

CSCI 1106 Lecture 20

Odometry

AG

Announcements

- Today's Topics
 - Motivation
 - Coordinates and Velocity
 - Linear Motion Odometry
 - Angular Motion Odometry
 - Errors in Odometry
 - Visual Odometry
 - Introduction to Search

Motivation: Where Am I?

- For many tasks a robot needs to know its
 - Position: physical location (x,y) in the environment
 - Orientation: direction it is facing
- Initially, robot starts out in a known position and orientation
 - e.g., at the start or a maze or left corner of arena
- As the robot moves it needs to update its known position and orientation
- Odometry is the use of movement sensors to estimate the robot's current position and orientation

Location, Location, Location

- Observation: You need to know where you are to know where you are going
- At any instant has robot has a
 - Location and orientation
 - Specified by coordinates (x,y) and direction φ
 - Velocity
 - Specified by speed s and direction θ
- Coordinates are relative to an origin (0,0)
 - Fixed location in the world or
 - Where the robot starts
- Typically assume that the robot
 - Knows where it starts or
 - Can determine its starting location
- Where have we seen this before?

(0,0)

Velocity

- Velocity can be represented in terms of
 - speed and direction (s,θ) or
 - horizontal and vertical speed
 components (v, v,) I
- components (v_x, v_y) • What is (0,0)?

Linear Motion Odometry

- Obs: The velocity vector represents distance per unit time, e.g., (cm/s)
- Idea: Update position by adding velocity to position proportionally to elapsed times Δt
 - new position = old position + velocity
- Suppose velocity is represented by (s,θ)

$$- x' = x + s \times \sin(\theta) \times \Delta t$$

$$- y' = y + s \times cos(\theta) \times \Delta t$$

Suppose velocity is represented by (v_x,v_v)

$$- x' = x + v_x \times \Delta t$$

$$- y' = y + v_v \times \Delta t$$

(0,0)

Angular Motion Odometry

- Obs: Robots sometimes need to turn
- Assumption: Robot will turn on the spot
 - Orientation φ will change
 - Position (x,y) does not change
 - Angular velocity α (deg/s) is does not change
- Idea: Update orientation every second
 - new orient. = old orient. + angular velocity × time
 - $\varphi' = \varphi + (\alpha \times \Delta t)$
- How do we determine (v_x, v_y) ?
- Observations: We know the velocity (s,θ)
 - Speed s is based on motor power
 - Direction θ is equal to the orientation ϕ
- Hence
 - $v_x = s \times \sin(\theta)$
 - $v_v = s \times cos(\theta)$

Errors in Odometry

- We know
 - The initial position and orientation
 - The speed of the motors and the robot
- We always know where we are, right?
- Problem: Errors are introduced into the odometry computations
 - Speed is not constant
 - Motion is not straight

AG

Things Go Wrong

- What could go wrong?
 - Tires don't fully grip
 - Tires are not identical
 - Motors are slightly different
 - Battery is not fully charged
 - Speed sensors have variability
 - Motors engage at different times
 - Robot may bump into objects
- Can we compensate?
- Use additional sensors to correct for errors

Sources of Data for Odometry

- Motor sensors
 - rotation sensors (how fast the motor is turning)
- Motion sensors
- Accelerometers and Gyroscopes
- Compass
 - Very useful for orientation
- Cameras
- Rangefinders (infrared, ultrasonic, or laser)

Rotation Sensors and the Control Loop

- Idea: Many motors have built in rotation (speed) sensors
 - Motor's actual speed can deviate from desired speed
 - Actual speed can be adjusted to match desired speed
 - A rotation sensor measures the motor's actual speed to adjust motor's speed as needed
- Idea: We use rotation sensors implicitly
 - Robot's motors have a built in control loop
 - We set the desired speed of the motors
 - Assume that the motors run at the desired speed
- What about using other sensors?

Visual Odometry

- Idea: Use landmarks to gauge position and speed
- Approach 1: Optical Flow based
 - Compute velocity using consecutive camera images
- Approach 2: Landmark (map) based
 - Compute location by matching known landmarks in camera images

Optical Flow based Odometry

- Idea: Gauge the robot's velocity by comparing objects (features) in consecutive camera images
 - Extract features from image
 - Match from image to image (construct optial flow)
 - Estimate camera (robot) motion
 - Periodically update set of features being tracked
- Adjust speed of robot based on estimate

Landmark based Odometry

- Idea: Triangulate robot's location using known landmarks
 - Create a map of known landmarks
 - Periodically
 - Take images of surround environment
 - Extract known landmarks from images
 - Estimate distance to landmarks
 - Triangulate position
- Use location estimate to refine future velocity estimates

Problems with Vision based Odometry

- Images are affected by environment conditions
 - light, fog, rain, dust, etc
- Objects can become occluded
- Feature extraction is expensive and imperfect
- Distance estimation is error-prone
- Landmarks can change
- Entire process is highly variable
- Other technologies are use specific but more accurate
 - range finders, GPS, etc
- Why do we care?

The robot doesn't know where it is. Thus, a reasonable initial believe of it's position is a uniform distribution.

16

A sensor reading is made (USE SENSOR MODEL) indicating a door at certain locations (USE MAP). This sensor reading should be integrated with prior believe to update our believe (USE BAYES).

A new sensor reading (USE SENSOR MODEL) indicates a door at certain locations (USE MAP). This sensor reading should be integrated with prior believe to update our believe (USE BAYES). $$_{19}$$

Modern Solutions SLAM

Particle filters

https://www.youtube.com/watch?
v=H0G1yslM5rc

SLAM

https://www.youtube.com/watch?
v=bq5HZzGF3vQ