
1 Regression and maximum likelihood

We have previously introduced supervised learning where we propose a model in
form of a parameterized function and where we then learned the model parameters
from example data. We now through the same process again with the addition that we
take uncertainty into account.

A note of caution: I have recently added some parts to this manuscript and also
changed notations. Thus, let me know if you spot inconstistencies or if things are not
clear.

1.1 Trends in stochastic data

In supervised learning, examples of input-output relations are given and our goal is to
discover the relations between these data so that we can make predictions of previously
unseen data. Let’s consider here an example from robotics where we want to model
how a far a terrestrial robot is moving when the robot moves for a given number of
seconds when activating the motors with certain power.

More formally, the training data that are denoted by the inputs x, such as motor
power or the number of seconds we let it run, and the outputs or labels y, such as the
distance that the robot traveled. This distance we (the teacher) has to provide such as
from using a ruler to measure the actual distance or use a distance measure to estimate
in a more automated way. In the following we consider m training examples, the pairs
of values

{(x(i), y(i)); i = 1...m}. (1.1)

The above notation describes mapping examples from an n-dimensional feature space
to a 1-dimensional output space, hence the vector notation for x and the scalar notation
for y. We consider here a 1-dimensional output space for our discussions mainly for
convenience. Generalization to higher-dimensional are straight forward. Note that an
index with brackets, (i), is used to label different training examples.

As an example, let us consider again how the tribot moves when both motors are
driven for a certain amount of time. To automate the collection of data we can use the
ultrasonic sensor to measure the distance to a wall while driving the tribot for different
amount of time forward and backward. In Figure 1.2A we show several measurements
of the distance traveled.

The data clearly reveal some systematic relation between the time of running the
motor and the distance traveled, the general trend being that the traveled distance
increases with increasing running time of the motors. While there seems to be some
noise in the data, the outliers and the noise can not hide a linear trent for most of the
data. This hypothesis can be quantified as a parameterized function,

Regression and maximum likelihood2 |

A

Time

D
is

ta
nc

e

1 2 3 40

20

40

60

80 B

−10 0 100

20

40

60

80

100

Data-Hypothesis

#

Fig. 1.1 (A) Measurements of distance travelled by a robot when running the motor for different
number of milliseconds with a given power. (B) Corresponding histogram of differences between
data and hypothesis.

ŷ(x;w) = w0 + w1x. (1.2)

This notation means that the hypothesis ŷ is a function of the quantity x, and the
hypothesis includes all possible straight lines, where each line can have a different
offset w0 (intercept with the y-axis), and slope w1.

We typically collect parameters in a parameter vector w. We only considered
one input variable x above, but we can easily generalize this to higher dimensional
problems where more input attributes are given. For example, we could not only vary
the time the motor is running, let us label this attribute now with x1, but also push
the robot forward by hand for a certain time, labeled with x2. As the effects of these
manipulations are independent on the results, we can independently add the effects
of higher dimensions to our hypothesis. To compress our notations further we also
introduce here the convention that we consider a constant input, x0 = 1 as the first
component of the input vector, so that the corresponding parameter encodes the offset
of the function. The state vector can then be written as,

x =

x0
x1
x2

 . (1.3)

With this convention we can write the hypothesis as

ŷ(x;w) = w0x0 + w1x1 + w2x2. (1.4)

It is then even easy to write a linear hypothesis with n attributes as

ŷ(x;w) = w0x0 ++ wnxn =
∑
i

wixi = wTx, (1.5)

where the superscript T indicates the transpose of a vector.
Another factor that influences the distance traveled is the power setting of the

motor. Of course, the distance traveled within a certain time does depend on the power
and is not just an independent additive effect on the travelled distance. Results of the

| 3Probabilistic models and maximum likelihood

experiment for different power settings and different travel times are show in Figure ??.
Figure ??A also includes a fit to equation 1.4. However, these data are better described
by a bilinear hypothesis,

ŷ(x;w) = w0x0 + w1x1x2. (1.6)

The corresponding fit of the same data is shown in Figure ??B.How to perform these
fits is discussed further below.

−20 0 200

50

100

150

200

250

Data-Hypothesis

#

1
2

3
4 20 40 60 80 100

0

50

100

150

Time

Power

Distance

BA

Fig. 1.2 (A) Measurements of distance travelled by the tribot when running the motor for different
number of milliseconds and various power settings. Fit according to equation 1.4 (B) Same as (A)
with fit according to equation 1.6. (C,D) Corresponding histogram of differences between data and
hypothesis.

While we had to make a good guess for the functional form of the trend in the
data, the actual parameters have so far not been specified. Thus, we made a hypothesis
in the form of a parameterized function, h(x;w), and the learning part boils down to
determining appropriate values for the parameters from the sample data. After learning
these parameters we can then use this function to predict specific reactions of a plant
even for motor commands for which no training examples were given. The remaining
question is how we find appropriate values for the parameters. However, before we do
this we need to be more faithful to the data and acknowledge fluctuation around our
initial hypothesis.

1.2 Probabilistic models and maximum likelihood

So far, we have only modelled the trend of the data, and we should investigate more the
fluctuations around this trend. Of course, we expect several sources of noise such as
the accuracy of the ultrasonic sensor and the tendency of the tribot to sometimes turn
due to wheel slippage. Indeed, while gathering these data we have fixed the follower
wheel to minimize turning when moving forward and backward. We also started new
trials when the robot went too much off track. Thus, we already try to minimize error
due to a careful setup of the experiment to gather the data. However, what we did not

Regression and maximum likelihood4 |

tell you is that we run the experiment in Figure 1.2A with different powers of the motor
between 40 and 60. Such hidden information can also contribute to uncertainties in
the environment. Data for doing the same experiment as before but with a fixed motor
power of 50 is shown in Figure 1.2B. These data vary less but are still noisy due other
sources of uncertainty.

Figures 1.2B and ??B are plots of the histogram of the differences between the
actual data and the hypothesis regression line. The histograms look a bit Gaussian,
which according to the central limit theorem is a likely finding for additive and inde-
pendent noise sources. In any case, we should revise our hypothesis by acknowledging
the stochastic nature of the data and writing a down a specific functional form of a
conditional density function for the quantity y given some input values x. Similar to
before, we also allow this probabilistic hypothesis to depend on some parameters,

p(ŷ|x;w). (1.7)

For our specific example of the tribot we assume here that the data follow our previous
deterministic hypothesis ŷ(x;w) with additive Gaussian noise, or with other words,
that the data in Figure 1.2B are Gaussian distributed with a mean µ = ŷ(x) depends
linearly on the value of x,

p(ŷ|x;w, σ) = N(µ = wTx, σ) (1.8)

=
1√
2πσ

exp

(
− (ŷ −wTx)2

2σ2

)
(1.9)

This functions specifies the probability of values for ŷ, given an input x and the
parameters w and σ. In the following we keep the parameter σ so that we only
consider the variables w as free. This just helps to keep the formulas manageable,
though including it should be straight forward.

Specifying a model with a density function is an important step in modern mod-
elling and machine learning. In this type of thinking, we treat data from the outset as
fundamentally stochastic, that is, data can be different even in situations that we deem
identical. This randomness may come from an irreducible indeterminacy, that is,
true randomness in the world that can not be penetrated by further knowledge, or this
noise might represent epistemological limitations such as the lack of knowledge of
hidden processes or limitations in observing states directly. The only important fact for
us is that we have to live with these limitations. This acknowledgement together with
the corresponding language of probability theory has helped to make large progress in
the machine learning area.

We will now turn to the important principle that will guide our learning process
which corresponds here to estimating the parameters of the model. While the param-
eterized hypothesis so far describes the form of the data, we need to estimate values
for the parameters to make real predictions. We therefore consider now the examples
for the input-output pairs, our training set {(x(i), y(i)); i = 1...m}. The important
principle that we will now follow is to choose the parameters so that the examples we
have are most likely. This is called maximum likelihood estimation. To formalize
this principle, we need to think about how to combine probabilities for several ob-
servations. If the observations are independent, then the joint probability of several
observations is the product of the individual probabilities,

| 5Probabilistic models and maximum likelihood

p(y1, y2,, ym|x1, x2, ..., xm;w) = Πm
i p(yi|xi;w). (1.10)

Note that yi are still random variables at this point. But we now use our training
examples as specific observations for each of these random variables, and introduce
the Likelihood function

L(w) = Πm
i h(w; y(i), x(i)). (1.11)

The h on the right hand side is now not a density function, but it is a regular function
(with the same form as our parameterized hypothesis) of the parameters w for the
given values y(i) and x(i). Instead of evaluating this large product, it is common to use
the logarithm of the likelihood function, so that we can use the sum over the training
examples,

l(w) = logL(w) =

m∑
i

log(h(w; y(i), x(i))). (1.12)

Since the log function increases monotonically, the maximum ofL is also the maximum
of l. The maximum (log-)likelihood can thus be calculated from the examples as

wMLE = argmax
w

l(w). (1.13)

We might be able to calculate this analytically or use one of the search algorithms to
find a maximum from this function.

Let us apply this to the linear regression discussed above. The log-likelihood
function for this example is

l(w) = log Πm
i=1

1√
2πσ

exp

(
− (y(i) −wTx(i))2

2σ2

)
(1.14)

=

m∑
i=1

(
log

1√
2πσ

− (y(i) −wTx(i))2

2σ2

)
(1.15)

= −m
2

log 2πσ −
m∑
i=1

(y(i) −wTx(i))2

2σ2
. (1.16)

Thus, the log was chosen so that we can use the sum in the estimate instead of dealing
with big numbers based on the product of the examples.

Let us now consider the special case in which we assume that the constant σ, the
variance of the data, is the same for all x and thus has a fixed value given to us. We can
thus concentrate on the estimation of the other parameters w. Since the first term in
the expression 1.16,−m2 log 2πσ, is independent of w, maximizing the log-likelihood
function is equivalent to minimizing a quadratic error term

E =
1

2
(y − h((x; (w))2 ⇐⇒ p(y|x;w) =

1√
2π

exp(− ((y − h((x;w)2

2
) (1.17)

This error function or cost function was a frequently used criteria called Least Mean
Square (LSM) regression for parameters estimation when considering deterministic
hypothesis. I terms of our probabilistic view, the LSM regression is equivalent to MLE

Regression and maximum likelihood6 |

for gaussian data with constant variance. When the variance is a free parameter, then
we need to minimize equation 1.16. instead.

We have discussed Gaussian distributed data in most of this section, but one can
similarly find corresponding error functions for other distributions. For example, a
polynomial error function correspond more generally to a density model of the form

E =
1

p
||y−h((x; (w)||p ⇐⇒ p(y|x;w) =

1

2Γ(1/p)
exp(−||y−h((x;w||p). (1.18)

Later we will specifically discuss and use the ε-insensitive error function, where
errors less than a constant ε do not contribute to the error measure, only errors above
this value,

E = ||y − h((x; (w)||ε ⇐⇒ p(y|x;w) =
p

2(1− ε)
exp(−||y − h((x;w||ε). (1.19)

Since we already acknowledged that we do expect that data are noisy, it is somewhat
logical to not count some deviations form the expectation as errors. It also turns out
that this error function is much more robust than other error functions.

1.3 Maximum a posteriori estimates

In the maximum likelihood estimation we assumed that we have no prior knowledge of
the parametersw. However, we sometimes might know which values of the parameters
are impossible or less likely. This prior knowledge can be summarized in the prior
distribution p(w), and the next question is how to combine this prior knowledge in
the maximum likelihood scheme. Combining prior knowledge with some evidence is
described by Bayes’ theorem. Thus, let us consider again that we have some observa-
tions (x, y) from specific realizations of the parameters, which is given by (p(x, y|w),
and the prior about the possible values of the parameters, given by p(w). The prior
is in this situation sometimes called the regularizer, restricting possible values in a
specific domain. We want to know the distribution of parameters given the observation,
p(w|x, y), which can be calculated from Bayes’s theorem,

p(w|x, y) =
p(x, y|w)p(w)∫

w′∈W p(x, y|w′)p(w′)dw′
, (1.20)

wherew is the domain of the possible parameter values. We can now use this expression
to estimate the most likely values for the parameters. For this we should notice that the
denominator, which is called the partition function, does not depend on the parameters
w. The most likely values for the parameters can thus be calculated without this term
and is given by the maximum a posteriori (MAP) estimate,

wMAP = argmax
w

p(x, y|w)p(w). (1.21)

This is, in a Bayesian sense, the most likely value for the parameters, where, of course,
we now treat the probability function as a function of the parameters (e.g., a likelihood
function).

| 7Cross-Entropy Loss for sigmoidal classification

A final caution: ML and MAP estimates give us a point estimate, a single answer
of the most likely values of the parameters. This is often useful as a first guess and is
commonly used to make decisions about which actions to take. However, it is possible
that other sets of parameters values might have only a little smaller likelihood value,
and should therefore also be considered. Thus, one limit of the estimation methods
discussed here is that they do not take distribution of answers into account, which is
more common in more advanced Bayesian methods.

1.4 Cross-Entropy Loss for sigmoidal classification

In this chapter we have embraced the stochastic nature of the problem by building
specific parameterized probabilistic models. But what if we don’t know the functional
form of the underlying probabilistic nature. Bayesian people would say that this must
be suboptimal, but we should relate this to our previous approach of general learning
machine which somewhat tries to compensate for the unknown by building large and
encompassing functional models. In particular we have studied deep networks with a
large number of parameters.

For a given set of parameters, such a model gives us a specific response to each
possible input. In order to make such a model stochastic we need to introduce some
stochastic component into the model. There are different types of generalizations of
such models. For example, we could include some noise into the response of each
node of the network or include stochasticities in the parameters (weight values) of the
model. In the past, different versions of stochastic gain functions have been used, and
drop-out, which sets the response of a node to zero in random trials is another more
recent example. With such stochastic modifications we get a model that represents a
density function p(ŷ|x).

Now we need a measure how good this model is in comparison to the true nature of
data that are described by the unknown density function q(y|x). One specific measure
of the distance or divergence between two probability distributions is given by the
Cross-entropy

H(p, q) = −
∑
x

p(x) log q(x) (1.22)

In other words, this is the negative log probability of the given labels under the current
model. Since we want to maximize the probability of the data under the model, we
want to minimize the cross entropy. The cross entropy is related to the KL-divergence
by

H(p, q) = H(p) +KL(p||q), (1.23)

and since changing model parameters do not effect the true data, minimizing the cross
entropy is equivalent to minimizing the KL-divergence.

Let us apply this to binary classification model which is described by Bernoulli
variables that take the value 0 or 1. For this density function, the cross entropy is given
by

H(p, q) = −p(x = 0) log q(x = 0) +−p(x = 1) log q(x = 1)

Regression and maximum likelihood8 |

= −p(x) log q(x)− (1− p(x)) log(1− q(x))

where p(x) is shorthand for p(x = 1). The natural way for a neural networks to
represent a Bernoulli variable is with a sigmoid output.

p(ŷ|x;w) =
1

1 + e−xw
(1.24)

1− p(ŷ|x;w) =
1 + e−xw − 1

1 + e−xw
=

1

1 + exw
(1.25)

log p(ŷ|x;w) = − log(1 + e−xw) (1.26)
(1.27)

Note that the output of the network is the probability of the label being y=1 and not
directly the label.

Maximizing the log-probability of the observed data is given by minimizing the
cross-entropy between the network output, p(ŷ), and the given labels, y, or mathemat-
ically minimizing the Loss function

L = −y log p(ŷ)− (1− y) log(1− p(ŷ)) (1.28)
= y log(1 + e−xw) + (1− y) log(1 + exw) (1.29)

dL

d(xW)
= y

−e−xw

1 + e−xw
+ (1− y)

exw

1 + exw
(1.30)

= −y 1

1 + exw
+ (1− y)

1

1 + e−xw
(1.31)

= −y(1− p(ŷ)) + (1− y)p(ŷ) (1.32)
= −y + yp(ŷ) + p(ŷ)− yp(ŷ) (1.33)
= p(ŷ)− y (1.34)

For multi-class problems, the equivalent of the sigmoid is the softmax function

p(ŷ = i|x) =
exWi∑N
j=1 e

xWj

, (1.35)

where N is the number of classes. You can easily see the equivalence to the sigmoid
in the case of having two classes where one of them has input 0,

p(ŷ = 0) =
e0

e0 + exw
=

1

1 + exw
= 1− 1

1 + e−xw

p(ŷ = 1) =
exw

e0 + exw
=

exw

1 + exw
=

1

1 + e−xw

The derivation of the gradient for this multi class case works out to the same as the
binary classification,

dL

d(xW)
= p(ŷ)− y (1.36)

dL

dx
= (p(ŷ)− y)WT (1.37)

dL

dW
= xT (p(ŷ)− y) (1.38)

