
CSCI	1106	
Lecture	21	

Game	Design	Review	



Components	of	a	Game	
•  Stage:	Displays	(renders)	the	game		
•  Sprites:	

–  Graphical	objects	that	interact	on	the	stage	
–  Represent	various	arFfacts	in	the	game	

•  Characters	
•  ProjecFles	
•  Power-ups,	obstacles,	etc	

•  Game	Code:	
–  Governs	interacFons	between	sprites	
–  Governs	interacFons	between	player	and	

sprites	
–  Implements	the	rules	of	the	game	
–  Contains	event	handlers	that	respond	to	

events	in	the	game	
–  Updates	the	sprites	on	the	stage	



The	Movie	Metaphor	
•  In	a	movie	the	screen	is	updated	24	Fmes	per	second	
•  In	a	game	the	stage	is	updated	30	Fmes	per	second	
•  The	update	is	called	a	frame	
•  A	frame	occurs	every	1/30th	of	a	second	
•  When	a	frame	occurs	

–  Sprites	modify	their	properFes	
•  PosiFon	
•  Look	
•  Sound	
•  Etc	

–  Sprites	are	redrawn	on	stage	in	each	frame	
•  Key	Idea:	A	game	is	simply	an	interacFve	movie!	
•  What	interacFon?	



Event	Driven	Paradigm	

•  ObservaFon:	A	game	performs	“some	acFon”	
when	“something”	happens	

•  Idea:	Game	code	simply	responds	to	events	
•  Possible	events:	

–  External	events:		(mouse,	keyboard,	kinect,	etc)	
–  Internal	events:	(Start	of	game,	New	Frame,	Timer)	

•  Each	event	is	handled	by	an	event	handler		
•  The	game	code	simply	consists	of	event	handlers	
that	handle	all	aspects	(behaviours)	of	the	game!	



The	Main	Loop	

•  Idea:	The	main	loop	is	
implemented	for	you	

•  Main	Loop:	
–  Event	(acFon)	occurs	
–  Handle	(respond	to)	event	
–  Update	(modify)	object(s)	

•  All	you	need	to	do	is		
–  generate	events	and	
–  write	the	event	handlers!	

U
ser action 

M
od

ify
 o

bj
ec

t 



Sprites	
•  A	sprite	is	a	graphical	object	that	is	placed	on	the	stage	
•  A	sprite	has	associated	with	it	

–  costumes	
–  proper2es	
–  variables	
–  scripts	

•  A	sprite	represents	game	arFfacts		
–  Characters	
–  Obstacles	
–  ProjecFles	
–  Etc	



ProperFes	and	Variables	

10	

90	

100	

42	

123	

5	

2	

4	

Sprite	Name:	Invader	

Costume1	

Costume2	

ProperFes	 Variables	(Extrinisic	ProperFes)	



The	Stage	

•  Idea:	The	Stage	is	a	special	sprite	on	which	all	
other	sprites	are	displayed.	

•  The	stage	has	backdrops	rather	than	
costumes,	but	they	serve	the	same	purpose	

•  All	sprites	will	always	be	in	front	of	the	stage	
•  Like	other	sprites,	the	stage	has	

– properFes,	sounds,	and	scripts	associated	with	it	



Cloning	Sprites	
•  Idea:	We	can	make	mulFple	copies	of	a	sprite	by	
cloning	it.	

•  When	a	sprite	is	cloned,	everything	is	copied	
e.g.,	properFes,	variables,	costumes,	scripts,	etc	

•  Key	Idea:	ManipulaFon	of	the	clone	or	the	original	
does	not	affect	the	other	
e.g.,	changing	the	clone's	posiFon	will	not	move	the	original	

•  Both	the	clone	and	the	original	have	the	same	name	
•  Two	differences	between	clones	and	originals	

–  clones	are	noFfied	when	they	are	created	
–  clones	can	be	destroyed	



CommunicaFon	Between	Sprites	

•  Key	Idea:	Sprites	communicate	by	
broadcasFng	messages	(events)	
– A	broadcast	means	every	sprite	receives	the	
message	
e.g.,	Stage	broadcasts	FRAME	30	Fmes	per	second	

– A	sprite	can	respond	to	a	specific	message	(event)	
by	having	a	script	that	receives	it	

•  Messages	cannot	be	directed	at	a	specific	
sprite	unless	only	that	sprite	has	a	script	to	
receive	that	message	



Autonomous	MoFon	

•  Set	the	sprite’s	speed		
– Number	of	steps	(pixels)	per	frame	
– Can	be	posi2ve	or	nega2ve	

•  Set	the	sprite's	direcFon	property	
•  Create	a	script	to	respond	to	the	FRAME	event	
•  On	each	frame	change	the	posiFon	of	the	
sprite	by	its	speed	
e.g.	move	10	steps	per	frame	at	90°	

0°	

90°	

180°	

270°	



Hijng	the	Wall	
•  Fact:	If	the	object	keeps	moving	it	will	reach	the	edge	of	

the	stage	
–  Fall	off	the	edge	
–  Bounce	back	

•  Falling	off	the	edge	
–  Once	object	is	no	longer	visible,	remove	it	

•  Bounce	back	
–  Once	object	touches	a	wall,	reverse	velocity	

•  If	verFcal	wall,	reverse	horizontal	velocity	
•  If	horizontal	wall,	reverse	verFcal	velocity	

•  This	is	done		in	the		FRAME	handler	
–  Why?	

•  This	is	a	special	form	of	collision	detecFon	



Mechanisms	for	Collision	DetecFon	

•  Four	ways	to	detect	collisions:	
–  Cheap	and	fast:	Check	if	bounding	boxes	overlap!
–  Expensive	and	slow:	Check	if	the	points	of	one	
sprite	intersect	with	the	other	

–  Fast	but	specialized:	Use	geometry	
– More	complicated	and	fast:	Use	invisible	sprites	

•  For	most	purposes,	the	second	way	suffices	

r1	 r2	

Distance(	circle1,	circle2	)	<	r1	+	r2	



Player	MoFon	
•  All	interacFve	games	have	player	movement	

–  Players	can	move	their	character	or	avatar	on	the	screen	
–  Players	can	react	to	the	game	and	move	their	avatar	

•  How	the	avatar	moves	is	dictated	by	the	game’s	
–  Laws	and	physics	of	the	game	
–  Goals	and	objecFves	
–  Environment	and	level	of	play	

•  Common	ways	to	move	the	avatar	are	through	
– Mouse	
–  Keyboard	
–  Dedicated	game	controllers	and	joysFcks	



Mouse	Movement	

Direct	Mouse	Movement	
•  The	avatar	appears	where	the	

mouse	is	poinFng	to	
•  No	need	to	control	the	

velocity	of	the	avatar	
•  PosiFon	and	velocity	is	

managed	by	the	mouse	
movement	

•  Set	the	avatar’s	coordinates	to	
the	mouse	coordinates	at	each	
FRAME	event		

Easing	
•  Gradually	move	avatar	toward	

the	locaFon	clicked	on	with	
the	mouse	pointer	

•  A	mouse	click	sets	the	target	
to	move	toward	

•  Calculate		distance	between	
the	avatar	and	target	

•  Incrementally	move	the			
avatar	toward	the													
target	

	

(x,y) 



Keyboard	based	Movement	
•  Idea:	Move	the	player	with	the	

keyboard	
–  The	arrow	keys	control	the	

direcFon	that	the	avatar	moves	
–  These	direcFons	allow	the	

player	to	move	diagonally	as	
well	

–  Need	to	respond	to	the	KEY	
PRESS	events	or	check	if	keys	
are	being	pressed.	

–  More	than	one	key	can	be	
down	at	the	same	Fme	

•  On	a	FRAME	event	
–  Check	which	of	the	arrow	keys	

are	pressed	and	move	in	that	
direcFon	



PlaytesFng	
•  PlaytesFng	is	a	game	development	method	for	

–  Gejng	feedback	about	the	game	
–  IdenFfying	problems	with	the	game	
–  Understanding	how	players	perceive	the	game	
–  Improving	the	playability	and	enjoyment	of	the	game	

•  PlaytesFng	involves	
–  Players:		

•  Users	who	typically	have	never	played	the	game	before	
•  Recruited	by	developers	to	play	games		

–  Observers:	
•  Members	of	the	development	team	
•  Observe	the	players	as	the	play	games	and	take	notes	



Goals	of	PlaytesFng	
•  IdenFfy	game	play	issues	

–  Bugs	
–  Playability:	Player	moFon	and	mechanics,	Environment,	Controls	,	Speed	of	

the	game	
–  Understandability:	Game	objecFves,	TacFcs	and	strategies,	Player	informaFon	

and	staFsFcs	
•  Understand	how	players	perceive	the	game	

–  Difficulty	
–  Pace	
–  Immersion	
–  Interest	(story	line)	
–  Genre	

•  Get	feedback	about	the	game	
•  IdenFfy	possible	improvements	

–  Extensions	
–  ModificaFons	
–  Spin-offs	
–  Features	



PlaytesFng	Process	

Things	to	do	
•  Before	the	playtest	

–  Ensure	the	game	is	stable		
–  Recruit	players	
–  Setup	a	“typical”	game	staFon	

•  During	the	playtest	
–  Welcome	and	thank	the	player	
–  Remind	the	player	that	they	are	

not	being	tested	
–  Ask	the	player	to	talk	as	they	play	
–  Remain	silent	and	take	notes	
–  Thank	the	player	again	ensure	that	

you	have	contact	informaFon	
•  Aper	the	playtest	

–  Keep	track	of	all	the	players	
–  Categorize	your	observaFons	

Things	to	note	
•  General	mood	of	the	player	
•  Any	comments	or	suggesFons	

made	by	the	player	
•  Any	bugs	that	occur	during	play	
•  Any	struggles	experienced	by	the	

player	
•  How	easily	the	player	learns	the	

game	
•  How	quickly	does	the	player	

progress	through	the	game	
•  How	quickly	does	the	game	

become	too	hard	for	the	player	
•  Any	aestheFcal	issues	
•  Any	other	feedback	



High-Level	Game	Design	

•  Game	Elements	
– Mechanics	
– Story	
– Technology	and	AestheFcs	

•  Idea:	The	elements	work	together	to	create	a	
unifying	theme	in	the	game	
– What	experience	do	you	want	to	convey?	
– Structure	your	story	and	mechanics	to	reinforce	
the	theme	



The	Game	Story	
•  There’s	nothing	like	a	good	story	to	pull	you	in...	
•  A	story	is	composed	of:	

–  A	"world”	
–  Characters	
–  A	quest	

•  The	story	immerses	the	player	and	separates	great	
games	from	ok	games	

•  Story	ConsideraFons	
–  Depth:		How	detailed	or	grand	is	the	story	to	be?			
–  Delivery:	How	is	the	story	communicated	to	the	player?	
–  Pacing:	How	quickly	is	the	story	being	told?	



Game	Mechanics	
•  Idea:	Use	game	mechanics	to	

–  Implement	the	game	story	
–  Support	the	unifying	theme	of	the	game	

•  Game	mechanics	comprise	
–  Rules:	Wrisen/Unwrisen/Game	objecFve	
–  Environment:	Space/Number	of	players/Physics	
–  AcFons:	PrimiFve	vs	Strategic	
–  Chance	(Randomness):	“Secret	of	fun”	
–  Skills:	Physical/Mental/Social	

•  Idea:	A	set	of	stock	(standard)	mechanics	that	are	used	by	
similar	games	is	called	genre		
–  Card	games,	Racing	games,	First-person	shoot-em	up		

•  Idea:	Use	state	transiFon	diagrams	to	model	game	
mechanics	



Game	Mechanics:	Rules	
•  Wrisen	rules	of	play	(what	happens	when	I...)	

– User	manual	
– Game	code	

•  Unwrisen	rules	
–  EFquese	
–  Sportsmanship	

•  Object	of	the	game	(how	do	I	win	the	game)	
–  Clear	
– Achievable	
–  Rewarding/Fun	



Game	Mechanics:	Environment	

•  Spaces	
– Discrete	or	conFnuous?		
– Boundaries?	
– Nested	Spaces?	

•  Number	of	players	
– Computer	
– Human	

•  Physics	
–  InteracFon	of	objects	



Game	Mechanics:	AcFons	

•  PrimiFve	AcFons	(private’s	view)	
– Moving	the	player	
– ShooFng	

•  Strategic	AcFons	(general’s	view)	
– ProtecFng	a	zone		
– Ambushing	

•  Most	games	require	combinaFon	of	both	
types	of	acFons	

	



Game	Mechanics:	Chance	
•  Adds	a	surprising	or	unexpected	elements		

–  The	so	called	"secret	of	fun”	
•  Consider	how	probabiliFes	will	factor	into	the	play	
over	the	duraFon	of	the	game	
–  Power-ups	
–  Density	of	projecFles	

•  Some	predictability	is	useful!		Why?	
•  The	“chance	trade-off”	

–  A	lot	of	randomness:	game	is	about	tacFcs,	short	term	
–  A	lisle	randomness:	game	is	about	strategy,	long	term	
–  Good	games	have	the	right	mix	



Game	Mechanics:	Skills	
•  Idea:	The	right	amount	of	challenge	will	keep	the	player	

interested	
•  Three	types	of	skills:	

–  Physical	Skills	
•  Strength,	dexterity,	coordinaFon,	and	endurance	
•  E.g.	How	fast	can	I	hit	that	buson?	

–  Mental	Skills	
•  Memory,	observaFon,	and	problem	solving	
•  E.g.,	The	answer	is	…	

–  Social	Skills	
•  Reading	and	fooling	opponents	
•  CoordinaFng	with	teammates	

•  Many	successful	games	combine	skills	from	mulFple	
categories	



Project	Management	

The	Problem	
•  A	project	consists	of	many	parts	

–  Tasks	
–  Goals	and	milestones	
–  Dependencies	
–  Resources	
–  Risks	

•  To	complete	a	project		
–  Finish	all	tasks	on	Fme	
–  Accomplish	all	goals	
–  SaFsfy	all	dependencies	
–  Use	only	the	allocated	resources	
–  Adapt	to	things	going	wrong	

The	Solu;on	
•  Things	to	consider	

–  Tasks	take	a	set	amount	of	Fme	
–  Some	task	must	precede	other	

tasks	
–  Resources	are	limited	
–  Things	go	wrong	

•  Things	to	do	
–  IdenFfy	and	schedule	tasks	
–  Allocate	resources	
–  AnFcipate	and	manage	risks	
–  Complete	a	project	on	Fme	and	

on	budget	



IdenFfying	the	Tasks	
•  A	task	

–  Takes	a	minimum	amount	of	
Fme	to	complete	

–  Requires	specific	resources	
–  Requires	certain	other	tasks	to	

be	completed	first	
–  Must	be	completed	before	

other	tasks	can	begin	
–  May	take	longer	than	expected	

due	to	unanFcipated	events	
•  For	each	task	idenFfy	

–  What	the	task	is	
–  What	resources	it	requires	
–  What	tasks	does	it	depend	on	
–  How	much	Fme	it	will	take	

•  Idea:	Work	backwards	
(reverse	engineering)	
–  Start	with	the	end	goal	
–  Ask	what	task(s)	are	needed	to	

achieve	the	goal	
–  Ask	what	resources	are	needed	

for	the	tasks	
–  For	each	task	break	it	down	

into	subtasks	and	repeat	



Scheduling	Tasks	

•  Problem	
– There	are	many	tasks	
– There	are	many	resources	
– Each	task	may	have	mulFple	dependencies	

•  Need	to		
– Organize	all	tasks	in	one	place	
– Sort	dependencies	
– Check	for	resource	contenFon	

•  Idea:	Use	a	Gans	chart	



The	Gans	Chart	

The	Purpose	
•  Represent	all	tasks	
•  Represent	resource	use	
•  Represent	dependencies	
•  Represent	Fme	of	tasks	

Gan>	Chart	Rules	
•  Time	is	represented	horizontally	

(lep	to	right)	
•  Resources	are	denoted	verFcally	
•  A	task	requires	both	Fme	and	

resources	
–  Represented	by	one	or	more	

rectangles	
•  If	two	tasks	require	the	same	

resource,	they	cannot	overlap	
•  If	task	A	depends	on	task	B,	task	A	

must	follow	task	B	
•  The	minimum	amount	of	Fme	

needed	to	fit	in	all	the	tasks	is	the	
minimum	amount	needed	for	the	
project	



Scheduling	Issues	
•  Dependency	chains	

–  Task	A	depends	on	B	depends	on	C	depends	on	D	…	
–  Time	of	longest	chain	is	the	minimum	Fme	of	the	project	
–  Place	longest	chain	first	
–  Then	the	next	longest	…	

•  Resource	contenFon	
–  Tasks	cannot	use	a	resource	at	the	same	Fme	
–  A	bo:leneck	occurs	when	many	tasks	need	the	same	resource	
–  Stagger	tasks	to	avoid	resource	contenFon	
–  Add	more	resources	to	reduce	contenFon	

•  Risk	Management	
–  Schedule	tasks	as	early	as	possible	to	provide	Fme	to	deal	with	

unforeseen	events	
–  Schedule	extra	Fme	for	each	task	



Using	Randomness	

•  Idea:	Most	systems	have	a	pseudorandom	source	
of	values	
–  The	source	is	an	infinite	sequence	of	values	
–  The	values	look	random	
– Are	sufficiently	random	for	our	purposes	

•  Each	system	is	a	lisle	different,	but	all	work	
similarly	
–  Each	system	provides	a	Random	funcFon	
–  The	funcFon	returns	a	value	chosen	randomly	from	a	
fixed	range	



																in	Scratch	

•  Scratch	has	a																									funcFon	
•  Returns	a	value	in	the	range	min	≤	n	≤	max	
•  Value	is	selected	at	random	from	a	uniform	
distribu2on	

•  What	does	a	uniform	distribuFon	mean?	

min	 max	

Pr
ob

ab
ili
ty
	



ProjecFles	
•  A	projecFle	

–  Appears	on	the	stage	when	the	player/opponent	does	
something	

–  Appears	iniFally	at	the	player/opponent’s	locaFon	
–  Moves	away	from	the	player/opponent	in	a	set	direcFon	
–  Disappears	when	it	hits	something	
–  Causes	opponent/player	to	react	in	some	way	

•  ProjecFle	Life-Cycle	
–  IniFaFon:	Determine	when	the	projecFle	is	to	be	created	
–  CreaFon:	Create,	posiFon,	and	launch	the	projecFle	
–  MoFon:	Move	the	projecFle	along	the	stage	
–  Collision:	Check	if	collisions	occur	and	respond	to	them	
–  EliminaFon:	Remove	projecFle	if	it	collides	or	leaves	the	stage	



ProjecFle	IniFaFon	and	CreaFon	

Ini;a;on	
•  Idea:	A	projecFle	is	iniFated	as	a	

result	of	an	event	
•  Player	events:	

–  Mouse	click	or	key	press	
–  Collision	with	another	object	

•  Game	(opponent)	events:	
–  Random	or	regular	Fme	intervals	
–  Collision	of	objects	within	the	game	
–  Start	of	game	or	level	(e.g.,	the	ball	in	

BrickBreaker)	
•  Idea:	

–  Broadcast	NEW_PROJECTILE	when	a	
projecFle	is	needed	

–  The	projecFle	sprite	will	receive	the	
event	and	create	the	projecFle		

Crea;on	
•  Idea:	ProjecFles	are	created	by	

an	event	listener	
•  To	create	a	projecFle	

–  ProjecFle	sprite		
•  Receives	NEW_PROJECTILE	
•  If	sprite	is	not	a	clone	and	a	

projecFle	can	be	created	
–  Set	posiFon	
–  Set	speed	
–  Set	direcFon	
–  Clone	self	

–  ProjecFle	clone	
•  Marks	itself	as	a	clone	
•  Set	itself	as	visible	



ProjecFle	MoFon	and	Collision	

Mo;on	
•  Idea:	ProjecFles	move	just	

like	all	other	objects	
–  Add	velocity	to	posiFon	on	

each	FRAME event!
•  Idea:	FRAME	handler	may	

also	
–  Adjust	velocity	of	projecFle	as	

game	mechanics	dictate	
•  Note:	The	original	projecFle	

sprite	should	never	move	
and	always	remain	hidden	

Collision	
•  Idea:	Purpose	of	projecFles	is	

to	collide!	
•  Idea:	On	FRAME	events	

–  If	projecFle	has	collided	with	a	
game	object		

•  Create	some	special	effects	
•  Adjust	state	of	game	object	
•  Remove	projecFle	from	stage	

–  if	projecFle	has	moved	off-stage	
•  Remove	projecFle	from	stage	



ProjecFle	EliminaFon	

•  Idea:	Once	a	projecFle	moves	off-stage	or	has	
collided,	remove	it!	

•  Your	game	will	slow	down	if	you	do	not!	



Busons	
•  Busons	are	screen	objects	that	idenFfy	an	acFon	and	how	

to	perform	it	
•  Busons	idenFfy	an	area	for	a	user	to	click	on	
•  Busons	generate	an	event	that	the	applicaFon	can	respond	

to	by	running	a	listener	
•  A	buson	has	three	(3)	states	

–  Up	is	the	normal	state	of	the	buson	
–  Over	is	when	the	mouse	is	hovering	on	the	buson	
–  Down	is	when	the	buson	is	pressed	

•  Idea:	For	each	of	the	three	states	the	buson	can	have	a	
different	look	

•  Idea:	When	the	buson	changes	state,	it	generates	an	event	



CreaFng	Busons	
•  Create	sprite	with	three	costumes	

–  Up	
–  Over	
–  Down	

•  Have	sprite	receive	FRAME	event		
–  If	the	mouse	is	touching	the	buson	

	If	clicked	[Down]	use	Costume	3		
	Otherwise	[Over]	use	Costume	2	

–  Otherwise	[Up]	use	Costume	1	
•  Only	change	costumes	if	necessary!	
•  When	should	we	actually	execute	

acFon	associated	with	buson?	



Text	

•  It	is	useful	for	games	to	display	text	
–  InstrucFons	
–  Player	informaFon	(score,	health,	level,	etc)	
– Dialogue		

•  There	are	two	types	of	text	that	we	can	dislpay	
–  Sta2c	text,	which	does	not	change	during	the	game	

•  InstrucFons	
•  Dialogue	

– Dynamic	text,	which	changes	as	the	game	progresses	
•  Player	informa2on	



Game	Polish:	MoFvaFons	
•  A	polished	game	is	

– More	compelling	and	immersing	
– More	likely	to	be	played	longer	
– More	appealing	to	new	players	

•  A	polished	game	will	
– Get	beser	reviews	
– Get	more	praise	on	social	media	and	word	of	mouth	
– More	likely	become	popular	
–  Likely	sell	more	copies	

•  It’s	in	our	interest	to	make	sure	that	games	are	as	
polished	as	possible!	



Game	Polish	
•  Defn:	A	process	to	reduce	the	number	of	minor	issues	

associated	with	the	game	
•  This	involves	

–  Fixing	minor	bugs	and	anything	that	detracts	from	the	
consistency	of	the	game	

–  Touching-up	graphics	
–  Refining	game	mechanics	
–  Adding	minor	features	and	special	effects	

•  Idea:	Schedule	game	polishing	as	part	of	your	overall	
development	plan	

•  Should	be	done	throughout	the	game	development	cycle	
•  Done	in	concert	with	playtesFng	



Types	of	Game	Polish	
•  ResoluFon	of	issues	(1st	Priority)	

–  Stability	
–  Consistency	
–  Playability	
–  Understandability	

•  Refinement	of	the	game	mechanics	(2nd	Priority)	
–  Realism,	environment,	and	acFons	
–  Graphics		
–  Audio	

•  AddiFonal	features	(3rd	Priority)	
–  Special	effects	
–  Side	stories	and	bonus	rounds	
–  Easter	eggs	
–  Special	objects	


