Difference between revisions of "list of example papers"

From Hallab
Jump to navigation Jump to search
(Created page with "M. Lawrence , T. Trappenberg, A. Fine (2006) Rapid learning and robust recall of long sequences in modular associator networks,Neurocomputing , 69(7-9): 634-641. Margaret Car...")
 
m
 
Line 5: Line 5:
  
 
Földiak, P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological cybernetics, 64(2), 165-170.
 
Földiak, P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological cybernetics, 64(2), 165-170.
 +
 
Olshausen, Field (1996), Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images, Nature 381
 
Olshausen, Field (1996), Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images, Nature 381
  

Latest revision as of 14:22, 11 February 2016

M. Lawrence , T. Trappenberg, A. Fine (2006) Rapid learning and robust recall of long sequences in modular associator networks,Neurocomputing , 69(7-9): 634-641.

Margaret Carr, Shantanu P Jadhav and Loren M Frank (2011),Hippocampal replay in the awake state: a potential physiological substrate of memory consolidation and retrieval, Nature Neuroscience 14, pp147 - 153.


Földiak, P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological cybernetics, 64(2), 165-170.

Olshausen, Field (1996), Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images, Nature 381


Suri and Shultz (2001), Temporal Difference Model Reproduces Anticipatory Neural Activity, Neural Computation 13

Izhikevich (2007), Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling, Cerebral Cortex


Tiago V Maia and Michael J Frank, From reinforcement learning models to psychiatric and neurological disorders, Nature Neuroscience, Feb 2011, pp154 - 162

Shouval, HZ, Bear, MF, Cooper, LN. (2002) A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proc Natl Acad Sci USA, 99(16): p. 10831-6.;

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans' choices and striatal prediction errors. Neuron, 69(6), 1204-1215.

Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in cognitive sciences, 2(9), 338-347.

Wörgötter, F., & Porr, B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Computation, 17(2), 245-319.

Kishida, K. T., King-Casas, B., & Montague, P. R. (2010). Neuroeconomic approaches to mental disorders. Neuron, 67(4), 543–554. doi:10.1016/j.neuron.2010.07.021

Wiecki, T. V., Poland, J., & Frank, M. J. (2015). Model-Based Cognitive Neuroscience Approaches to Computational Psychiatry: Clustering and Classification. Clinical Psychological Science.

C.M.A. Pennartz, R. Ito, P.F.M.J. Verschure, F.P. Battaglia and T.W. Robbins,The hippocampal–striatal axis inlearning, prediction and goal-directed behavior. Trends in Neuroscience, Volume 34, Issue 10, October 2011, Pages 548–559 Special Issue: Hippocampus and Memory