
7 Unsupervised Learning

As already stated, the aim of learning is to find a mapping function y = f(x) or
probability density function p(y|x). An important insight that we explore in this
sections is that finding such relations is much easier if the representation of the feature
vector is chosen carefully. For example, it is actually very challenging to use raw pixel
values to infer the content of a digital photo such as the recognition of a face. In contrast,
if we have given a useful descriptions of faces, such as the distance between eyes and
other landmark features, the colour of hair, and the length of the nose etc, it is much
easier to classify photographs to specific target faces. Finding a useful representation of
a problem is often key for successful applications. When we use learning techniques for
this task we talk about representational learning. Representational learning is usually
exploiting statistical characteristics of the environment without the need of labeled
training examples. This is therefore an important area of unsupervised learning.

We will start our discussion of unsupervised learning with the example of data
clustering, specifically k-means clustering and the more general Expectation Max-
imization. While these models are generally applied to very specific data model, we
are discussing again more general learning machines in the second half of this chap-
ter, which includes some thoughts on basic Signal Processing and finally Restricted
Boltzmann Machines.

7.1 k-means clustering

We have discussed supervised classification in which we are given traing examples
of feature values and class labels and our task was to classify new data that have no
labels. We discussed SVMs as discriminative method to achieve this. Alternatively, we
could have use an generative model where we model each class distribution p(y|x)
separately and then apply Bayes to do the discrimination.

In the following we discuss the situation where we are given unlabelled data
described by a set of feature values and asked to put them into k categorize. In the first
example of such clustering we categories the data by proximity to a mean value. That
is, we assume a model that specifies a mean feature value of the data and classifies the
data based on the proximity to the mean value. Of course, we do not know this mean
value for each class. The idea of the following algorithm is that we start with a guess
for this mean value and label the data accordingly. We then use the labeled data from
this hypothesis to improve the model by calculating a new mean value, and repeat these
steps until convergence is reached. Such an algorithm usually converges quickly to a
stable solution. More formally, given a training set of data points {x(1), x(2), ..., x(m)}
and a hypothesis of the number of clusters, k, the k-means clustering algorithm is

| 133Mixture of Gaussian and the EM algorithm

Table 7.1 k-means clustering algorithm

1. Initialize the means µ
1

, ...µ
k

randomly.
2. Repeat until convergence: {

Model prediction:
For each data point i, classify data to class with closest mean

c(i) = argmin

j

||x(i) � µ
j

||
Model refinement:

Calculate new means for each class
µ
j

=

1 1(c

(i)
=j)x

(i)

1 1(c

(i)
=j)

} convergence

shown in Table 7.1. An example is shown in Figure ?? and the corresponding program
is shown is Table ??.

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

A Unlabeled data B Data with initial centroids C 1st classi!cation

D 2nd classi!cation E 3rd classi!cation F 1st classi!cation

Fig. 7.1 Example of k-means clustering with two clusters.

7.2 Mixture of Gaussian and the EM algorithm
We have previously discussed generative models where we assumed specific models for
the in-class distributions. In particular, we have discussed linear discriminant analysis
where we had labelled data and assumed that each class is Gaussian distributed. Here
we assume that we have k Gaussian classes, where each class is chosen randomly from
a multinominal distribution,

p(z(i) = j) / multinomial(�
j

) (7.1)

Unsupervised Learning134 |
Table 7.2 Program to demonstrate k-mean clustering on Gaussian Data.

clear; clf; hold on;

%% training data generation; 2 classes, each gaussian with mean (1,1) and (2,2) and diagonal unit variance
n0=100; %number of points in class 0
n1=100; %number of points in class 1

x=[1+randn(n0,1), 1+randn(n0,1); ...
5+randn(n1,1), 5+randn(n1,1)];

plot(x(:,1),x(:,2),’ko’); % plotting points
mu1=[5 1]; mu2=[1 5]; % initial two centers
while(true) waitforbuttonpress;

plot(mu1(1),mu1(2),’rx’,’MarkerSize’,12)
plot(mu2(1),mu2(2),’bx’,’MarkerSize’,12)

for i=1:n0+n1;
d1=(x(i,1)-mu1(1))^2+(x(i,2)-mu1(2))^2;
d2=(x(i,1)-mu2(1))^2+(x(i,2)-mu2(2))^2;
y(i)=(d1<d2)*1;

end

waitforbuttonpress;
x1=x(y>0.5,:);
x2=x(y<0.5,:);

clf; hold on;
plot(x1(:,1),x1(:,2),’rs’);
plot(x2(:,1),x2(:,2),’b*’);
mu1=mean(x1);
mu2=mean(x2);

end

p(x(i)|z(i) = j) / N(µ
j

,⌃
j

) (7.2)

This is called a Gaussian Mixture Model. The corresponding log-likelihood function
is

l(�, µ,�) =

mX

i=1

log

kX

z

(i)
=1

p(x(i)|z(i);µ,⌃)p(z(i);�). (7.3)

Since we consider here unsupervised learning in which we are given data without
labels, the random variables z(i) are latent variables. This makes the problem hard. If
we would be give the class membership, than the log-likelihood would be

| 135Mixture of Gaussian and the EM algorithm

l(�, µ,�) =

mX

i=1

log p(x(i)

; z(i), µ,⌃), (7.4)

which we could use to calculate the maximum likelihood estimates of the parameter
(see equations 4.71-4.73),

�
k

=

1

m

mX

i=1

11(z(i) = j) (7.5)

µ
k

=

P
m

i=1

11(z(i) = j)x(i)

P
m

i=1

11(z(i) = j)
(7.6)

⌃

k

=

P
m

i=1

11(z(i) = j)(x(i) � µ
j

)(x(i) � µ
j

)

T

P
m

i=1

11(y(i) = k)
. (7.7)

While we do not know the class labels, we can follow a similar strategy to the k-
means clustering algorithm and just propose some labels and use them to estimate
the parameters. We can then use the new estimate of the distributions to find better
labels for the data, and repeat this procedure until a stable configuration is reached. In
general, this strategy is called the EM algorithm for expectation-maximization. The
algorithm is outlined in Fig.7.2. In this version we do not hard classify the data into
one or another class, but we take a more soft classification approach that considers the
probability estimate of a data point belonging to each class.

1. Initialize parameters �, µ,⌃ randomly.
2. Repeat until convergence: {

E step:
For each data point i and class j (soft-)classify data as

w
(i)

j

= p(z(i) = j|x(i)

;�, µ,⌃)

M step:
Update the parameters according to

�
j

=

1

m

P
m

i=1

w
(i)

j

µ
j

=

P
m

i=1 w

(i)
j

x

(i)

P
m

i=1 w

(i)
j

⌃

k

=

P
m

i=1 w

(i)
j

(x

(i)�µ

j

)(x

(i)�µ

j

)

T

P
m

i=1 11w

(i)
j

.

} convergence

Fig. 7.2 EM algorithm

An example is shown in Fig. 7.3. In this simple world, data are generated with
equal likelihood from two Gaussian distributions, one with meanµ

1

= �1 and standard
deviation �

1

= 2, the other with mean µ
2

= 4 and standard deviation �
2

= 0.5. These
two distributions are illustrated in Fig. 7.3A with dashed lines. Let us assume that we
know that the world consists only of data from two Gaussian distributions with equal
likelihood, but that we do not know the specific realizations (parameters) of these
distributions. The pre-knowledge of two Gaussian distributions encodes a specific
hypothesis which makes up this heuristic model. In this simple example, we have

Unsupervised Learning136 |

chosen the heuristics to match the actual data-generating system (world), that is, we
have explicitly used some knowledge of the world.

-10 0 100

0.2

0.4

0.6

0.8

1

-10 0 100

0.2

0.4

0.6

0.8

1

-10 0 100

0.2

0.4

0.6

0.8

1

A. Initial condition B. After 3 updates C. After 9 updates

xx x

p(x) p(x)p(x)

Fig. 7.3 Example of the expectation maximization (EM) algorithm for a world model with two
Gaussian distributions. The Gaussian distributions of the world data (input data) are shown with
dashed lines. (A) The generative model, shown with solid lines, is initialized with arbitrary param-
eters. In the EM algorithm, the unlabelled input data are labelled with a recognition model, which
is, in this example, the inverse of the generative model. These labelled data are then used for
parameter estimation of the generative model. The results of learning are shown in (B) after three
iterations, and in (C) after nine iterations .

Learning the parameters of the two Gaussians would be easy if we had access
to the information about which data point was produced by which Gaussian, that is,
which cause produced the specific examples. Unfortunately, we can only observe the
data without a teacher label that could supervise the learning. We choose therefore a
self-supervised strategy, which repeats the following two steps until convergence:

E-step: We make assumptions of training labels from the current model (expectation
step)

M-step: use this hypothesis to update the parameters of the model to maximize the
probability of the observations (maximization step).

Since we do not know appropriate parameters yet, we just choose some arbitrary values
as the starting point. In the example shown in Fig. 7.3A we used µ

1

= 2, µ
2

= �2,
�
1

= �
2

= 1. These distributions are shown with solid lines. Comparing the generated
data with the environmental data corresponds to hypothesis testing.

The results are not yet very satisfactory, but we can use the generative model to
express our expectation of the data. Specifically, we can assign each data point to the
class which produces the larger probability within the current world model. Thus, we
are using our specific hypothesis here as a recognition model. In the example we can
use Bayes’ rule to invert the generative model into a recognition model as detailed in
the simulation section below. If this inversion is not possible, then we can introduce
a separate recognition model, Q, to approximate the inverse of the generative model.
Such a recognition model can be learned with similar methods and interleaved with
the generative model.

Of course, the recognition with the recognition model early in learning is not

| 137Dimensionality reduction

expected to be exact, but estimation of new parameters from the recognized data in the
M-step to maximize the expectation can be expected to be better than the model with
the initial arbitrary values. The new model can then be compared to the data again
and, when necessary, be used to generate new expectations from which the model is
refined. This procedure is known as the expectation maximization (EM) algorithm.
The distributions after three and nine such iterations, where we have chosen new data
points in each iteration, are shown in Figs 7.3B and C.

Simulation

The program used to produce Fig. 7.3 is shown in Table 7.3. The vector x
0

, defined
in Line 2, is used to plot the distributions later in the program. The arbitrary random
initial conditions of the distribution parameters are set in Line 3. Line 4 defines an
inline function of a properly normalized Gaussian since this function is used several
times in the program. An inline function is an alternative to writing a separate function
file. It defines the name of the functions, followed by a list of parameters and an
expression, as shown in Line 4. The rest of the program consist of an infinite loop
produced with the statement while 1, which is always true. The program has thus to
be interrupted by closing the figure window or with the interruption command Ctrl
C. In Lines 7–12, we produce plots of the real-world models (dotted lines) and the
model distributions (plotted with a red and a blue curve when running the program).
The command waitforbuttonpress is used in Line 12 so that we can see the results
after each iteration.

In Line 14 we produce new random data in each iteration. Recognition of this data
is done in Line 16 by inverting the generative model using Bayes’ formula,

P (c|x;G) =

P (x|c;G)P (c;G)

P (x;G)

. (7.8)

In this specific example, we know that the data are equally distributed from each
Gaussian so that the prior distribution over causes, P (c;G) is 1/2 for each cause.
Also, the marginal distribution of data is equally distributed, so that we can ignore
this normalizing factor. The recognition model in Line 16 uses the Bayesian decision
criterion, in which the data point is assigned to the cause with a larger recognition
distribution, P (c|x;G). Using the labels of the data generated by the recognition
model, we can then use the data to obtain new estimates of the parameters for each
Gaussian in Lines 17–21.

Note that when testing the system for a long time, it can happen that one of the
distributions is dominating the recognition model so that only data from one distribution
are generated. The model of one Gaussian would then be explaining away data from
the other cause. More practical solutions must take such factors into account.

7.3 Dimensionality reduction
A large amount of data are collected these days. Much data is unlabelled and high
dimensional in the many feature dimension are recorded for specific application areas.
It is hence not surprising that a large number of methods were developed to simplify

Unsupervised Learning138 |
Table 7.3 Program ExpectationMaximization.m

%% 1d example EM algorithm
clear; hold on; x0=?10:0.1:10;
var1=1; var2=1; mu1=?2; mu2=2;
normal= @(x,mu,var) exp(?(x?mu).^2/(2?var))/sqrt(2?pi?var);
while 1

%%plot distribution
clf; hold on; ylim([0 1]);
plot(x0, normal(x0,?1,4),k:);
plot(x0,normal(x0,4 ,.25) , k:);
plot(x0, normal(x0,mu1,var1),r);
plot(x0, normal(x0,mu2,var2),b);
waitforbuttonpress ;
%% data
x=[2?randn(50,1)?1;0.5?randn(50 ,1)+4;];
%% recogintion
p1=normal(x,mu1,var1);
p2=normal(x,mu2,var2);
nrm=p1+p2 ; p1=p1./nrm; p1=p1./sum(p1); p2=p2./nrm; p2=p2./sum(p2);
%% maximization
mu1 =x?p1; var1=(x?mu1).^2 ? p1;
mu2 =x?p2; var2=(x?mu2).^2 ? p2;
%equivalently :
%p1=p1./nrm; p2=p2./nrm;
%mu1=sum(x.?p1)/sum(p1); var1=sum(p1.?(x?mu1).^2)./sum(p1);
%mu2=sum(x.?p2)/sum(p2); var2=sum(p2.?(x?mu2).^2) ./sum(p2);

end

or summarize the data. This is often done under the label dimensionality reduction.
Typically methods include Eigenspace and PCA, ICA, factor analysis, nonlinear di-
mensionality reduction, spectral clustering, etc. There are some good collections of
methods available, both in Matlab and Python. We will not discuss these above men-
tioned methods in detail, but the more general discussion below applies directly to this
problem domain.

7.4 Representations and the restricted Boltzmann machine

Let us now return to the more general discussion of representational learning. To show
how different representations can influence information processing, consider how to
represent numbers. An easy method, likely used in ancient times, is to denote a certain
number with as many lines as shown in Fig.7.4A. Adding two numbers is relatively
easy, but representing large numbers is becoming cumbersome. The Romans used a dif-
ferent representations shown in Fig.7.4B in which larger numbers can be represented.
But adding two large numbers is not easy. The Arabic in Fig.7.4C representations was
a major breakthrough to calculate with larger numbers. Adding number in a binary

| 139Representations and the restricted Boltzmann machine

+

A.

B.
 CXIV
+ LII
 CXLVI

 114
+ 52
 166

C.
 01110010
+ 00110100
 10100110

D.

Fig. 7.4 Different representation of numbers and their sum.

representation, Fig.7.4D, is good to add numbers with logical gates that enabled the
automation of adding numbers in a electronic calculator. A major power of quantum
computing lies in the fact that complicated probabilistic operations could be performed
easily from quantum effects.

Representational learning itself can be viewed as a mapping problem, such as the
mapping from raw pixel values to more direct features of a face or the mapping from
Roman number to digital numbers. This is illustrated in Fig.7.5A where the raw input
feature vector, x, is represented by a layer of nodes at the bottom. Let’s call this layer
the input layer. The feature vector for higher order representations, h, is represented
as nodes in the upper layer of this network. Let’s call this the representational
layer or hidden layer. The connections between the nodes represent the desired
transformation between input layer and hidden layer. In line with our probabilistic
framework, each node represents a random variable. The main idea of the principle
that we will employ to find useful representations is that these representations should
be useful in reconstructing the input.

ï� 0 �0

���

1

X

y
1+exp(-2x)

1+exp(-2x+3)
1+exp(-x)

1

1
1

Hidden
nodes

Visible
nodes

A. Restricted Boltzmann Machine B. Logistic function

Fig. 7.5 (A) Restricted Boltzmann machine which is a probabilistic two layer network with bidirec-
tional symmetric connections between the input layer and the representational (hidden) layer. (B)
Logistic function with different slopes and offsets.

Before we discuss different variations of hidden representations, let us make the
functions of the model more concrete. Specifically, let us consider mainly binary

Unsupervised Learning140 |

random variables for illustration purposes. Given the values of the inputs, we choose
to calculate the value of the hidden nodes with index i, or more precisely the probability
of having a certain value, with a logistic function shown in Fig.7.5B,

p(h
i

= 1|x) = 1

1 + e�
1
T

(w

i

x+b

i

)

, (7.9)

where T is a temperature parameter controlling the steepness of the curve, w are the
weight values of the connections between input and hidden layer, and bh

i

is the offset of
the logistic function, also called bias of the hidden node. In this model, which is called
a restricted Boltzmann machine (Smolensky 1986), there are no connections between
hidden nodes so that the hidden nodes represent random variables that are conditionally
independent when the inputs are observed. In other words, the joint density function
with fixed inputs factorizes,

p(h|x) =
Y

i

1

1 + e�
1
T

P
j

w

ij

x

j

+b

h
i

. (7.10)

The connections in this model are bidirectional, and such a model represents therefore
a symmetric Bayesian network which is a special case of the Bayesian networks
discussed later. The state of the input nodes can be generated by hidden activations
according to

p(x|h) =
Y

i

1

1 + e�
1
T

P
j

w

ij

h

j

+b

v
i

, (7.11)

where bv
i

are the biases for each visible (input) node.

t=1 t=2 t=3 t= 8

Fig. 7.6 Alternating Gibbs sampling.

The remaining question is how to choose parameters, specifically the weights and
biases of the model? Since our aim is to reconstruct the world, we can formulate this
in a probabilistic framework by minimizing the distance between the world distribu-
tion (the density function of visible nodes when set by unlabelled examples from the
environment) and the generated model of the world when sampled from hidden activi-
ties. The difference between distributions is often measured with the Kullbach-Leibler
divergence, and minimizing this objective function with a gradient method leads to a
Hebbian-type learning rule

�w
ij

= ⌘
@l

@w
ij

= ⌘
1

2T
(hs

i

s
j

i
clamped

� hs
i

s
j

i
free

) . (7.12)

The angular brackets h.i denote sample averages, either in the clamped mode where the
inputs are fixed or in the free running mode where the input nodes activity is determined

| 141Sparse representations

0 50 100 1500

0.05

0.1

0.15

0.2

0.25

epoch

av
ge

ra
ge

 e
rro

r

Fig. 7.7 Output of the example program for a restricted Boltzmann machine. The learning curve
on the left shows the development of the average reconstruction error, and the reconstructions of
noisy patterns after training are shown on the right.

by the hidden nodes. Unfortunately, in practice this learning rule suffers from the long
time it takes to produce unbiased average from sequentially sampled time series.
However, it turns out that learning still works for a few steps in Gibbs sampling as
illustrated in Fig.7.12. This learning rule, which has finally made Boltzmann machines
applicable, is called contrastive divergence (Hinton 2002).

An example of a basic restricted Boltzmann machine is given in Table 7.4. This
network is used to learn digitized letters of the alphabet that are provided in file
pattern1.txt at www.cs.dal.ca/ tt/repository/MLintro2012 together with
the other programs of this article. This RBM has nh = 100 hidden nodes and is
trained for nepochs = 150 epoch, where one epoch consists of presenting all images
once. The network is trained with contrastive divergence in the next block of code.
The training curve, which shows the average error of recall of patterns, is shown on
the left in Fig.7.7. After training, 20% of the bits of the training patterns are flipped
and presented as input to the network, and the program then plots the patterns after
repeated reconstructions as shown on the right in Fig.7.7. Only the first 5 letters are
shown here, but this number can be increased to inspect more letters.

7.5 Sparse representations

In the previous section we reviewed a basic probabilistic network that implements
representational learning based on reconstructions of inputs. There are many other
unsupervised algorithms that can do representational learning and we will encounter
some additional ones later. Also, many other representational learning algorithm are
known from signal processing such as Fourier transformation, wavelet analysis, or
independent component analysis (ICA). Indeed, most advanced signal processing in-
clude steps to re-represent or decompose a signal into basis functions. For example, the
Fourier transformation decomposes a signal into sine waves with different amplitudes
and phases. The individual sine waves can then be reconstructed from the coefficient
for each of these basis functions. An example is shown in Fig.7.8. The signal in the
upper left is made out of three sine waves as revealed by the power spectrum on the
right that plots basically the square of the corresponding coefficients.

Unsupervised Learning142 |
Table 7.4 Basic restricted Boltzmann machine to learn letter patterns

clear; nh=100; nepochs=150; lrate=0.01;
%load data from text file and rearrange into matrix
load pattern1.txt;
letters = permute(reshape(pattern1, [12 26 13]), [1 3 2]);

%%train rbm for nepochs presentations of the 26 letters
input = reshape(letters,[12*13 26])
vb =zeros(12*13,1); hb =zeros(nh,1); w =.1*randn(nh,12*13);

figure; hold on;
xlabel ’epoch’; ylabel ’error’; xlim([0 nepochs]);
for epoch=1:nepochs;
err=0;
for i=1:26

%Sample hidden units given input, then reconstruct.
v = input(:,i);
h = 1./(1 + exp(-(w *v + hb))); %sigmoidal activation
hs= h > rand(nh,1); %probabilistic sampling
vr= 1./(1 + exp(-(w’*hs+ vb))); %input reconstruction
hr= 1./(1 + exp(-(w *vr+ hb))); %hidden reconstruction

%Contrastive Divergence rule: dw ~ h*v - hr*vr
dw = lrate*(h*v’-hr*vr’); w = w +dw;
dvb = lrate*(v - vr); vb= vb+dvb;
dhb = lrate*(h - hr); hb= hb+dhb;
err = err + sum((v-vr).^2); %reconstruction error

end
plot(epoch, err/(12*13*26), ’.’); drawnow;%figure output

end

%%plot reconstructions of noisy letters
r = randomFlipMatrix(round(.2*12*13)); %(20% of bits flipped)
noisy_letters = abs(letters - reshape(r,[12 13 26]));
recon = reshape(noisy_letters, 12*13, 26); %put data in matrix
recon=recon(:,1:5); %only plot first 10
figure; set(gcf,’Position’,get(0,’screensize’));

for i=0:3
for j=1:5

subplot(3+1, 5, i*5 + j);
imagesc(reshape(recon(:,j),[12 13])); %plot
colormap gray; axis off; axis image;

h = 1./(1 + exp(-(w *recon(:,j) + hb))); %compute hidden
hs= h > rand(nh,1); %sample hidden
recon(:,j) = 1./(1 + exp(-(w’*hs + vb)));%compute visible
recon(:,j) = recon(:,j) > rand(12*13,1); %sample visible

end
end

function r=randomFlipMatrix(n);
% returns matrix with components 1 at n random positions
r=zeros(156,26);
for i=1:26

x=randperm(156);
r(x(1:n),i)=1;

end

| 143Sparse representations

0 50 100 150ï�
ï�

0
�
�

0 50 100 150
0

0.5

1

0 5
0

1

�

3
x 106

0 5
0

10

��

30

Frequency

Po
w

er

Time

Am
pl

itu
de

Fig. 7.8 Decomposition of signals into sine waves. The example signals are shown on the left
side, and the corresponding description of the power spectrum on the right. The power spectrum
shows the square of the amplitude for each contributing sine wave with specified frequency.

The Fourier transformation has been very useful in describing periodic signals,
but one problem with this representation is that an infinite number of basis functions
are needed to represent a signal that is localized in time. An example of a square
signal localized in time is shown in the lower left panel of Fig.7.8 together with
its power spectrum on the right. In the case of the time-localized signal, the power
spectrum shows that a continuous number of frequencies are necessary to accurately
represent the original signal. Thus, a better choice for applications with localized
features would be basis functions that are localized in time. An example of such
transformations are wavelet transforms (Graps 2012) or the Huang-Hilbert transform
(Huang et al. 1998). The usefulness of a specific transformation depends of course
on the nature of the signals. Periodic signals with few frequency components, such as
the rhythm of the heart or yearly fluctuations of natural events, are well represented
by Fourier transforms, while signals with localized features, such as objects in a
visual scene, are often well represented with wavelets. The main reason for calling
a representation useful is that the original signal can be represented with only a
small number of basis functions, or with other words, when only a small number of
coefficients have significant large values. Thus, even if the dictionary might be large,
each example of a signal of the specific environment can be represented with a small
number of components. Such representations are called sparse.

The major question is then how to find good (sparse) representations for specific
environments. One solution within the learning domain is to learn representations
by unsupervised learning as demonstrated above with the example of a Boltzmann
machine. To learn sparse representations we now add additional constrains that force
the learning of specific basis functions. In order to do this we can keep track of the
mean activation of the hidden nodes,

q
j

(t) = (1� �)q
j

(t� 1) + �h
j

(t), (7.13)

where the parameter � determines the averaging window. We then add the constraint of
minimizing the difference between the desired sparseness ⇢ and the actual sparseness

Unsupervised Learning144 |

q to the learning rule,

�w
ij

/ v
i

(h
j

+ ⇢� q
j

)� vr
i

hr

j

. (7.14)

This works well in practice and has the added advantage of preventing dead nodes
(Hinton 2010).

