Main Page

From Hallab
Jump to navigation Jump to search

Welcome to the Laboratory for Hierarchical Anticipatory Learning (HAL Lab). We are a lab at Dalhousie University whose research interests are primarily in the fields of Computational Neuroscience and Machine Learning. Details can be found at the project pages that will be updated frequently.

Current Lab Members

A values lab member.

Dr. Thomas Trappenberg [Prof]

Akshay Saklani [MACS]\

Anuhya Suri [MCS][1]

Ayushi Sharma [MCS]

Christian Guinard [MCS]

Harvey Wang [MCS]

Isaac Xu [PhD]

Jake Tan [PhD]

Kedar Pandya [MCS]

Martin Gilles [PhD]

Paul Hollensen [Collaborator]

Paras Mehta [MCS]

Ritvik Voleti [MCS]

Sourabh Sharma [honors]

Will Taylor-Melanson [MCS]

Yogeshwar Shendye [MCS]

Past Lab Members

Ranga Rankaduwa [MSC 2023]
Computational Neuroscience and Synaptic Plasticity

Maximilian Petzi [PhD program]
Computational Neuroscience

David Livermore [PhD program]
Medical Physics and radiation onkology

Dr. Scott Lowe [Postdoctoral Fellow]
Machine learning and computational oceanography

Dr. Hossein Parvar [Postdoctoral Fellow]
Machine Learning and Intelligent Systems

Dr. Abraham Nunes [PhD 2020]
Computational Psychiatry

Yoshimasa Kubo [PhD 2019]
Machine Learning and Computational Neuroscience

Stuart Mcilroy [MCS 2019]
Machine Learning and Computational Neuroscience Junliang Luo [Honors 2019]
Deep learning of 3D microscopic data

Farzaneh Sheikhnezhad Fard [PhD 2018]
Cognitive Robotics

Mike Traynor [MCS 2017]
Machine Learning for Natural Language Processing

Francesco Usai [PhD psych comprehensive]
Deep learning of brain imaging data

Peter Lee [Honors 2017]
Deep learning of medical data

Chun Kwang Tan (Master Exchange Student)
Cognitive Robotics

Dr. Hossein Parvar [Adjunct Prof]
Machine Learning and Intelligent Systems

Vignesh Babu [MCS 2015]
Adaptive object tracking, robotics

Hassan Nikoo [MCS 2015]
Deep learning for Time Series

Marjan Zamani [MACS 2015]
Application of Deep Learning

Bassey Etim [MACS 2015]
Application of Deep Learning

Rohan Bhargava [MCS 2014]

Michal Lisicki [MCS, 2014]
Image mining, deep learning

Dan Su [MACS, 2014]
Robotic coverage path planing

Karthik Damodaran [MACS, 2014]
Sublingual microcirculation analysis

Rohan Bhargava [MCS, 2014]
Adaptive motion models for AUVs

Patrick Connor [Ph.D 2013]
Biological motivated learning with small data, Basal Ganglia, Reinforcement Learning

Rober Boshra [Honors, 2013]
Machine learning in single trial EEG analysis

Jake Kroeker [Honors, 2013]
Reinforcement Learning

Jason Satel [Ph.D, 2013]
IOR, EEG, Neural Field Theory

Warren Connors [MCS, 2012]
Neural Fields and Cognitive Robotics

Leah Brown [NSERC USRA, 2011]
Machine Learning and Robotics

Ian Graven [NSERC USRA, 2011]
Machine Learning and Robotics

Michal Lisicki [RA, 2011]
Machine Learning and Robotics

Paul Hollensen [BCS Honours 2010]
Restricted Boltzmann Machines

Misha Denil [BCS Honours 2010]
Machine Learning

Dr. Dominic Standage [PhD 2007]
Mechanisms of short term and long term memory in cortex: neural fields and synaptic plasticity

Bijan Farhoudi [BCS Honours, 2007]
Point attractor networks with resetricted weights

Sajiya Jail [Guest Researcher, 2005-2006]
Spike-timimg dependent plasticity

Matthew Boardman [MCS 2006]
Extrinsic regularization in parameter optimization for support vector machines

Jesse Rusak [BCS Honours 2006]
Setup and analysis of a brain-computer interface using support vector machines for single-trial classification

Jason Satel [MCS 2005]
Motivationally-based learning mechanisms and the dynamics of saccade initiation

Kan Yang [MCS 2005]
An internet-based electronic voting system with balanced complexity and security

Jie Ouyang [MCS 2004]
Improved ICAIVS algorithm with mutual information

Patrick Mahaux [MEC 2004]
Client Profile Model: How to Identify Training Candidates with the least chance of Employment

Daniel Rogers [BCS Honours 2004]
Exploration of the Techniques, Tools, and Requirements of Electronic Voting Systems

Alicia Grosvenor [MEC 2004]
Elliptic Curve cryptography: A viable alternative for maintaining security in low precessing and low memory computing environments

Shelagh Gregory [EMEC 2003]
Should Canada use biometric identifiers if implementing a national identification system?

Dr. Carrie Gates [MSC 1995]
The application of neural networks to predicating the conductivity of water

George MacLennan [MSC 1994]
Evolutionary Design of neural networks