6 Generalized Learning Machines

In this chapter we discuss some methods that are widely used for machine learning
applications. In the previous discussions we always assumed specific hypothesis func-
tions for particular problems. However, finding an appropriate hypothesis function
requires considerable domain knowledge and it would be much more practical if we
would have more general machines that can learn without making very specific func-
tional assumptions. But how can we do this? The approach taken in this chapter is to
provide a very general function with many parameters that will be adjusted through
learning. Of course, the real problem is then not to over-fit the model by using appro-
priate restrictions and also to make the learning efficient so that it can be used to large
problem sizes. This chapter starts with a brief historical introduction to general learning
machines and neural networks. We then discuss support vector machines, which are
very powerful for many classification examples. SVMs also allow us to outline some
more rigorous learning theory. Finally, we will discuss deep convolutional learning
that are currently the best known solutions to many large data problems.

6.1 The Perceptron

There was always a strong interest of Al researchers in real intelligence, that is, to
understand the human mind. For example, both Alan Turing and John von Neumann
worked directly on biological systems in their last years before their early passing.
Indeed, many Al researchers have been interested, or are continue to be interested,
in human behaviour and the brain. Understand how the brain works is an important
scientific quest in its own right, but studying the brain as an example of a successful
learning machine has often inspire Al approaches or the development of cognitive and
learning machines. We will now discuss so called artificial neural networks that are
often said to be inspired by the brain, and which have a history that dates back to early
Al approaches.

A seminal paper, which has greatly influenced the development of early learning
machines, is the 1943 paper by Warren McCulloch and Walter Pitts. In this paper,
McColloch and Pitts proposed a simple model of a neuron which they called the
threshold logical unit and which is now often called the McCulloch-Pitts neuron.
Such a unit is shown in Fig. 6.1A. This model neuron has typically many input
channels, although we only depicted three input channels in the figure. The input
values are denoted by x with a subscript for each channel. Each channel has a weight
parameter, w,;. With these parameters, the McCulloch—Pitts neuron operates in the
following way. Each input value is multiplied with the corresponding weight value, and
these weighted values are then summed. If the weighted and summed input is larger

The Perceptron| 109

A. McColloch-Pitts neuron (TLU) B. Thruth table C. Graphical represenatation

X, 0,=1
X X, Y
X4 y 0 0 o
0o 1 1
1 0 1
Xo =1 6,=1 11 1

0,x,+0,x,= 0,

Fig. 6.1 (A) A McCulloch-Pitts neuron model with three input channels. One input is always equal
to 1 so that a variable threshold can be represented as the associated weight value. (B) The
truth table of a Boolean OR function. (C) Graphical representation of the Boolean OR function.
The dotted line represents a decision line that can be implemented with a threshold perceptron
(McCulloch-Pitts neuron or threshold linear unit; TLU).

than a certain threshold value, 6, then the output is set to one, and zero otherwise, that

is,
i wiwy = wix >0
h(x; 0) = {O otherwise ' ©.1)

The McCulloch-Pitts model resembles in a simplistic way the basic operation of a
neuron. That is, a neuron sums synaptic inputs and fires (has a spike in its membrane
potential) when the membrane potential reaches a certain level that opens special
voltage-gated ion channels. McCulloch and Pitts introduced this unit as a simple
neuron model, and they argued that such a unit can perform computational tasks
resembling boolean logic. We use here the symbol & to denote the output values since
the output of this neuron represents the hypothesis that this neuron implements given
the parameters w.

A convenient trick to remove the threshold value from the right hand site, which
will make our following discussions easier, is to replace it with an additional weight
value, wy and a corresponding fixed inout value of o = 1 as shown in Fig. 6.1A. We
will also denote the net weighted input of the neuron, before applying the threshold
function, as u,

u(x; w) = Z wiT; = WX, (6.2)
i=0

The output of a perceptron is then given by transferring this net input through a gain
function g(u),
h(x;0) = g(u) (6.3)

where the McCulloch-Pitts neurone model uses the Heaviside function and gain func-
tion

g(u) = (6.4)
The use of the non-linear step-function used in this neuron model is appropriate when
applying these models to classification. This is demonstrated in Fig. 6.1 for a threshold
unit that implements the Boolean OR function. However, other grain functions are
more appropriate when applying the perceptron to regression problems. For example,

1 ifu>0
0 otherwise *

110 |Generalized Learning Machines

the linear perceptron, which is a perceptron with a linear gain function g(u) = u is
equivalent to linear regression. We will discuss other gain functions further below.

Frank Rosenblatt

Charles Wigtman

Fig. 6.2 Neural Network computers in the late 1950s.

A further major developments in the use of perceptrons were done by Frank
Rosenblatt and his engineering colleague Charles Wightman (Fig. 6.2). It was actually
Rosenblatt who called these elements a perceptron. As can be seen in the figures,
they worked on a machine that can perform letter recognition, and that the machine
consisted of a lot of cables, forming a network of simple, neuron-like elements.

The most important challenge for the team was to find a way how to adjust the
parameters of the model, the connection weights w;, so that the perceptron would
perform a task correctly. The procedure was to provide to the system a number of
examples, let’s say m input data, x(*) and the corresponding desired outputs, 3y(*). The
procedure they used thus resembles supervised learning. The learning rule they used
is called the perceptron learning rule,

wj = wj + (y(i) — h(zy; w)) xy), (6.5)

which is also related to the Widrow-Hoff learning rule, the Adaline rule, and the delta
rule. These learning rules are nearly identical, but are sometimes used in slightly
different contexts. It is often called the delta rule because the difference between the
desired and actual output (difference between actual (training) data and hypothesis)
to guide the learning. When multiplying out the difference with the inputs we end up

Multilayer perceptron (MLP)| 111

with the product of the activity between the desired output and the inputs values for
each synaptic channel, minus the product between the desired output times the input,

Aw; x (yx; — hx;). (6.6)

Such a learning rule reinforces the correlation between the input and the desired output
and reduces the correlation between input and the actual output. The above learning
rule also resembles the effect of synaptic plasticity in the brain as first conjectured by
the famous Nova Scotian Donald Hebb, and such rules are therefore also called Hebb
rule.

Note that this learning rule is equivalent to a gradient descent rule for a linear
hypothesis function which we will use further below. Although this rule is not ideal for
a perceptron with non-linear functions, it turned out that it still works in same cases
since it corresponds to taking a step towards minimizing MSE, albeit with a wrong
gradient.

There was a lot of excitement during the 1960s in the Al and psychology community
about such learning system that resemble some brain functions. However, Minsky and
Peppert showed in 1968 that such perceptrons can not represent all possible boolean
functions (sometimes called the XOR problem). While it was known at this time
that this problem could be overcome by a layered structure of such perceptrons (called
multilayer perceptrons), a learning algorithms was not widely known at this time. This
nearly abolished the field of learning machines, and the Al community concentrated
on rule-based systems in the following years.

6.2 Multilayer perceptron (MLP)

So far we have only considered one model neuron which maps an input vector x into
a scalar output y. Of course, one could use several output neurone to implement a
mapping function from an input vector to an output vector y. However, the type of
mapping functions that could be implemented with such a perceptron a rather limited
since any nonlinearity would have to be provided by the grain function g(u). However,
if we allow nodes between the input nodes and output nodes, then we could build
more elaborate networks. A typical example of the networks studied in the mid 1990 is
shown in Fig. 6.3. We could also include connections between different hidden layers,
not just between consecutive layers, but the basic layered structure is more suitable for
an introductory discussion.

The operation of such a network is a direct generalization of the simple perceptron
as the output of a hidden nodes simply becomes the input for a note in the next layer.
A multilayer perceptron with a layer of m input nodes, a layer of h hidden nodes,
and a layer of n output nodes, is shown in Figure 6.3. The input layer is merely just
relaying the inputs, while the hidden and output layer do active calculations. Such a
network is thus called a 2-layer network. The term hidden nodes comes from the fact
that these nodes do not have connections to the external world such as the input and
output nodes. Instead of the step function used in the McCulloch-Pitts model above,
most such networks use a sigmoidal non-linearity,

1

6.7)

112 |Generalized Learning Machines

Fig. 6.3 Example of a 2-layer multilayer perceptron (MLP).

to allow for continuous values of the nodes. The network is thus a graphical represen-
tation of a nonlinear function of the form

hy = g(w°g(w"x)). (6.8)

It is easy to include more hidden layers in this formula. For example, the operation rule
for a four-layer network with three hidden layers and one output layer can be written
as

hy = g(w°g(w"3g(wg(w™'x)))). (6.9)

Let us discuss a special case of a multilayer mapping network where all the nodes
in all hidden layers have linear activation functions (g(x) = x). Eqn 6.9 then simplifies
to

h = wowhwh2whlx

= WX. (6.10)

In the last step we have used the fact that the multiplication of a series of matrices
simply yields another matrix, which we labelled w. Eqn 6.10 represents a single-layer
network as discussed before. It is therefore essential to include non-linear activation
functions, at least in the hidden layers, to make possible the advantages of hidden
layers that we are about to discuss.

Which functions can be approximated by multilayer perceptrons? The answer is,
in principle, any. A multilayer feedforward network is a universal function approx-
imator. This means that, given enough hidden nodes, any mapping functions can be
approximated with arbitrary precision by these networks. It is easy to see that such
networks are universal approximators (Hornik 1991), that is, the error of the training
examples can be made as small as desired by increasing the number of parameters.
This can be achieved by adding hidden nodes. However, the aim of supervised learning
is to make predictions, that is, to minimize the generalization error and not the training
error. Thus, choosing a smaller number of hidden nodes might be more appropriate
for this. The bias-variance tradeoff reappears here in this specific graphical model,

Multilayer perceptron (MLP)| 113

and years of research have been investigated in solving this puzzle. There have been
some good practical methods and research directions such as early stopping (Weigend
& Rumelhart 1991), weight decay (Caruana et al. 2000) or Bayesian regularization
(MacKay 1992) to counter overfitting, and transfer learning (Silver & Bennett 2008; ?)
can be seen as biasing models beyond the current data set. The remaining problems are
to know how many hidden nodes we need, and to find the right weight values. Also, the
general approximator characteristics does not tell us if it is better to use more hidden
layers or just to increase the number of nodes in one hidden layer. Also, learning can
be slow in such networks and there are a few other problems that we will address later.
These are important concerns for practical engineering applications of those networks.

The main question in the 1970s was how to train the network since it we don’t have
a supervised signal (desired output) for the hidden nodes. It was hence only by mid
1980s that neural networks became popular again with the introduction of the error-
backpropagation learning rule in a paper by Rumelhart, Hinton and Williams in
1986 (Rumelhart et al. 1986). In this rule the error or delta term, that is the difference
between the actual and desired output, are multiplied by the weight values from a
hidden node to the output node to provide this error signal, which looks a lot like
propagating a signal back though the network. Such algorithms have been used before,
in particular by Sunichi Amari, and it was also proposed in the doctoral thesis of
Paul Werbos. However, the renewed discovery by Rumelhart and colleagues let to an
explosion of the field of Artificial Neural Networks in the 1990s.

The error-backpropagation algorithm is actually just an application of a gradient
descent rule of minimizing the MSE for the MLP. Such a rule, as pointed out before, is
appropriate for Gaussian data around the mean described by the model. Specifically,
the gradient of the MSE error function with respect to the output weights is given by

oE 1 0 out 9
Hwout = 92 Hrout Z(Tz — Yi)
)) i

1 0
:iwz out Zwout h 2

outl hh § :’LUOUtT'h _ yz

= 6"y, (6.11)
where we have defined the delta factor
5;)ut _ out/ hh ZwoutTh _ yz
— gout/(hh)(out yi)- (612)

Eqn 6.11 is just the delta rule as before because we have only considered the output
layer. The calculation of the gradients with respect to the weights to the hidden layer
again requires the chain rule as they are more embedded in the error function. Thus
we have to calculate the derivative

OE 1 9 " ,
dub = 3aun 20)
9 VA

114 |Generalized Learning Machines

Table 6.1 Summary of error-back-propagation algorithm

Initialize weights arbitrarily

Repeat until error is sufficiently small
Apply a sample pattern to the input nodes: 7'? = i“ = f%n
Propagate input through the network by calculating the rates of

l lfl)

.

nodes in successive layers [: } = g(hl) = 9> wir;

Compute the delta term for the output layer:
6;_)ut — g/ (h(i)ut) (Ezg)ut _ r(_)ut)

K3
Back-propagate delta terms through the network:

-1 _ -1 1 sl
d; *Ql(hi)ijjiéj

Update weight matrix by adding the term: Awﬁj = €5§T§_1

L o ou ou in
- 5@2(9 O witg (O whri)) — wi) (6.13)
I J k

i

After some battle with indices (which can easily be avoided with analytical calculation
programs such as MAPLE or MATHEMATICA), we can write the derivative in a form
similar to that of the derivative of the output layer, namely

8E h_.in
e =9, i (6.14)
ij
when we define the delta term of the hidden term as

8 = g™ (R")) witep. (6.15)
k

The error term 67 is calculated from the error term of the output layer with a formula
that looks similar to the general update formula of the network, except that a signal
is propagating from the output layer to the previous layer. This is the reason that
the algorithm is called the error-back-propagation algorithm. The algorithm is
summarized in Table 6.1.

Before leaving this area it is useful to point out some more general observations.
Artificial neural networks have certainly been one of the first successful methods
for nonlinear regression, implementing nonlinear hypothesis of the form h(x;0) =
g(07 x). The corresponding mean square loss function,

Lo (y—g(67x)” (6.16)

is then also a general nonlinear function of the parameters. Minimizing such a function
is generally difficult. However, we could consider instead hypothesis that are linear in
the parameters, h(x;60) = 607 ¢(x;, so that the MSE loss function is quadratic in the
parameters,

Lo (y—6"¢(x))". 6.17)

The corresponding quadratic optimization problem can be solved much more effi-
ciently. This line of ideas are further developed in support vector machines discussed
next. An interesting and central further issue is how to chose the non-linear function

Support Vector Machine| 115

¢. This will be an important ingredient for nonlinear support vector machines and
unsupervised learning discussed below.

As an example of applying such neural networks, consider the problem of letter
recognition. In order to present a printed letter to a network, we must first digitize
them as could be done with a digital camera. This process is illustrated in Fig.6.4. The
result is a unary feature vector that is specific to each letter. Of course, many examples
with different digitized binary feature vectors exists for each letter of the alphabet. We
are interested in recognizing the meaning of such a printed letter. We could encode
the meaning of each letter with the corresponding ASCII representation. Therefore,
the letter recognition tasks boils down to the challenge of mapping many examples
of binary letter vectors to the vector representing the corresponding ASCII code. The
following exercise explores this example application.

<15

o = O

I O A
w
l

[/]

o = O

Fig. 6.4 Example of a 2-layer multilayer perceptron (MLP).

Exercise

Write a MLP program that can recognize the letters in file letter.txt and test the
performance of the network when trying to recognize noisy versions of the letters.

6.3 Support Vector Machine

6.3.1 Basic example

The the basic multilayer perceptrons have been popular in the 1990s, applications to
many real world problems turned out to be problematic for several reasons. When
applying neural networks to more complex problems, larger networks had to be used.
This in turn increased considerable the number of parameters, and the machines hence

116 |Generalized Learning Machines

required more training examples to be trained. Overfitting and flow learning was a
common problem.

Meanwhile, Vladimir Vapnik has been working on statistical learning machines
since the 1960, and after moving to the Bell laboratories in the mid 1995, led the
development of support vector machine (SVM) that are quite powerful and practical
for many applications. The theory behind them does also illuminate the basics behind
statistical learning. SVMs are based on minimizing the estimated generalization (called
the empirical error in this community). The main idea behind support vector machines
(SVM) for binary classification is that the best linear classifier for a separable binary
classification problem is the one that maximizes the margin (Vapnik 1995; Cortes &
Vapnik 1995). That is, there are many lines that separate the data as shown in Fig.6.7.
The one that can be expected most robust is the one that tries to be as far from any data
as possible since we can expect new data to be more likely close to the clusters of the
training data if the training data are representative of the general distribution. Also, the
separating line (hyperplane in higher dimensions) is determined only by a few close
points that are called support vectors. And Vapnik’s important contributions did not
stop there. He also formulated the margin maximization problem in a form so that
the formulas are quadratic in the parameters and only contain dot products of training
vectors, x” x by solving the dual problem in a Lagrange formalism (Vapnik 1995). This
has several important benefits. The problem becomes a convex optimization problem
that avoids local minima which have crippled MLPs. Furthermore, since only dot
products between example vectors appear in these formulations, it is possible to apply
of Kernel trick to efficiently generalize these approaches to non-linear functions.

X, X
wix+b=0

Fig. 6.5 lllustration of linear support vector classification.

Let me illustrate the idea behind using Kernel functions for dot products. To do this
it is important to distinguish attributes from features as follows. Attributes are the raw
measurements, whereas features can be made up by combining attributes. For example,
the attributes z; and x5 could be combines in a feature vector (1, z2, 172, 27, 23)T
This is a bit like trying to guess a better representation of the problem which should
be useful as discussed above with structural learning. So let us now write this trans-
formation as function ¢(x). The interesting part of Vapnik’s formulation is that we
actually do not even have to calculate this transformation explicitly but can replace the

corresponding dot products as a Kernel function

Support Vector Machine| 117
Table 6.2 Using the SVM implementation from scikit-learn for classification

from pylab import *
from sklearn.svm import SVC

N = 300; seed(12345)

#Generate and plot N random samples
rl, r2 = 2 + rand(N), randn(N)

al, a2 = 2*xpixrand(N), O.5*pi*rand(N)
figure("Predict the label")
polar(al,rl,’.’ , a2, r2,’.’%)

#randomly order classes, convert data to cartesion, split train/test
order = permutation(len(ril)+len(r2))

r = append(rl,r2) [order]; a = append(al,a2)[order];

labels= append(zeros(N), ones(N)) [order];

xy = array([r * cos(a), r * sin(a)]).T

train_data, test_data = xy[:-50], xy[-50:]

train_1bls, test_lbls = labels[:-50], labels[-50:]

#Train and test SVM, plot predictions

svc = SVC() #Radial basis function kernel is default
svc.fit(train_data, train_lbls)

p = svc.predict(test_data).astype(bool)

figure("Predictions");

polar((a[-50:1) [-p], (x[-50:1)[-pl, ’.’,
(al-50:1)[p] , (z[-50:1)[p] , *.7)

show ()

K(x,2) = ¢(x)"¢(z). (6.18)

Such Kernel functions are sometimes much easier to calculate. For example, a Gaussian
Kernel function corresponds formally to an infinite dimensional feature transformation
¢. There are some arguments from structural learning (Vapnik 1995; Burges 1998) why
SVMs are less prone to overfitting, and extensions have also been made to problems
with overlapping data in form of soft margin classification (Cortes & Vapnik 1995) and
to more general regression problems (Smola & Scholkopf 2004). We will not dwell
more into the theory of Suport Vector Machine but show instead an example using
the SVM implementation of the scikit-learn library. SVMs are likely currently
the most successful general learning machines and should definitely be considered in
practical applications. We will discuss later methods that can augment SVMs for even
better performances and also discuss methods that go beyond it.

An example of using the LIBSVM library on data shown in Fig.6.8 is given in Table
6.2, though there are other implementations such as in the scikit-learn toolbox. The
left graph in in Fig.6.8 shows training data. These data are produced from sampling
two distributions. The data of the first class, shown as circles, are chosen within a ring
of radius 2 to 3, while the second class, shown as crosses, are Gaussian distributed
in two quadrants. These data are given with their corresponding lables to the training
function svmtrain. The data on the right are test data. The corresponding class labels
are given to the function svmpredict only to calculate cross validation error. For
true predictions, this vector can be set to arbitrary values. The performance of this

118 |Generalized Learning Machines

classification is around 97% with the standard parameters of the LIBSVM package.
However, it is advisable to tune these parameters, for example with some search
methods (Boardman & Trappenberg 2006).

Fig. 6.6 Example of using training data on the left to predict the labels of the test data on the right.

6.3.2 Linear classifiers with large margins

In this section we briefly outline the basic idea behind Support Vector Machines (SVM)
that are currently thought to be the best general purpose supervised classifier algorithm.
SVMs, and the underlying statistical learning theory, has been worked out by Vladimir
Vapnik since the early 1960, but some breakthroughs were also made in the late 1990
with some collaborators like Corinna Cortes, Chris Burges, Alex Smola, and Bernhard
Scholkopf to name but a few, and SVM have since become very popular and hard to
beat. While we outline some of the underlying formulas, we do not derive all the steps
but will try to give some intuition. A more thorough treatment can be found in the
references on the web page. The here we just want to provide the big picture, but need
to show some formulas to highlight some of the discussion.

The basic SVMs are concerned with binary classification. Figure 6.7 shows an
example of two classes, depicted by different symbols, in a two dimensional attribute
space. We distinguish here attributes from features as follows. Attributes are the raw
measurements, where as features can be made up by combining attributes. For example,
the attributes x; and 5 could be combines in a feature vector (x1, x122, T2, a:%, x%)T
This will become important later, but it is important to introduce the notation here.
Our training set consists again of 7 data with attribute values x(*) and labels 3(*). We
chose here the labels of the two classes as y € {—1, 1}, as this will nicely simplify
some equations.

The two classes in the figure 6.7 can be separated by a line, which can be parame-
terized by

W1T1 + wors —b=wlx +b=0. (6.19)

While the first equation shows the lines equation with its components in two dimen-
sions, the next expression is the same in any dimension. Of course, in three dimension

Support Vector Machine| 119

wix+b=0

Fig. 6.7 lllustration of linear support vector classification.

we would talk about a plane. In general, we will talk about a hyperplane in any dimen-
sions. The particular hyperplane is the dividing or separating hyperplane between the
two classes. We also introduce what the margin ~, which is the perpendicular distance
between the dividing hyperplane and the closest point.

The main point to realize now is that the dividing hyperplane that maximizes the
the margin, the so called maximum margin classifier, is the best solution we can find.
Why is that? We should assume that the training data, shown in the figure, are some
unbiased examples of the true underlying density function describing the distribution
of points within each class and thus representative of the most likely data. It is then
likely that new data points, which we want to classify, are close to the already existing
data points. Hence, if we make the separating hyperplane as far as possible from each
point, than it is most likely to not make wrong classification. Or, with other words,
a separating hyperplane like the one shown as dashed line in the figure, is likely
to generalize much worse than the maximum margin hyperplane. So the maximum
margin hyperplane is the best generalizer for binary classification for the training data.

What is if we can not divide the data with a hyperplane and we have to consider
non-linear separators. Don’t we then run into the same problems as outlined before,
specifically the bias-variance tradeoff? Yes, indeed, this will still be the challenge,
and our aim is really to work on this problem. But before going there it is useful
to formalize the linear separable case in some detail as the representation of the
optimization problem will be a key in applying some tricks later.

Learning a linear maximum margin classifier on labeled data means finding the
parameters (w) and b that maximizes the margin. For this we could computer the
distances of each point from the hyperplane, which is simply a geometric exercise,

W b
NONENE <()Tx<z> n) , (6.20)

The vector w/||w]|| is the normal vector of the hyperplane, a vector of unit length
perpendicular to the hyperplane (||w|| is the Euclidean length of the vector w. We
overall margin we want to maximize is the distance to the closest point,

v = min 'y(i). (6.21)

120 |Generalized Learning Machines

By looking at equation 6.20 we see that maximizing v is equivalent to minimizing
[|w||, or, equivalently, of minimizing

min = ||w]||?. (6.22)
w,

More precisely, we want to maximize this margin under the constraint that no training
data lies within the margin,

wix@ 4+bp>1 for y@ =1 (6.23)
wix® 4 p< -1 for y(i) =1, (6.24)

which can nicely be combines with our choice of class representation as
—(y(i)(WTX +b)—1)<0. (6.25)

Thus we have a quadratic minimization problem with linear inequalities as constraint.
Taking a constrain into account can be done with a Lagrange formalism. For this we
simply add the constraints to the main objective function with parameters «; called
Lagrange multipliers,

m

1 .
L (w,b, ;) = 5||w|\2 =Y iy (w'x +b) - 1]. (6.26)
i=1

The Lagrange multipliers determine how well the constrain are observed. In the case
of a; = 0, the constrains do not matter. In order conserve the constrains, we should
thus make these values as big as we can. Finding the maximum margin classifier is
given by

p* = min max LP(W, b, ;) < p* = maxmin P (w,b,a;) = d*. (6.27)

w,b a; w,b

In this formula we also added the formula when interchanging the min and max
operations, and the reason for this is the following. It is straight forward to solve the
optimization problem on the left hand side, but we can also solve the related problem
on the right hand side which turns out to be essential when generalizing the method
to nonlinear cases below. Moreover, the equality hold when the optimization function
and the constraints are convex®. So, if we minimize ¥. by looking for solutions of the

derivatives % and %, we get

m

w = Z a;yPx® (6.28)
=1

0="> aiy® (6.29)
=1

Substituting this into the optimization problem we get

6Under these assumptions there are other conditions that hold, called the Karush-Kuhn-Tucker condi-
tions, that are useful in providing proof in the convergence of these the methods outlined here.

Support Vector Machine| 121
1)))
max Z o =5 Z y(l)y(y)aiajx(l)TX(J), (6.30)
i i,

subject to the constrains
o; >0 (6.31)

> aiy =o0. (6.32)
=1

From this optimization problem it turns out that the «;’s of only a few examples,
those ones that are lying on the margin, are the only ones with have a; # 0. The
corresponding training examples are called support vectors. The actual optimization
can be done with several algorithms. In particular, John Platt developed the sequential
minimal optimization (SMO) algorithm that is very efficient for this optimization
problem. Please note that the optimization problem is convex and can thus be solved
very efficiently without the danger of getting stuck in local minima.

Once we found the support vectors with corresponding cv;’s, we can calculate (w)
from equation 6.28 and b from a similar equation. Then, if we are given a new input
vector to be classified, this can then be calculated with the hyperplane equation 6.19
as

i T ayWxOTx >0
y= { -1 otherzwilse (6.33)

Since this is only a sum over the support vectors, which should be only a few data
points from the training set, classification becomes very efficient after training.

6.3.3 Soft margin classifier

So far we only discussed the linear separable case. But how about the case when there
are overlapping classes? It is possible to extend the optimization problem by allowing
some data points to be in the margin while penalizing these points somewhat. We
include therefore some slag variables &; that reduce the effective margin for each data
point, but we add to the optimization a penalty term that penalizes if the sum of these
slag variables are large,

1 9
min S|Iwl[* +C Y&, (6.34)
subject to the constrains
y D (wix+b) >1-¢ (6.35)
§& >0 (6.36)

The constant C is a free parameter in this algorithm. Making this constant large means
allowing less points to be in the margin. This parameter must be tuned and it is advisable
to at least try to vary this parameter to verify that the results do not dramatically depend
on a initial choice.

122 |Generalized Learning Machines

6.3.4 Nonlinear Support Vector Machines

We have treated the case of overlapping classes while assuming that the best we can
do is still a linear separation. But what if the underlying problem is separable, f only
with a more complex function. We will now look into the non-linear generalization of
the SVM.

When discussing regression we started with the linear case and then discussed
non-linear extensions such as regressing with polynomial functions. For example, a
linear function in two dimensions (two attribute values) is given by

Y = wo + w1T1 + walsa, (6.37)

and an example of a non-linear function, that of an polynomial of 3rd order, is given
by
Y = Wy + W11 + Wako + W3T1x2 + w4x§ + w5x§. (6.38)

The first case is a linear regression of a feature vector

_(m
X = (m) . (6.39)

x = o(x)=| z122 |, (6.40)

which can be seen as a mapping ¢(x) of the original attribute vector. We call this
mapping a feature map. Thus, we can use the above maximum margin classification
method in non-linear cases if we replace all occurrences of the attribute vector x with
the mapped feature vector ¢(x). There are only two problems remaining. One is that
we have again the problem of overfitting as we might use too many feature dimensions
and corresponding free parameters w;. The second is also that with an increased
number of dimensions, the evaluation of the equations becomes more computational
intensive. However, there is a great trick to alleviate the later problem in the case when
the methods only rely on dot products, like in the case of the formulation in the dual
problem. In this, the function to be minimized, equation 6.30 with the feature maps,
only depends on the dot products ¢(x(")T¢(xU)). Also, when predicting the class
for a new input vector x from equation 6.28 when adding the feature maps, we only
need the resulting values for the dot products ¢(x(?)” ¢(x) which can sometimes be
represented as function called Kernel function,

K(x,2) = ¢(x)" ¢(z). (6.41)

Instead of actually specifying a feature map, which is often a guess to start, we could
actually specify a Kernel function. For example, let us consider a quadratic feature
map

K(x,z) = (xTz+¢)2. (6.42)

Support Vector Machine| 123

We can then try to write this in the form of equation 6.41 to find the corresponding
feature map. That is

K(x,2) = (xT2)* + 2exTz + ¢2 (6.43)
- (Z z2)% + 202 xizi + 2 (6.44)
= Z Z(mix])(zzzj) + Z(\[(Qc)xl)(\ﬂ%)zl) +cc (645)
P i
= ¢(x)"¢(2), (6.46)
with

1T

X1T9

Tl
sx)=| " |, (6.47)

\/%x 1
V2cms

Cc

The dimension of this feature vector is O(n?) for n original attributes. Thus, evaluating
the dot product in the mapped feature space is much more time consuming then
calculating the Kernel function which is just the square of the dot product of the original
attribute vector. The dimensionality Kernels with higher polynomials is quickly rising,
making the benefit of the Kernel method even more impressive.

While we have derived the corresponding feature map for a specific Kernel function,
this task is not always easy and not all functions are valid Kernel functions. We have
also to be careful that the Kernel functions still lead to convex optimization problems.
In practice, only a small number of Kernel functions is used. Besides the polynomial
Kernel mention before, one of the most popular is the Gaussian Kernel,

[|x — z||”

K(x.2) = exp

(6.48)
which corresponds to an infinitely large feature map.

As mentioned above, a large feature space corresponds to a complex model that
is likely to be prone to overfitting. We must therefore finally look into this problem.
The key insight here is that we are already minimizing the sum of the components
of the parameters, or more precisely the square of the norm ||w||2. This term can
be viewed as regularization which favours a smooth decision hyperplane. Moreover,
we have discussed two extremes in classifying complicated data, one was to use
Kernel functions to create high-dimensional non-linear mappings and hence have a
high-dimensional separating hyperplane, the other method was to consider a low-
dimensional separating hyperplane and interpret the data as overlapping. The last
method includes a parameter C' that can be used to tune the number of data points

124 |Generalized Learning Machines

that we allow to be within the margin. Thus, we can combine these two approaches to
classify non-linear data with overlaps where the soft margins will in addition allow us
to favour more smooth dividing hyperplanes.

6.3.5 Regularization and parameter tuning

In practice we have to consider several free parameters when applying support vector
machines. First, we have to decide which Kernel function to use. Most packages have a
number of choices implemented. We will use for the following discussion the Gaussian
Kernel function with width parameter . Setting a small value for v and allowing for
a large number of support vectors (small C'), corresponds to a complex model. In
contrast, larger width values and regularization constant C' will increase the stiffness
of the model and lower the complexity. In practice we have to tune these parameters to
get good results. To do this we need to use some form of validation set, as discussed in
section ??, and k-times cross validation is often implemented in the software packages.
An example of the SVM performance (accuracy) on some examples (Iris Data set from
the UCI repository; From Broadman and Trappenberg, 2006) is shown in figure 6.8 for
several values of v and C'. It is often typical that there is a large area where the SVM
works well and has only little variations in terms of performance. This robustness
has helped to make SVMs practical methods that often outperform other methods.
However, there is often also an abrupt onset of the region where the SVM fails, and
some parameter tuning is hence required. While just trying a few settings might be
sufficient, some more systematic methods such as grid search or simulated annealing
also work well.

Iog,gams)

Fig. 6.8 lllustration of SVM accuracy for different values of paraneters C' abd .

6.3.6 Statistical learning theory and VC dimension

SVMs are good and practical classification algorithms for several reasons, including
the advantage of being convex optimization problem that than can be solved with
quadratic programming, have the advantage of being able to utilize the Kernel trick,
have a compact representation of the decision hyperplane with support vectors, and
turn out to be fairly robust with respect to the hyper parameters. However, in order to

Support Vector Machine| 125

be good learners, they need to moderate the variance-bias tradeoff dicussed in section
??. A great theoretical contributions of Vapnik and colleagues was the embedding
of supervised learning into statistical learning theory and to derive some bounds that
make statements on the average ability to learn form data. We outline here briefly the
ideas and state some of the results. We discuss this issue here in the context of binary
classification, although similar observations can be made in the case of multiclass
classification and regression.

We start again by stating our objective, which is to find a hypothesis which min-
imized the generalization error. To state this a bit more differentiated and to use the
nomenclature common in these discussions, we call the error function here the risk
function R. In particular, the expected risk for a binary classification problem is the
probability of misclassification,

R(h) = P(h(z) # y) (6.49)

Of course, we generally do not know this density function, though we need to approx-
imate this with our validation data. We assume thereby again that the samples are iid
(independent and identical distributed) data, and can then estimate what is called the
empirical risk,

_ 1 Z (h(xD; 0) = y). (6.50)
m :

We use here again m as the number of examples, but note that this is here the number
of examples in the validations set, which is the number of all training data minus the
ones used for training. Also, we will discuss this empirical risk further, but note that it
is better to use the regularized version that incorporates a smoothness constrain such
as 1

2 j 2

Remreg(h) = 3 S W(A(x1;0) = y) = Al[wl| (6.51)

K3

in the case of SVM, where) is a regularization constant. Thus, wherever R(h) is used
in the following, we can replace this with R,,,¢4(h). Empirical risk minimization

is the process of finding the hypothesis h that minimizes the empirical risk,

h=arg H}in R(h) (6.52)

The empirical risk is the MLE of the mean of a Bernoulli-distributed random variable
with true mean R(h). Thus, the empirical risk is itself a random variable for each
possible hypothesis h. Let us first assume that we have &k possible hypothesis h;. We
now draw on a theorem by Hoeffding called the Hoeffding inequality that provides
and upper bound for the sum of random numbers to its mean,

P(IR(hi) = R(hi)| > 7) < 2exp(—2y°m). (6.53)

This formula states that there is a certain probability that we make an error larger than
v for each hypothesis of the empirical risk compared to the expected risk, although
the good news is that this probability is bounded and that the bound itself becomes
exponentially smaller with the number of validation examples. This is already an

126 |Generalized Learning Machines

interesting results, but we now want to know the probability that some, out of all
possible hypothesis, are less than . Using the fact that the probability of the union of
several events is always less or equal to the sum of the probabilities, one can show that
with probability 1 — ¢ the error of a hypothesis is bounded by

|R(h) — R(h)| < —mlog—. (6.54)

This is a great results since it shows how the error of using an estimate the risk, the
empirical risk that we can evaluate from the validation data, is getting smaller with
training examples and with the number of possible hypothesis.

Fig. 6.9 lllustration of VC dimensions for the class of linear functions in two dimensions.

While the error scales only with the log of the number of possible hypothesis, the
values goes still to infinite when the number of possible hypothesis goes to infinite,
which much more resembles the situation when we have parameterized hypothesis.
However, Vapnik was able to show the following generalization in the infinite case,
which is that given a hypothesis space with Vapnic-Chervonencis dimension VC({h}),
then, with probability 1 — §, the error of the empirical risk compared to the expected
risk (true generalization error) is

1 1
IR(h) — R(h)] < O <\/ log +—log 5) . (6.55)

The VC dimensions is thereby a measure of how many points can be divided by a
member of the hypothesis set for all possible label combinations of the point. For
example, consider three arbitrary points in two dimensions as shown in figure 6.9, and
let us consider the hypothesis class of all possible lines in two dimensions. I can always
divide the three points under any class membership condition, of which two examples
are also shown in the figure. In contrast, it is possible to easily find examples with four
points that can not be divided by a line in two dimensions. The VC dimension of lines
in two dimensions is hence VC = 3.7

"Three points of different classes can not be separated by a single line, but these are singular points that
are not effective in the definition of VC dimension.

SV-Regression and implementation| 127

6.4 SV-Regression and implementation

6.4.1 Support Vector Regression

While we have mainly discussed classification in the last few sections, it is time to
consider the more general case of regression and to connect these methods to the
general principle of maximum likelihood estimation outlined in the previous chapter.
It is again easy to illustrate the method for the linear case before generalizing it to the
non-linear case similar to the strategy followed for SVMs.

X
? e{" X/

-t € e4E

X,

Fig. 6.10 lllustration of support vector regression and the €-insensitive cost function.

We have already mentioned in section 4.1 the e-insensitive error function which
does not count deviations of data from the hypothesis that are less than ¢ form the
hypothesis, This is illustrated in figure 6.10. The corresponding optimization problem
is

: 1 2 *
min S[wl[* + C D (& + €, (6.56)
subject to the constrains
v —wlix—b< g (6.57)
Yy —wlx—b> ¢ (6.58)
& & =0 (6.59)

The dual formulations does again only depend on scalar products between the training
examples, and the regression line can be also be expressed by a scalar product between
the support vectors and the prediction vector,

m

h(x; i, 0f) = Z(ai —al)xIx. (6.60)

=1

This, we can again use Kernels to generalize the method to non-linear cases.

6.4.2 Implementation

There are several SVM implementations available, and SVMs are finally becom-
ing a standard component of data mining tools. We will use the implementation

128 |Generalized Learning Machines

called LIBSVM which was written by Chih-Chung Chang and Chih-Jen Lin and
has interfaces to many computer languages including Matlab. There are basically
two functions that you need to use, namely model=svmtrain(y,x,options) and
svmpredict (y,x,model,options). The vectors x and y are the training data or the
data to be tested. svmtrain uses k-fold cross validation to train and evaluate the SVM
and returns the trained machine in the structure model. The function svmpredict
uses this model to evaluate the new data points. Below is a list of options that shows
the implemented SVM variants. We have mainly discussed C-SVC for the basic soft
support vector classification, and epsilonSVR for support vector regression.

-s svm_type : set type of SVM (default 0)
0 -- C-8SVC

1 -- nu-SVC

2 -- one-class SVM

3 -- epsilon-SVR

4 -- nu-SVR

-t kernel_type : set type of kernel function (default 2)
0 -- linear: u’*v

1 -- polynomial: (gamma*u’*v + coefO) “degree

2 -- radial basis function: exp(-gamma*|u-v|~2)

3 -- sigmoid: tanh(gamma*u’*v + coef0)

-d degree : set degree in kernel function (default 3)

-g gamma : set gamma in kernel function (default 1/num_features)

-r coef0 : set coefO in kernel function (default 0)

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

-m cachesize : set cache memory size in MB (default 100)

-e epsilon : set tolerance of termination criterion (default 0.001)

-h shrinking: whether to use the shrinking heuristics, O or 1 (default 1)

-b probability_estimates: whether to train a SVC or SVR model for probability estimates, O o
-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)

The k in the -g option means the number of attributes in the input data.

Exercise: Supervised Line-following
6.4.3 Objective

The objective of this experiment is to investigate Supervised Learning through teaching
a robot how to follow a line using a Support Vector Machine (SVM).

6.4.4 Setup

e Mount light sensor on front of NXT, plugged into Port 1
e Use a piece of dark tape (i.e. electrical tape) to mark a track on a flat surface.
Make sure the tape and the surface are coloured differently enough that the light

SV-Regression and implementation| 129

sensor returns reasonably different values between the two surfaces.

e This program requires a MATLAB extension that can use Support Vector Ma-
chines. Download:

6.4.5 Program

Data collection requires the user to manually move the wheels of the NXT. When the
training begins, start the NXT so the light sensor’s beam is either on the tape or the
surface. Zig zag the NXT so the beam travels on and off the tape by moving either
the right or the left wheel, one at a time. Record the positions of the left and right
wheels, as well as the light sensor’s reading during frequent intervals. It is important to
make sure the wheel not in motion stays as stationary as possible to obtain the optimal
training set of data.

After data collection, find the difference between the right and the left wheel posi-
tions for each time sample taken, and use the SVM to create a model between these
differences and the light sensor readings. For instance:

model = svmtrain(delta,lightReading,’-s 8 -g 0 -b 1 -e 0.1 -q’);

To implement the model, place the NXT on the line and use SVMPredict to input a
light sensor reading and drive the robot left or right depending on the returned value
of the SVMPredict.

lightVal=GetLight (SENSOR_1);
if svmpredict(0,lightVal,model,’0°’)>0
left.Stop();
right.SendToNXT();
else
right.Stop();
left.SendToNXT();
end

