pdf

Chapter 5

Figures

abeles.pdf
asyn_gain.pdf
brain.pdf
cortex_column.pdf
cortex_layers.pdf
izhikevichNet.pdf
layers_schematic1.pdf
layers_schematic2.pdf
module_cortex.pdf
netlets.pdf
netlets2.pdf
thorpe.pdf

Chapter 6

A_binarization.pdf
A_letter.pdf
boolean.pdf
elman.pdf
gradient_descent.pdf
mlp.pdf
mlp_XOR.pdf
mlp_XOR2.pdf
mlp_comp.pdf
mlp_comp2.pdf
mlp_sine.pdf
node_creation.pdf
overfit.pdf
perceptronExample.pdf
rbfNet.pdf
rbfTrans.pdf
sigma_node2.pdf
surface1.pdf
svm1.pdf
svm1map.pdf
svm1nl.pdf
svm2.pdf
svm2Color.pdf

Chapter 7

DNFexamplePlaceField.pdf
DNFexampleWM.pdf
DNFexamples.pdf
DNFheadDirections.pdf
DNFpiModel.pdf
DNFpiSim2.pdf
DNFpiSim2.pdf
DNFpopulationDecoding.pdf
DNFweightkernel.pdf
DNFweightkernelSC.pdf
cann_drift.pdf
cann_sim1.pdf
cann_sim1b.pdf
cann_theory.pdf
cann_theory2.pdf
hd_model.pdf
pop_decoding.pdf
som_a1.pdf
som_model1.pdf
som_model2.pdf
som_sim1b.pdf
som_sim2b.pdf
tuningCurve.pdf
tuning_curve2.pdf

Chapter 8

GH_phasediagram.pdf
ann.pdf
ann_asym.pdf
ann_diluted.pdf
ann_retrieval.pdf
ann_sim.pdf
ann_sim_color.pdf
expansion_recoding.pdf
gradient_descent1.pdf
hippo.pdf
lorenz.pdf
memoryClassification.pdf
signoise.pdf
sparse1.pdf
sparse2.pdf

Chapter 9

DNFmemoryLimit.pdf
TDlearning.pdf
ann_sequence.pdf
basal_ganglia2.pdf
basal_ganglia2.pdf
basal_ganglia3.pdf
basal_ganglia4.pdf
cerebellum.pdf
conditioning.pdf
control_critic.pdf
control_forward.pdf
control_forward_inverse.pdf
control_inverse.pdf
control_negative.pdf
coupled_ann.pdf
coupled_ann2.pdf
experts.pdf
mixture_experts.pdf
modular_function.pdf
td.pdf
what_where.pdf
wm_limit.pdf
wm_randy.pdf

Chapter 10

ART.pdf
ARTletter.pdf
Boltzmann1.pdf
Boltzmann2.pdf
Boltzmann3.pdf
EM.pdf
EMcolor.pdf
FristonTT.pdf
Helmholtz.pdf
Hinton.pdf
HintonColour.pdf
bayesianNetworks2.pdf
bayesianNetworks2.pdf
deco_model.pdf
deco_res.pdf
deco_where_what.pdf
dehaene.pdf
dehaene2.pdf
rec_fields.pdf
stroop.pdf
visnet.pdf