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Abstract

Continuous attractor neural networks are recurrent networks with center–surround

interaction profiles that are common ingredients in many neuroscientific models. We study

realizations of multiple non-equidistant activity packets in this model. These states are not

stable without further stabilizing mechanisms, but we show they can exist for long periods.

While these states must be avoided in winner-take-all applications, they demonstrate that

multiple working memories can be sustained in a model with global inhibition.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Wilson and Cowan [14] derived a description of the population dynamics of
neurons with excitatory and inhibitory pools coupled with center–surround
interaction profiles. They identified various dynamical regimes in these networks
and speculated that these regimes might map to different brain areas, including
thalamic nuclei, visual neocortex, and prefrontal cortex. Continuous attractor neural
networks (CANNs) are now common ingredients in models of information
processing in the brain and are regarded as the principle model of cortical
see front matter r 2004 Elsevier B.V. All rights reserved.
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hypercolumns [6], place and head direction cells in the limbic system [15], and
working memory [5].

The CANN model is most often used in a parameter regime where a single activity
packet (also called bubble or bump) can be sustained without external input. The
model then implements a winner-take-all function, which is appropriate for the
modelling of place fields and feature representations in hypercolumns. Samsonovich
[9] and Battaglia and Treves [2] have extended the model to multiple feature spaces,
and our group has shown that many activity packets can be sustained simultaneously
when the model is augmented with biologically realistic stabilization mechanisms
[10]. Multiple bubbles can also be sustained within a single topographic feature map
with such stabilization mechanisms [11], which is relevant to the modelling of
working memory. Here, we limit our study to a single feature space, and study the
dependence of multiple activity packets on the amount of activity-dependent global
inhibition and the strength of the stabilization. We also show that multiple bubbles
can be sustained for a considerable length of time without stabilization.
2. Methods

We consider a basic recurrent rate model with N nodes, though corresponding
networks with spiking neurons have similar properties. The time evolution of the
membrane state ui of a node with index i is given by

t
duiðtÞ

dt
¼ �uiðtÞ þ

X
j

wijrjðtÞDx þ I ext
i ðtÞ; (1)

where t is a time constant, I ext
i is the external input applied to the network, Dx ¼

2p=N is a scale factor, and ri is a rate that is related to ui by sigmoidal gain function
gðuÞ ¼ 1=ð1 þ expð�bðu � aÞÞÞ with a slope parameter b ¼ 0:1 and firing threshold a:
The weight matrix w is determined in a learning phase with Hebbian learning, wij /P

m r
m
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m
j on patterns with index m: Such recurrent models are often studied after

training on random patterns, resulting in networks with discrete attractors. In
contrast, we study this model trained with well-organized Gaussian patterns, where
each pattern is centered around a different node in the network, m ¼ 1; . . . ;N: This
results in an excitatory Gaussian weight matrix with width sw ¼

ffiffiffi
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which is then augmented by an inhibition constant C describing the activity-
dependent inhibition of an inhibitory pool of neurons and scaled by global strength
constant Aw;

wij ¼ Aw
1

Ar

ffiffiffi
p

p
sr

wex
ij � C

� �
: (3)

A well-known problem in CANN models is that noise in the weight matrix leads to
a drift of the activity packet [12]. It has been argued that drift slows down with
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increasing network sizes [5,15], and activity-dependent bistabilities in the excitability
of neurons have also been shown to stabilize activity packets [3]. We implement the
stabilization by a change of the threshold,

Da ¼ a0YðuÞ; (4)

where YðuÞ is the Heaviside function. This stabilization mechanism is sufficient to
sustain neural activity after transient external stimuli without further (excitatory or
inhibitory) support by other nodes in the neural layer [8]. A network without the
lateral connections typical of CANN models, however, cannot implement the
competition between stimuli that is essential to much of the brain processing for
which CANNs were proposed. Here, we follow our previous speculation that
competition is the basis for the limited capacity of working memory [11], and study
the dependence of the strength of the stabilization on multiple simultaneous activity
packets in CANN models.
3. Results

First, we consider the model without stabilization. Appropriate values for C and
Aw must be chosen to sustain an activity packet following transient input. This is
illustrated in Fig. 1A which shows the maximum node activity within the activity
packet at time t ¼ 100t for various values of C and Aw: If inhibition is too weak then
the entire network becomes active; too much inhibition shuts off all network activity.
Additionally, the scaling parameter Aw must be strong enough to sustain an activity
packet, but this constraint does not apply when a threshold activation function is
used, as in the studies by Amari [1].
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Fig. 1. (A) The maximal value of node activity u as a function of weight scaling factor Aw for different

values of inhibition constant C. The curved solid line shows results with an inhibition constant of C ¼ 0:4
for simulations with sigmoidal gain function gðuÞ ¼ ð1þ expð�0:1uÞÞ�1: The straight solid line shows

results from simulations with a threshold gain function gðuÞ ¼ YðuÞ with otherwise unchanged parameters.

Results from simulations with the sigmoidal gain function and different equidistant values for inhibition

constant C are shown as dashed lines, from C ¼ 0:2 (top) to C ¼ 0:7 (bottom). (B) Time (t) required for

two activity packets to merge as a function of global inhibition (C) in the 1000 node network with input

activity around nodes 100 and 580.
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Fig. 2. (A) Network activity over time for a simulation with asymmetric external input at nodes 100, 300,

500, and 700 in a 1000 node network until t ¼ 100t with inhibition constant C ¼ 0:05: (B) Corresponding

simulations for C ¼ 0:08: (C) Transitions between n-phases dependent on inhibition C and threshold

adjustment a0: The transitions between the n and n þ 1 phases were thereby studied with n þ 1 of the

original 4 input bands.
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Amari’s analysis shows that a single activity packet is a stable attractor state in
CANN networks [1], however, considerable time can be required before two or more
externally driven activity regions merge or until one activity packet becomes
dominant. The time required for a single maximum to emerge from two activated
regions is shown in Fig. 1B. The activity profile u was measured at each iteration of
dt=t; where only two changes in direction of this curve determined a one-bubble state
in the periodic network. The network was initialized with binary input bands around
nodes 100 and 580, where one input band was 1% stronger than the other to brake
the symmetry of input activity.

An example of 4 meta-stable asymmetric activity packets is shown in Fig. 2A for a
simulation with parameters sr ¼ 2p=80; Aw ¼ 300; and C ¼ 0:05: No stabilizing
bistability was implemented in this simulation. The results of a simulation with
slightly increased inhibition constant, C ¼ 0:08; are shown in Fig. 2B. Inhibition is
now strong enough to introduce sufficient competition in the network such that one
activity packet disappears within the time of t ¼ 100t following removal of the
external stimulus.

We now consider the network with stabilization, and refer to the area where n

equidistant activity packets do not considerably decay within time t ¼ 100t as an n-
phase. The results of several simulations with varying values of a0 and C are
summarized in Fig. 2C for different numbers of initial activity bands. Stabilizing
more than 4 activity packets with the current parameters is impractical.
4. Discussion and conclusion

The results of the simulations shown in Fig. 2 seem to contradict theoretical proof
by Laing et al. [4,7] that without stabilizing mechanisms, more than one asymmetric
activity packet cannot be sustained in the CANN model. However, our results
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simply show that multiple asymmetric bubbles can be sustained for considerable
periods of time.

Fig. 2C indicates that the effect of inhibition in the model is approximately inverse
to that of stabilization. Increasing stabilization (increasing a0) can lead to the
stabilization of multiple activity packets, while increasing competition (increasing C)
can destroy the existence of multiple activity packets. While this relationship appears
linear, there are other parameters that effect stabilization in our model. Firstly, in the
infinite time limit, we know there can be only one stable activity packet in the a0 ¼ 0
limit. The relationship must therefore deviate considerably from the linear case for
longer simulation times close to the a0 limit. Secondly, the width of the weight profile
and the strength of connectivity effects the number of activity packets sustained by
the network, here modelled as sr ¼ 2p=80 and Aw ¼ 200; respectively. A wider
weight profile and weaker connectivity serve to impede stabilization. Increasing the
asymmetry of activation bands will further diminish stability of multi-packet
solutions. Thirdly, the spatial discreteness inherent in numerical simulations has a
stabilizing effect on the model. This effect increases with the sharpness of the activity
packet profile, as only a Gaussian profile can be moved continuously with constant
support over an equidistant lattice. This effect is directly related to strength
parameter Aw; as increasing Aw saturates the activity packet profile.

While much recent attention has been paid to stabilizing activity packets in
CANN models, little research has focused on balancing stabilization such that the
model retains its winner-take-all functionality. Strong stabilization effectively
partitions the network into a series of local networks with winner-take-all
characteristics similar to networks with short-range inhibition [13]. As such, it is
possible to stabilize large numbers of activity packets under the CANN model.
Alternatively, the use of low levels of global inhibition permits the co-existence of a
small number of activity packets for finite periods in the absence of stabilization. We
speculate that unlike models with short-range inhibition, global inhibition in the
CANN model parallels the effect of interaction between brain areas, limiting the
number of simultaneous activity packets in accordance with the limited capacity of
working memory.
References

[1] S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybernet. 27

(1977) 77–87.

[2] F.P. Battaglia, A. Treves, Attractor neural networks storing multiple space representations: a model

for hippocampal place fields, Phys. Rev. 58(6).

[3] M. Camperi, X.-J. Wang, A model of visuospatial short-term memory in prefrontal cortex: cellular

bistability and recurrent network, J. Comput. Neurosci. 5 (1998) 383–405.

[4] B.G. Carlo R. Laing, William C. Troy, G.B. Ermentrout, Multiple bumps in a neuronal model of

working memory, SIAM J. Appl. Math. 63(1).

[5] A. Compte, N. Brunel, P. Goldman-Rakic, X.-J. Wang, Synaptic mechanisms and network dynamics

underlying spatial working memory in a cortical network model, Cereb. Cortex 10 (2000) 910–923.

[6] D. Hansel, H. Sampolinsky, Modeling Feature Selectivity in Local Cortical Circuits, second ed., MIT

Press, 1998, pp. 467–499 (Chapter 13).



ARTICLE IN PRESS

T.P. Trappenberg, D.I. Standage / Neurocomputing ] (]]]]) ]]]–]]]6
[7] C.R. Laing, W.C. Troy, Two-bump solutions of amari-type models of neuronal pattern formation,

Physica D 178.

[8] J. Lisman, J. Fellous, X.-J. Wang, A role for nmda-receptor channels in working memory, Nature

Neurosci. 1 (4) (1998) 273–275.

[9] A. Samsonovich, Attractor map theory of the hippocampal representation of space, Ph.D. Thesis,

University of Arizona, 1997.

[10] S. Stringer, E. Rolls, T. Trappenberg, Self-organizing continuous attractor networks with multiple

activity packets and the representation of space, Neural Networks 17 (2004) 5–27.

[11] T. Trappenberg, Why is our capacity of working memory so large?, Neural Inform. Process. Lett.

Rev. 1 (3) (2003) 97–101.

[12] M. Tsodyks, T. Sejnowski, Associative memory and hippocampal place cells, Int. J. Neural Syst. 6

(Supp. 1995) (1995) 81–86.

[13] M. Usher, M. Stemmler, C. Koch, Z. Olami, Network amplification of local fluctuations causes high

spike rate variability fractal, firing patterns and oscillatory local-field potentials, Neural Comput. 6

(1994) 795–836.

[14] H. Wilson, J. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic

nervous tissue, Kybernetik 13 (1973) 55–80.

[15] K. Zhang, Representation of spatial orientation by the intrinsic dynamics of head-direction cell

ensembles: a theory, J. Neurosci. 16 (4) (1996) 2112–2126.


	Multi-packet regions in stabilized continuous attractor networks
	Introduction
	Methods
	Results
	Discussion and conclusion
	References


