CSCI 1106
Lecture 17/

Using State Transition Diagrams

Announcements

 Today’s Topics
— Implementing State Transitions
— Mapping state transition diagrams to programs

— When to use when

Recall

States and Transitions

e State
— Unique set of conditions
— Describes a step of a task
— Represented by a circle and a
label
* Transition

— Change of one or more
conditions

— Describes a change from one
state to another

— Represented by a labeled arc

dark
@

Program Code

var state = STOPPED
motor.left.target = 0
motor.right.target = 0

onevent button.forward
state = RIGHT

onevent button.backward
state = STOPPED
motor.left.target = 0
motor.right.target = 0

onevent prox
if state != STOPPED then
when prox.ground.delta[0] >= THRESHOLD do
state = RIGHT
motor.left.target = TARGET
motor.right.target = 0
end

when prox.ground.delta[0] < THRESHOLD do
state = LEFT
motor.left.target = 0
motor.right.target = TARGET
end
end

Translating State Transition Diagrams

* Problem:

— We design our solution by creating a state transition
diagram (STD)

— We need to translate the STD into a program
* |dea: Use a standard process
— Use a variable to encode the current state
— Enumerate all states as constants
— |ldentify events associated with each transition
— Gather transition information
— Implement event handlers to perform the transitions

Tracking and Enumerating States

var state = STOPPED

 Use a state variable
— Stores the current state
— Set to an initial state,

motor.left.target = 0
motor.right.target = 0

onevent button.forward
state = RIGHT

onevent button.backward

e.g., STOPPED motor. lett .target = 0
* Enumerate all states e Rl
— Select state names o 0
e.g., STOPPED, RIGHT, LEFT STOPPED 0
— Number consecutively v ;
(eFT :

— Add states as constants
* Can be done automatically

LD do ’ -

|dentify Events

* |dentify the events associated with each transition
— button. forward: Forward Button pressed
— prox: horizontal proximity or ground proximity sensors
— timer0 or timer1l: timer has expired
— tap: robot tapped
— etc
 Add an event handler for each event
— onevent button.forward
— onevent prox
— onevent timer0

* |n each handler implement all the transitions
associated with the event

Example: Identify Events

Events
back button e button.forward
e button.backward
- * prox

O
fwd button o

onevent button.forward

aul| ou

back button

onevent button.backward

N
o~
| black line

back button
onevent prox

Gather Transition Information

back button

e For each transition, identify
— States (CONSTANTS)
— Event (handler)

+ .
o

— Sensor/device fwd button \Q\")c o
— Change in sensor/device = -
— Thresholds (if any) @ X o
— Action to perform back button ; g r:_g.
 E.g., transition: fwd =» left o,
— States: O@
* From: fwd (FORWARD)

* To: left (LEFT)
— Event (Handler): prox
— Sensor: prox.ground.delta[0]
— Change in sensor: response decreases (dark)
— Threshold: < 500 means dark

— Turn left

motor.left.target = 0
Motor.right.target = 200

* Implement the transitions in their event handlers

back button

Implement the Transitions

* Inside the handler use template:
if state == FROM_STATE and sensor has changed then
state = TO_ STATE
perform action
end

* E.g., transition: fwd =» left
onevent prox

if state == FORWARD and prox.ground.delta[0] < 500 then
state = LEFT

motor.left.target = 0 back button
motor.right.target = 200 \o-\(@
Q
end fwd button _ %" o
(-
= -
¢ o
o j—
back button A = >
o
v/
/O@

back button

Optimizations

Consider the handler for the "back
button" transitions:
onevent button.backward
if state == FORWARD then
state = STOPPED
motor.left.target = 0
motor.right.target = 0
elseif state == LEFT then
state = STOPPED
motor.left.target = 0
motor.right.target = 0
elseif state == RIGHT then
state = STOPPED
motor.left.target = 0
motor.right.target = 0
end

e Why is there no AND part?

* |sthis necessary?
onevent button.backward
state = STOPPED
motor.left.target = 0
motor.right.target = 0

* In many cases code can be optimized!

pack button

fwd button o

back button

black line
aui| ou

back button

Another Example: Move in a Square

The Square STD

e States:
— stop (STOPPED)
— Fwd (FORWARD)
— turn (TURN)

* Transitions: 0
o
— stop = fwd ’i\Nd‘ou

— fwd =» stop \ou’c\o“ - o
— turn =>» stop pect = =
(]
— fwd = turn 5 2
— T S
turn =» fwd back B S
* Events: tton @

— Forward Button
— Backward Button
— timer0

Timer based Transitions

Done Fwd

States:
— From: fwd (FORWARD)

— To: turn (TURN)

Event handler: timer0
Device: timer.period[0]
Thresholds: None

Action:

— Start turning
motor.left.target = -200
motor.right.target = 200

— Set timer period
timer.period[0] = 1000

Done Turn o
D
* States: 2
Q.

— From: turn (TURN)
— To: fwd (FORWARD)

Event handler: timer0
Device: timer.period[0]
Thresholds: None

Action:

— Start moving straight
motor.left.target = 200
motor.right.target = 200

— Set timer period
timer.period[0] = 2000

: done turn

The timer0 Event Handler

The timer0 Event Handler

onevent timer0

if state == FORWARD then
state = TURN
timer.period[0] = 1000
motor.left.target = -200
motor.right.target = 200

elseif state == TURN then
state = FORWARD
timer.period[0] = 2000

motor.left.target = 200
motor.right.target = 200
end

The Other Event Handlers

onevent button.forward
state = FORWARD
timer.period[0] = 2000
motor.left.target = 200
motor.right.target = 200

onevent button.backward
state = STOPPED
timer.period[0] = 0
motor.left.target = 0
motor.right.target = 0

Using elseif

Right
onevent timer0
if state == FORWARD then
state = TURN
timer.period[0] = 1000
motor.left.target = -200
motor.right.target = 200
elseif state == TURN then
state = FORWARD
timer.period[0] = 2000

motor.left.target = 200
motor.right.target = 200
end

0%
@\\ S

6

Wrong N
_ x\ O
onevent timer0 é&&
if state == FORWARD then
state = TURN
timer.period[0] = 1000
motor.left.target = -200
motor.right.target = 200

end

if state == TURN then
state = FORWARD
timer.period[0] = 2000

motor.left.target = 200
motor.right.target = 200
end

Key Idea: Multiple transitions in one event handler should be

linked with elseif

What is when?

Consider our line follower (again)

Which transitions occur on a prox event? back button
— on black line
o fwd => left C
* right = left fwd button \0\6
— onnoline @ 2
» fwd => right —
e left D right back button 2 =
Observation: %,
— If we are not STOPPED
— Transition to LEFT when we encounter a black line back button

— Transition to RIGHT when we encounter no line
Idea: Transitions occur when things change

Analogy:
— When we encounter a stop sign, we stop the car
— We do not continue stopping the car once it has stopped

1f vs when

if when
* Form: * Form:
if condition then when condition do
body body
end end

 |f the condition is true now
and was not true before,

the body is executed

e E.g., if we see a stop sign * E.g., if we see a stop sign
stop, regardless of whether and we are not stopped,
we are already stopped then stop

 |f the condition is true

the body is executed

When to use when?

 |dea: Use when when the state of a sensor
corresponds to a state

* Examples:

— Line following:
* Sensor registers dark means move left

* Sensor registers light means move right

— Wall avoidance:
e Sensor registers an object ahead means turn
e Sensor no registering an object means go forward

Example of when

Using 1£s
onevent prox
if state == FORWARD and prox.ground.delta[0] < 500 then
state = LEFT
motor.left.target = 0
motor.right.target = 200
elseif state == RIGHT and prox.ground.delta[0] < 500 then
state = LEFT
motor.left.target = 0
motor.right.target = 200
elseif state == FORWARD and prox.ground.delta[0] >= 500 then
state = RIGHT
motor.left.target = 200

motor.right.target = 0 back button \.\(\6
elseif state == LEFT and prox.ground.delta[0] >= 504" then ®¢$
state = RIGHT fwd button _\

motor.left.target = 200
motor.right.target = 0
end

back button A
back bUttOnO///.)@

black line

aul| ou

Example of when

Using whens
onevent prox
if state != STOPPED then

when prox.ground.delta[0] < 500 do
state = LEFT
motor.left.target = 0
motor.right.target = 200

end

when prox.ground.delta[0] >= 500 do
state = RIGHT
motor.left.target = 200
motor.right.target = 0

end

end back button\k\\Oe
O
fwd button o\

back button A
back buttono//b@

black line
aui| ou

right

