
1 Basic probability theory

A major milestone for the modern approach to machine learning is to acknowledge our
limited knowledge about the world and the unreliability of sensors and actuators. It is
then only natural to consider quantities in our approaches as random variables. While
a regular variable, once set, has only one specific value, a random variable will have
different values every time we ‘look’ at it (draw an example from the distributions).
Just think about a light sensor. We might think that an ideal light sensor will give us
only one reading while holding it to a specific surface, but since the peripheral light
conditions change, the characteristics of the internal electronic might change due to
changing temperatures, or since we move the sensor unintentionally away from the
surface, it is more than likely that we get different readings over time. Therefore,
even internal variables that have to be estimated from sensors, such as the state of the
system, is fundamentally a random variable.

A common misconception about randomness is that one can not predict values of
random values. Some values might be more likely than others, and, while we might
not be able to predict a specific value when drawing a random number, it is possible
to say something like how often a certain number will appear when drawing many
examples. We might even be able to state how confident we are with this number,
or, in other words, how variable these predictions are. The complete knowledge of a
random variable, that is, how likely each value is for a random variable x, is captured
by the probability density function pdf(x). We discuss some specific examples of
pdfs below. In these examples we assume that we know the pdf, but in may practical
applications we must estimate this function. Indeed, estimation of pdfs is at the heart
if not the central tasks of machine learning. If we would know the ‘world pdf’, the
probability function of all possible events in the world, then we could predict as much
as possible in this world.

Most of the systems discussed in this course are stochastic models to capture
the uncertainties in the world. Stochastic models are models with random variables,
and it is therefore useful to remind ourselves about the properties of such variables.
This chapter is a refresher on concepts in probability theory. Note that we are mainly
interested in the language of probability theory rather than statistics, which is more
concerned with hypothesis testing and related procedures.

1.1 Random numbers and their probability (density)
function

Probability theory is the theory of random numbers. We denoted such numbers by
capital letters to distinguish them from regular numbers written in lower case. A
random variable, X , is a quantity that can have different values each time the variable
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is inspected, such as in measurements in experiments. This is fundamentally different
to a regular variable, x, which does not change its value once it is assigned. A random
number is thus a new mathematical concept, not included in the regular mathematics of
numbers. A specific value of a random number is still meaningful as it might influence
specific processes in a deterministic way. However, since a random number can change
every time it is inspected, it is also useful to describe more general properties when
drawing examples many times. The frequency with which numbers can occur is then
the most useful quantity to take into account. This frequency is captured by the
mathematical construct of a probability. Note that there is often a debate if random
numbers should be defines solely on the basis of a frequency measurement, or if there
they should be treated as a special kind of objects. This philosophical debate between
‘Frequentists’ and ‘Bayesians’ is of minor importance for our applications.

We can formalize the idea of expressing probabilities of drawing specific specific
values for random variable with some compact notations. We speak of a discrete
random variable in the case of discrete numbers for the possible values of a random
number. A continuous random variable is a random variable that has possible values
in a continuous set of numbers. There is, in principle, not much difference between
these two kinds of random variables, except that the mathematical formulation has
to be slightly different to be mathematically correct. For example, the probability
function,

PX(x) = P (X = x) (1.1)

describes the frequency with which each possible value x of a discrete variable X
occurs. Note that x is a regular variable, not a random variable. The value of PX(x)
gives the fraction of the times we get a value x for the random variable X if we
draw many examples of the random variable.1 From this definition it follows that
the frequency of having any of the possible values is equal to one, which is the
normalization condition ∑

x

PX(x) = 1. (1.2)

In the case of continuous random numbers we have an infinite number of possible
values x so that the fraction for each number becomes infinitesimally small. It is then
appropriate to write the probability distribution function as PX(x) = pX(x)dx, where
pX(x) is the probability density function (pdf). The sum in eqn 1.2 then becomes an
integral, and normalization condition for a continuous random variable is∫

x

pX(x)dx = 1. (1.3)

We will formulate the rest of this section in terms of continuous random variables.
The corresponding formulas for discrete random variables can easily be deduced by
replacing the integrals over the pdf with sums over the probability function. It is also
possible to use the δ-function, outlined in Appendix ??, to write discrete random
processes in a continuous form.

1Probabilities are sometimes written as a percentage, but we will stick to the fractional notation.
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1.2 Moments: mean, variance, etc.

In the following we only consider independent random values that are drawn from
identical pdfs, often labeled as iid (independent and identically distributed) data. That
is, we do not consider cases where there is a different probabilities of getting certain
numbers when having a specific number in a previous trial. The static probability
density function describes, then, all we can know about the corresponding random
variable.

Let us consider the arbitrary pdf, pX(x), with the following graph:

µ x

p(x)

Such a distribution is called multimodal because it has several peaks. Since this is a
pdf, the area under this curve must be equal to one, as stated in eqn 1.3. It would be
useful to have this function parameterized in an analytical format. Most pdfs have to
be approximated from experiments, and a common method is then to fit a function to
the data. We can also view this approximation as a learning problem, that is, how can
we learn the pdf from data? We will return to this question later.

Finding a precise form of a pdf is difficult, and we became thus used to describing
random variables with a small set of numbers that are meant to capture some properties.
For example, we might ask what the most frequent value is when drawing many
examples. This number is given by the largest peak value of the distribution. It is often
more useful to know something about the average value itself when drawing many
examples. A common quantity to know is thus the expected arithmetic average of
those numbers, which is called the mean, expected value, or expectation value of the
distribution, defined by

µ =

∫ ∞
−∞

xp(x)dx. (1.4)

This formula formalizes the calculation of adding all the different numbers together
with their frequency.

A careful reader might have noticed a little oddity in our discussion. On the one
hand we are saying that we want to characterize random variables through some simple
measurements because we do not know the pdf, yet the last formula uses the pdf p(x)
that we usually don’t know. To solve this apparent oddity we need to be more careful
and talk about the true underlying functions and the estimation of such functions.
If we would know the pdf that governs the random variable X , then equation 1.4 is
the definition of the mean. However, in most applications we do not know the pdf, but
we can define an approximation of the mean from measurements. For example, if we
measure the frequency pi of values in certain intervals around values xi, then we can
estimate the true mean µ by
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µ̂ =
1

N

N∑
i=1

xipi. (1.5)

It is a common practice to denote an estimate of a quantity by adding a hat symbol
to the quantity name. Also, not that we have use here a discretization procedure to
approximate random variable that can be continuous in the most general case. Also
note that we could enter here again the philosophical debate. Indeed, we have treated
the pdf as fundamental and described the arithmetic average like an estimation of
the mean. This might be viewed as Bayesian. However, we could also be pragmatic
and say that we only have a collection of measurements so that the numbers are the
‘real’ thing, and that pdfs are only a mathematical construct. We will continue with a
Bayesian description but note that this makes no difference at the end when using it in
specific applications.

The mean of a distribution is not the only interesting quantity that characterizes a
distribution. For example, we might want to ask what the median value is for which it
is equally likely to find a value lower or larger than this value. Furthermore, the spread
of the pdf around the mean is also very revealing as it gives us a sense of how spread
the values are. This spread is often characterized by the standard deviation (std), or its
square, which is called variance, σ2, and is defined as

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx. (1.6)

This quantity is generally not enough to characterize the probability function uniquely;
this is only possible if we know all moments of a distribution, where the nth moment
about the mean is defined as

mn =

∫ ∞
−∞

(x− µ)nf(x)dx. (1.7)

The variance is the second moment about the mean,

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx. (1.8)

Higher moments specify further characteristics of distributions such as terms with
third-order exponents (lie a quantity called skewness) or fourth-oder (such as a quantity
called kurtosis). Moments higher than this have not been given explicit names. Knowing
all moments of a distribution is equivalent to knowing the distribution precisely, and
knowing a pdf is equivalent to knowing everything we could know about a random
variable.

In case the distribution function is not given, moments have to be estimated from
data. For example, the mean can be estimated from a sample of measurements by the
sample mean,

x̄ =
1

n

n∑
i=1

xi, (1.9)

and the variance from the sample variance,

s2
1 =

1

n

n∑
i=1

(x̄− xi)2. (1.10)
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We will discuss later that these are the appropriate maximum likelihood estimates
of these parameters. Note that the sample mean is an unbiased estimate while the
sample variance is biased. A statistic is said to be biased if the mean of the sampling
distribution is not equal to the parameter that is intended to be estimated. It can be
shown that E(s2

1) = 1
nσ

2, and we can therefore adjust for the bias with a different
normalization. It is hence common to use the unbiased sample variance

s2
2 =

1

n− 1

n∑
i=1

(x̄− xi)2, (1.11)

as estimator of the variance.
Finally, it is good to realize that knowing all moments uniquely specifies a pdf. But

the reverse is also true, that is, and incomplete list of moments does not uniquely define
a pdf. Note that the all higher moments are zero for the Gaussian distributions, which
means that the mean and variance uniquely define the distribution. This is however not
the case for other distributions, and the usefulness of reporting these statistics can then
be questioned.

1.3 Examples of probability (density) functions
There is an infinite number of possible pdfs. However, some specific forms have been
very useful for describing some specific processes and have thus been given names. The
following is a list of examples with some discrete and several continuous distributions.
Most examples are discussed as one-dimensional distributions except the last example,
which is a higher dimensional distribution.

1.4 Bernoulli distribution
A Bernoulli random variable is a variable from an experiment that has two possible
outcomes: success with probability p; or failure, with probability (1− p).

Probability function:
P (success) = p;P (failure) = 1− p

mean: p
variance: p(1− p)

1.4.1 Multinomial distribution

This is the distribution of outcomes in n trials that have k possible outcomes. The
probability of each outcome is thereby pi.

Probability function:
P (xi) = n!

∏k
i=1(pxii /xi!)

mean: npi
variance: npi(1− pi)

An important example is the Binomial distribution (k = 2), which describes the the
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number of successes in n Bernoulli trials with probability of success p. Note that the
binomial coefficient is defined as

(
n
x

)
=

n!

x!(n− x)!
(1.12)

and is given by the MATLAB function nchoosek.

x

P(x)

np

Probability function:

P (x) =

(
n
x

)
px(1− p)n−x

mean: np
variance: np(1− p)

1.4.2 Uniform distribution

Equally distributed random numbers in the interval a ≤ x ≤ b. Pseudo-random
variables with this distribution are often generated by routines in many programming
languages.

x

p(x)

Probability density function:
p(x) = 1

b−a
mean: (a+ b)/2
variance: (b− a)2/12

1.4.3 Normal (Gaussian) distribution

Limit of the binomial distribution for a large number of trials. Depends on two pa-
rameters, the mean µ and the standard deviation σ. The importance of the normal
distribution stems from the central limit theorem outlined below.

µ

σ

x

p(x)

Probability density function:

p(x) = 1
σ
√

2π
e

−(x−µ)2

2σ2

mean: µ
variance: σ2

1.4.4 Chi-square distribution

The sum of the squares of normally distributed random numbers is chi-square dis-
tributed and depends on a parameter ν that is equal to the mean. Γ is the gamma
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function included in MATLAB as gamma.

ν x

p(x)

Probability density function:
p(x) = x(ν−2)/2e−x/2

2ν/2Γ(ν/2)
mean: ν
variance: 2ν

1.4.5 Multivariate Gaussian distribution

We will later consider density functions of a several random variables, x1, ..., xn. Such
density functions are functions in higher dimensions. An important example is the
multivariate Gaussian (or Normal) distribution given by

p(x1, ..., xn) = p(x) =
1

(
√

(2π))n
√

( det(Σ)
exp(−1

2
(x− µ)TΣ−1(x− µ)).

(1.13)
This is a straight forward generalization of the one-dimensional Gaussian distribution
mentioned before where the mean is now a vector, µ and the variance generalizes to
a covariance matrix, Σ = [Cov[Xi, Xj ]]i=1,2,...,k;j=1,2,...,k which must be symmetric
and positive semi-definit. An example with mean µ = (1 2)T and covariance Σ =
(1 0.5; 0.5 1) is shown in Fig,1.1.

1.5 Cumulative probability (density) function and the
Gaussian error function

We have mainly discussed probabilities of single values as specified by the probability
(density) functions. However, in many cases we want to know the probabilities of
having values in a certain range. Indeed, the probability of a specific valuer of a
continuous random variable is actually infinitesimally small (nearly zero), and only
the probability of a range of values is finite and has a useful meaning of a probability.
This integrated version of a probability density function is the probability of having a
value x for the random variable X in the range of x1 ≤ x ≤ x2 and is given by

P (x1 ≤ X ≤ x2) =

∫ x2

x1

p(x)dx. (1.14)

Note that we have shortened the notation by replacing the notation PX(x1 ≤ X ≤ x2)
by P (x1 ≤ X ≤ x2) to simplify the following expressions. In the main text we often
need to calculate the probability that a normally (or Gaussian) distributed variable
has values between x1 = 0 and x2 = y. The probability of eqn 1.14 then becomes a
function of y. This defines the Gaussian error function

1√
2πσ

∫ y

0

e−
(x−µ)2

2σ2 dx =
1

2
erf(

y − µ√
2σ

). (1.15)

The name of this function comes from the fact that this integral often occurs when
calculating confidence intervals with Gaussian noise and is often abbreviated as erf .
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Fig. 1.1 Multivariate Gaussian with mean µ = (1 2)T and covariance Σ = (1 0.5; 0.5 1).

This Gaussian error function for normally distributed variables (Gaussian distribution
with mean µ = 0 and variance σ = 1) is commonly tabulated in books on statistics.
Programming libraries also frequently include routines that return the values for spe-
cific arguments. In MATLAB this is implemented by the routine erf, and values for
the inverse of the error function are returned by the routine erfinv.

Another special case of eqn 1.14 is when x1 in the equation is equal to the lowest
possible value of the random variable (usually −∞). The integral in eqn 1.14 then
corresponds to the probability that a random variable has a value smaller than a certain
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value, say y. This function of y is called the cumulative density function (cdf),2

P cum(x < y) =

∫ y

−∞
p(x)dx, (1.16)

which we will utilize further below.

1.6 Functions of random variables and the central limit
theorem

A function of a random variable X ,

Y = f(X), (1.17)

is also a random variable, Y , and we often need to know what the pdf of this new
random variable is. Calculating with functions of random variables is a bit different to
regular functions and some care has be given in such situations. Let us illustrate how
to do this with an example. Say we have an equally distributed random variable X as
commonly approximated with pseudo-random number generators on a computer. The
probability density function of this variable is given by

pX(x) =

{
1 for 0 ≤ x ≤ 1,
0 otherwise. (1.18)

We are seeking the probability density function pY (y) of the random variable

Y = e−X
2

. (1.19)

The random number Y is not Gaussian distributed as we might think naively. To cal-
culate the probability density function we can employ the cumulative density function
eqn 1.16 by noting that

P (Y ≤ y) = P (e−X
2

≤ y) = P (X ≥
√
− ln y). (1.20)

Thus, the cumulative probability function of Y can be calculated from the cumulative
probability function of X ,

P (X ≥
√
− ln y) =

{∫ 1√
− ln y

pX(x)dy = 1−
√
− ln y for e−1 ≤ y ≤ 1,

0 otherwise.
(1.21)

The probability density function of Y is the the derivative of this function,

pY (y) =

{
1−
√
− ln y for e−1 ≤ y ≤ 1,

0 otherwise. (1.22)

The probability density functions of X and Y are shown below.

2Note that this is a probability function, not a density function.
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A special function of random variables, which is of particular interest it can approx-
imate many processes in nature, is the sum of many random variables. For example,
such a sum occurs if we calculate averages from measured quantities, that is,

X̄ =
1

n

n∑
i=1

Xi, (1.23)

and we are interested in the probability density function of such random variables. This
function depends, of course, on the specific density function of the random variablesXi.
However, there is an important observation summarized in the central limit theorem.
This theorem states that the average (normalized sum) of n random variables that are
drawn from any distribution with mean µ and variance σ is approximately normally
distributed with mean µ and variance σ/n for a sufficiently large sample size n. The
approximation is, in practice, often very good also for small sample sizes. For example,
the normalized sum of only seven uniformly distributed pseudo-random numbers is
often used as a pseudo-random number for a normal distribution.

1.7 Measuring the difference between distributions

An important practical consideration is how to measure the similarity of difference
between two density functions, say the density function p and the density function
q. Note that such a measure is a matter of definition, similar to distance measures
of real numbers or functions. However, a proper distance measure, d, should be zero
if the items to be compared, a and b, are the same, it’s value should be positive
otherwise, and a distance measure should be symmetrical, meaning that d(a, b) =
d(b, a). The following popular measure of similarity between two density functions
is not symmetric and is hence not called a distance. It is called Kulbach–Leibler
divergence and is given by

dKL(p, q) =

∫
p(x) log(

p(x)

q(x)
)dx (1.24)

=

∫
p(x) log(p(x))dx−

∫
p(x) log(q(x))dx (1.25)

This measure is zero if p = q. This measure is related to the information gain or
relative entropy in information theory.
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1.8 Density functions of multiple random variables

So far, we have discussed mainly probability (density) functions of single random
variables. As mentioned before, we use random variables to describe data such as
sensor readings in robots. Of course, we often have then more than one sensor and
also other quantities that we describe by random variables at the same time. Thus, in
many applications we consider multiple random variables. The quantities described by
the random variables might be independent, but in many cases they are also related.
Indeed, we will later talk about how to describe various types of relations. Thus, in
order to talk about situations with multiple random variables, or multivariate statistics,
it is useful to know basic rules. We start by illustrating these basic multivariate rules
with two random variables since the generalization from there is usually quite obvious.
But we will also talk about the generalization to more than two variables at the end of
this section.

1.8.1 Basic definitions

We have seen that probability theory is quite handy to model data, and probability
theory also considers multiple random variables. The total knowledge about the co-
occurrence of specific values for two random variables X and Y is captured by the

joined distribution: p(x, y) = p(X = x, Y = y). (1.26)

This is a two dimensional functions. The two dimensions refers here to the number
of variables, although a plot of this function would be a three dimensional plot. An
example is shown in Fig.1.2. All the information we can have about a stochastic system
is encapsulated in the joined pdf. The slice of this function, given the value of one
variable, say y, is the

conditional distribution: p(x|y) = p(X = x|Y = y). (1.27)

A conditional pdf is also illustrated in Fig.1.2 If we sum over all realizations of y we
get the

marginal distribution: p(x) =

∫
p(x, y)dy. (1.28)

If we know some functional form of the density function or have a parameterized
hypothesis of this function, than we can use common statistical methods, such as
maximum likelihood estimation, to estimate the parameters as in the one dimensional
cases. If we do not have a parameterized hypothesis we need to use other methods, such
as treating the problem as discrete and building histograms, to describe the density
function of the system. Note that parameter-free estimation is more challenging with
increasing dimensions. Considering a simple histogram method to estimate the joined
density function where we discretize the space along every dimension into n bins.
This leads to n2 bins for a two-dimensional histogram, and nd for a d-dimensional
problem. This exponential scaling is a major challenge in practice since we need also
considerable data in each bin to sufficiently estimate the probability of each bin.
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Fig. 1.2 Example of a two-dimensional probability density function (pdf) and some examples of
conditional pdfs.

1.8.2 The chain rule

As mentioned before, if we know the joined distribution of some random variables
we can make the most predictions of these variables. However, in practice we have
often to estimate these functions, and we can often only estimate conditional density
functions. A very useful rule to know is therefore how a joined distribution can be
decompose into the product of a conditional and a marginal distribution,

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (1.29)

which is sometimes called the chain rule. Note the two different ways in which we can
decompose the joined distribution. This is easily generalized to n random variables by

p(x1, x2, ..., xn) = p(xn|x1, ...xn−1)p(x1, ..., xn−1) (1.30)
= p(xn|x1, ..., xn−1) ∗ ... ∗ p(x2|x1) ∗ p(x1) (1.31)
= Πn

i=1p(xi|xi−1, ...x1) (1.32)

but note that there are also different decompositions possible. We will learn more about
this and useful graphical representations in Chapter ??.

Estimations of processes are greatly simplified when random variables are inde-
pendent. A random variable X is independent of Y if

p(x|y) = p(x). (1.33)

Using the chain rule eq.1.29, we can write this also as

p(x, y) = p(x)p(y), (1.34)

that is, the joined distribution of two independent random variables is the product of
their marginal distributions. Similar, we can also define conditional independence. For
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example, two random variables X and Y are conditionally independent of random
variable Z if

p(x, y|z) = p(x|z)p(y|z). (1.35)

Note that total independence does not imply conditionally independence and visa
versa, although this might hold true for some specific examples.

1.8.3 How to combine prior knowledge with new evidence: Bayes rule

One of the most common tasks we will encounter in the following is the integration
of prior knowledge with new evidence. For example, we could have an estimate of
the location of an agent and get new (noisy) sensory data that adds some suggestions
for different locations. A similar task is the fusion of data from different sensors. The
general question we have to solve is how to weight the different evidence in light
of the reliability of this information. Solving this problem is easy in a probabilistic
framework and is one of the main reasons that so much progress has been made in
probabilistic robotics.

How prior knowledge should be combined with prior knowledge is an important
question. Luckily, basically already know how to do it best in a probabilistic sense.
Namely, if we divide this chain rule eq. 1.29 by p(x), which is possible as long as
p(x) > 0, we get the identity

p(x|y) =
p(y|x)p(x)

p(y)
, (1.36)

which is called Bayes theorem. This theorem is important because it tells us how to
combine a prior knowledge, such as the expected distribution over a random variable
such as the state of a system, p(x), with some evidence called the likelihood function
p(y|x), for example by measuring some sensors reading y when controlling the state,
to get the posterior distribution, p(y|x) from which the new estimation of state can be
derived. The marginal distribution p(y), which does not depend on the state X , is the
proper normalization so that the left-hand side is again a probability.


