1 Basic probability theory

A major milestone for the modern approach to machine learning is to acknowledge our limited knowledge about the world and the unreliability of sensors and actuators. It is then only natural to consider quantities in our approaches as random variables. While a regular variable, once set, has only one specific value, a random variable will have different values every time we 'look' at it (draw an example from the distributions). Just think about a light sensor. We might think that an ideal light sensor will give us only one reading while holding it to a specific surface, but since the peripheral light conditions change, the characteristics of the internal electronic might change due to changing temperatures, or since we move the sensor unintentionally away from the surface, it is more than likely that we get different readings over time. Therefore, even internal variables that have to be estimated from sensors, such as the state of the system, is fundamentally a random variable.

A common misconception about randomness is that one can not predict values of random values. Some values might be more likely than others, and, while we might not be able to predict a specific value when drawing a random number, it is possible to say something like how often a certain number will appear when drawing many examples. We might even be able to state how confident we are with this number, or, in other words, how variable these predictions are. The complete knowledge of a random variable, that is, how likely each value is for a random variable x, is captured by the probability density function $p d f(x)$. We discuss some specific examples of pdfs below. In these examples we assume that we know the pdf, but in may practical applications we must estimate this function. Indeed, estimation of pdfs is at the heart if not the central tasks of machine learning. If we would know the 'world pdf', the probability function of all possible events in the world, then we could predict as much as possible in this world.

Most of the systems discussed in this course are stochastic models to capture the uncertainties in the world. Stochastic models are models with random variables, and it is therefore useful to remind ourselves about the properties of such variables. This chapter is a refresher on concepts in probability theory. Note that we are mainly interested in the language of probability theory rather than statistics, which is more concerned with hypothesis testing and related procedures.

1.1 Random numbers and their probability (density) function

Probability theory is the theory of random numbers. We denoted such numbers by capital letters to distinguish them from regular numbers written in lower case. A random variable, X, is a quantity that can have different values each time the variable
is inspected, such as in measurements in experiments. This is fundamentally different to a regular variable, x, which does not change its value once it is assigned. A random number is thus a new mathematical concept, not included in the regular mathematics of numbers. A specific value of a random number is still meaningful as it might influence specific processes in a deterministic way. However, since a random number can change every time it is inspected, it is also useful to describe more general properties when drawing examples many times. The frequency with which numbers can occur is then the most useful quantity to take into account. This frequency is captured by the mathematical construct of a probability. Note that there is often a debate if random numbers should be defines solely on the basis of a frequency measurement, or if there they should be treated as a special kind of objects. This philosophical debate between 'Frequentists' and 'Bayesians' is of minor importance for our applications.

We can formalize the idea of expressing probabilities of drawing specific specific values for random variable with some compact notations. We speak of a discrete random variable in the case of discrete numbers for the possible values of a random number. A continuous random variable is a random variable that has possible values in a continuous set of numbers. There is, in principle, not much difference between these two kinds of random variables, except that the mathematical formulation has to be slightly different to be mathematically correct. For example, the probability function,

$$
\begin{equation*}
P_{X}(x)=P(X=x) \tag{1.1}
\end{equation*}
$$

describes the frequency with which each possible value x of a discrete variable X occurs. Note that x is a regular variable, not a random variable. The value of $P_{X}(x)$ gives the fraction of the times we get a value x for the random variable X if we draw many examples of the random variable. ${ }^{1}$ From this definition it follows that the frequency of having any of the possible values is equal to one, which is the normalization condition

$$
\begin{equation*}
\sum_{x} P_{X}(x)=1 \tag{1.2}
\end{equation*}
$$

In the case of continuous random numbers we have an infinite number of possible values x so that the fraction for each number becomes infinitesimally small. It is then appropriate to write the probability distribution function as $P_{X}(x)=p_{X}(x) \mathrm{d} x$, where $p_{X}(x)$ is the probability density function (pdf). The sum in eqn 1.2 then becomes an integral, and normalization condition for a continuous random variable is

$$
\begin{equation*}
\int_{x} p_{X}(x) \mathrm{d} x=1 . \tag{1.3}
\end{equation*}
$$

We will formulate the rest of this section in terms of continuous random variables. The corresponding formulas for discrete random variables can easily be deduced by replacing the integrals over the pdf with sums over the probability function. It is also possible to use the δ-function, outlined in Appendix ??, to write discrete random processes in a continuous form.

[^0]
1.2 Moments: mean, variance, etc.

In the following we only consider independent random values that are drawn from identical pdfs, often labeled as iid (independent and identically distributed) data. That is, we do not consider cases where there is a different probabilities of getting certain numbers when having a specific number in a previous trial. The static probability density function describes, then, all we can know about the corresponding random variable.

Let us consider the arbitrary pdf, $p_{X}(x)$, with the following graph:

Such a distribution is called multimodal because it has several peaks. Since this is a pdf, the area under this curve must be equal to one, as stated in eqn 1.3. It would be useful to have this function parameterized in an analytical format. Most pdfs have to be approximated from experiments, and a common method is then to fit a function to the data. We can also view this approximation as a learning problem, that is, how can we learn the pdf from data? We will return to this question later.

Finding a precise form of a pdf is difficult, and we became thus used to describing random variables with a small set of numbers that are meant to capture some properties. For example, we might ask what the most frequent value is when drawing many examples. This number is given by the largest peak value of the distribution. It is often more useful to know something about the average value itself when drawing many examples. A common quantity to know is thus the expected arithmetic average of those numbers, which is called the mean, expected value, or expectation value of the distribution, defined by

$$
\begin{equation*}
\mu=\int_{-\infty}^{\infty} x p(x) \mathrm{d} x \tag{1.4}
\end{equation*}
$$

This formula formalizes the calculation of adding all the different numbers together with their frequency.

A careful reader might have noticed a little oddity in our discussion. On the one hand we are saying that we want to characterize random variables through some simple measurements because we do not know the pdf, yet the last formula uses the pdf $p(x)$ that we usually don't know. To solve this apparent oddity we need to be more careful and talk about the true underlying functions and the estimation of such functions. If we would know the pdf that governs the random variable X, then equation 1.4 is the definition of the mean. However, in most applications we do not know the pdf, but we can define an approximation of the mean from measurements. For example, if we measure the frequency p_{i} of values in certain intervals around values x_{i}, then we can estimate the true mean μ by

$$
\begin{equation*}
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i} p_{i} \tag{1.5}
\end{equation*}
$$

It is a common practice to denote an estimate of a quantity by adding a hat symbol to the quantity name. Also, not that we have use here a discretization procedure to approximate random variable that can be continuous in the most general case. Also note that we could enter here again the philosophical debate. Indeed, we have treated the pdf as fundamental and described the arithmetic average like an estimation of the mean. This might be viewed as Bayesian. However, we could also be pragmatic and say that we only have a collection of measurements so that the numbers are the 'real' thing, and that pdfs are only a mathematical construct. We will continue with a Bayesian description but note that this makes no difference at the end when using it in specific applications.

The mean of a distribution is not the only interesting quantity that characterizes a distribution. For example, we might want to ask what the median value is for which it is equally likely to find a value lower or larger than this value. Furthermore, the spread of the pdf around the mean is also very revealing as it gives us a sense of how spread the values are. This spread is often characterized by the standard deviation (std), or its square, which is called variance, σ^{2}, and is defined as

$$
\begin{equation*}
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x . \tag{1.6}
\end{equation*}
$$

This quantity is generally not enough to characterize the probability function uniquely; this is only possible if we know all moments of a distribution, where the nth moment about the mean is defined as

$$
\begin{equation*}
m^{n}=\int_{-\infty}^{\infty}(x-\mu)^{n} f(x) \mathrm{d} x \tag{1.7}
\end{equation*}
$$

The variance is the second moment about the mean,

$$
\begin{equation*}
\sigma^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x \tag{1.8}
\end{equation*}
$$

Higher moments specify further characteristics of distributions such as terms with third-order exponents (lie a quantity called skewness) or fourth-oder (such as a quantity called kurtosis). Moments higher than this have not been given explicit names. Knowing all moments of a distribution is equivalent to knowing the distribution precisely, and knowing a pdf is equivalent to knowing everything we could know about a random variable.

In case the distribution function is not given, moments have to be estimated from data. For example, the mean can be estimated from a sample of measurements by the sample mean,

$$
\begin{equation*}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{1.9}
\end{equation*}
$$

and the variance from the sample variance,

$$
\begin{equation*}
s_{1}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)^{2} . \tag{1.10}
\end{equation*}
$$

We will discuss later that these are the appropriate maximum likelihood estimates of these parameters. Note that the sample mean is an unbiased estimate while the sample variance is biased. A statistic is said to be biased if the mean of the sampling distribution is not equal to the parameter that is intended to be estimated. It can be shown that $E\left(s_{1}^{2}\right)=\frac{1}{n} \sigma^{2}$, and we can therefore adjust for the bias with a different normalization. It is hence common to use the unbiased sample variance

$$
\begin{equation*}
s_{2}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\bar{x}-x_{i}\right)^{2} \tag{1.11}
\end{equation*}
$$

as estimator of the variance.
Finally, it is good to realize that knowing all moments uniquely specifies a pdf. But the reverse is also true, that is, and incomplete list of moments does not uniquely define a pdf. Note that the all higher moments are zero for the Gaussian distributions, which means that the mean and variance uniquely define the distribution. This is however not the case for other distributions, and the usefulness of reporting these statistics can then be questioned.

1.3 Examples of probability (density) functions

There is an infinite number of possible pdfs. However, some specific forms have been very useful for describing some specific processes and have thus been given names. The following is a list of examples with some discrete and several continuous distributions. Most examples are discussed as one-dimensional distributions except the last example, which is a higher dimensional distribution.

1.4 Bernoulli distribution

A Bernoulli random variable is a variable from an experiment that has two possible outcomes: success with probability p; or failure, with probability $(1-p)$.

Probability function:

$$
P(\text { success })=p ; P(\text { failure })=1-p
$$

mean: p
variance: $p(1-p)$

1.4.1 Multinomial distribution

This is the distribution of outcomes in n trials that have k possible outcomes. The probability of each outcome is thereby p_{i}.

Probability function:

$$
\begin{aligned}
& \qquad P\left(x_{i}\right)=n!\prod_{i=1}^{k}\left(p_{i}^{x_{i}} / x_{i}!\right) \\
& \text { mean: } n p_{i} \\
& \text { variance: } n p_{i}\left(1-p_{i}\right)
\end{aligned}
$$

An important example is the Binomial distribution $(k=2)$, which describes the the
number of successes in n Bernoulli trials with probability of success p. Note that the binomial coefficient is defined as

$$
\begin{equation*}
\binom{n}{x}=\frac{n!}{x!(n-x)!} \tag{1.12}
\end{equation*}
$$

and is given by the MATLAB function nchoosek.

1.4.2 Uniform distribution

Equally distributed random numbers in the interval $a \leq x \leq b$. Pseudo-random variables with this distribution are often generated by routines in many programming languages.

Probability density function:

$$
p(x)=\frac{1}{b-a}
$$

mean: $(a+b) / 2$
variance: $(b-a)^{2} / 12$

1.4.3 Normal (Gaussian) distribution

Limit of the binomial distribution for a large number of trials. Depends on two parameters, the mean μ and the standard deviation σ. The importance of the normal distribution stems from the central limit theorem outlined below.

Probability density function:

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

mean: μ
variance: σ^{2}

1.4.4 Chi-square distribution

The sum of the squares of normally distributed random numbers is chi-square distributed and depends on a parameter ν that is equal to the mean. Γ is the gamma
function included in MATLAB as gamma.

Probability density function:

$$
p(x)=\frac{x^{(\nu-2) / 2} e^{-x / 2}}{2^{\nu / 2} \Gamma(\nu / 2)}
$$

mean: ν
variance: 2ν

1.4.5 Multivariate Gaussian distribution

We will later consider density functions of a several random variables, x_{1}, \ldots, x_{n}. Such density functions are functions in higher dimensions. An important example is the multivariate Gaussian (or Normal) distribution given by

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}\right)=p(\mathbf{x})=\frac{1}{\left(\sqrt{(2 \pi))^{n} \sqrt{(} \operatorname{det}(\boldsymbol{\Sigma})}\right.} \exp \left(-\frac{1}{2}(\mathbf{x}-\mu)^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\mu)\right) \tag{1.13}
\end{equation*}
$$

This is a straight forward generalization of the one-dimensional Gaussian distribution mentioned before where the mean is now a vector, μ and the variance generalizes to a covariance matrix, $\boldsymbol{\Sigma}=\left[\operatorname{Cov}\left[X_{i}, X_{j}\right]\right]_{i=1,2, \ldots, k ; j=1,2, \ldots, k}$ which must be symmetric and positive semi-definit. An example with mean $\mu=(12)^{T}$ and covariance $\Sigma=$ (1 0.5; 0.51) is shown in Fig,1.1.

1.5 Cumulative probability (density) function and the Gaussian error function

We have mainly discussed probabilities of single values as specified by the probability (density) functions. However, in many cases we want to know the probabilities of having values in a certain range. Indeed, the probability of a specific valuer of a continuous random variable is actually infinitesimally small (nearly zero), and only the probability of a range of values is finite and has a useful meaning of a probability. This integrated version of a probability density function is the probability of having a value x for the random variable X in the range of $x_{1} \leq x \leq x_{2}$ and is given by

$$
\begin{equation*}
P\left(x_{1} \leq X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} p(x) \mathrm{d} x \tag{1.14}
\end{equation*}
$$

Note that we have shortened the notation by replacing the notation $P_{X}\left(x_{1} \leq X \leq x_{2}\right)$ by $P\left(x_{1} \leq X \leq x_{2}\right)$ to simplify the following expressions. In the main text we often need to calculate the probability that a normally (or Gaussian) distributed variable has values between $x_{1}=0$ and $x_{2}=y$. The probability of eqn 1.14 then becomes a function of y. This defines the Gaussian error function

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi} \sigma} \int_{0}^{y} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x=\frac{1}{2} \operatorname{erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right) . \tag{1.15}
\end{equation*}
$$

The name of this function comes from the fact that this integral often occurs when calculating confidence intervals with Gaussian noise and is often abbreviated as erf.

Fig. 1.1 Multivariate Gaussian with mean $\mu=(12)^{T}$ and covariance $\Sigma=(10.5 ; 0.51)$.

This Gaussian error function for normally distributed variables (Gaussian distribution with mean $\mu=0$ and variance $\sigma=1$) is commonly tabulated in books on statistics. Programming libraries also frequently include routines that return the values for specific arguments. In MATLAB this is implemented by the routine erf, and values for the inverse of the error function are returned by the routine erfinv.

Another special case of eqn 1.14 is when x_{1} in the equation is equal to the lowest possible value of the random variable (usually $-\infty$). The integral in eqn 1.14 then corresponds to the probability that a random variable has a value smaller than a certain
value, say y. This function of y is called the cumulative density function (cdf), ${ }^{2}$

$$
\begin{equation*}
P^{\mathrm{cum}}(x<y)=\int_{-\infty}^{y} p(x) \mathrm{d} x \tag{1.16}
\end{equation*}
$$

which we will utilize further below.

1.6 Functions of random variables and the central limit theorem

A function of a random variable X,

$$
\begin{equation*}
Y=f(X) \tag{1.17}
\end{equation*}
$$

is also a random variable, Y, and we often need to know what the pdf of this new random variable is. Calculating with functions of random variables is a bit different to regular functions and some care has be given in such situations. Let us illustrate how to do this with an example. Say we have an equally distributed random variable X as commonly approximated with pseudo-random number generators on a computer. The probability density function of this variable is given by

$$
p_{X}(x)= \begin{cases}1 & \text { for } 0 \leq x \leq 1 \tag{1.18}\\ 0 & \text { otherwise }\end{cases}
$$

We are seeking the probability density function $p_{Y}(y)$ of the random variable

$$
\begin{equation*}
Y=\mathrm{e}^{-X^{2}} \tag{1.19}
\end{equation*}
$$

The random number Y is not Gaussian distributed as we might think naively. To calculate the probability density function we can employ the cumulative density function eqn 1.16 by noting that

$$
\begin{equation*}
P(Y \leq y)=P\left(\mathrm{e}^{-X^{2}} \leq y\right)=P(X \geq \sqrt{-\ln y}) \tag{1.20}
\end{equation*}
$$

Thus, the cumulative probability function of Y can be calculated from the cumulative probability function of X,

$$
P(X \geq \sqrt{-\ln y})= \begin{cases}\int_{\sqrt{-\ln y}}^{1} p_{X}(x) \mathrm{d} y=1-\sqrt{-\ln y} & \text { for } \mathrm{e}^{-1} \leq y \leq 1 \tag{1.21}\\ 0 & \text { otherwise }\end{cases}
$$

The probability density function of Y is the the derivative of this function,

$$
p_{Y}(y)= \begin{cases}1-\sqrt{-\ln y} & \text { for } e^{-1} \leq y \leq 1 \tag{1.22}\\ 0 & \text { otherwise }\end{cases}
$$

The probability density functions of X and Y are shown below.

[^1]

A special function of random variables, which is of particular interest it can approximate many processes in nature, is the sum of many random variables. For example, such a sum occurs if we calculate averages from measured quantities, that is,

$$
\begin{equation*}
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{1.23}
\end{equation*}
$$

and we are interested in the probability density function of such random variables. This function depends, of course, on the specific density function of the random variables X_{i}. However, there is an important observation summarized in the central limit theorem. This theorem states that the average (normalized sum) of n random variables that are drawn from any distribution with mean μ and variance σ is approximately normally distributed with mean μ and variance σ / n for a sufficiently large sample size n. The approximation is, in practice, often very good also for small sample sizes. For example, the normalized sum of only seven uniformly distributed pseudo-random numbers is often used as a pseudo-random number for a normal distribution.

1.7 Measuring the difference between distributions

An important practical consideration is how to measure the similarity of difference between two density functions, say the density function p and the density function q. Note that such a measure is a matter of definition, similar to distance measures of real numbers or functions. However, a proper distance measure, d, should be zero if the items to be compared, a and b, are the same, it's value should be positive otherwise, and a distance measure should be symmetrical, meaning that $d(a, b)=$ $d(b, a)$. The following popular measure of similarity between two density functions is not symmetric and is hence not called a distance. It is called Kulbach-Leibler divergence and is given by

$$
\begin{align*}
d^{\mathrm{KL}}(p, q) & =\int p(x) \log \left(\frac{p(x)}{q(x)}\right) \mathrm{d} x \tag{1.24}\\
& =\int p(x) \log (p(x)) \mathrm{d} x-\int p(x) \log (q(x)) \mathrm{d} x \tag{1.25}
\end{align*}
$$

This measure is zero if $p=q$. This measure is related to the information gain or relative entropy in information theory.

1.8 Density functions of multiple random variables

So far, we have discussed mainly probability (density) functions of single random variables. As mentioned before, we use random variables to describe data such as sensor readings in robots. Of course, we often have then more than one sensor and also other quantities that we describe by random variables at the same time. Thus, in many applications we consider multiple random variables. The quantities described by the random variables might be independent, but in many cases they are also related. Indeed, we will later talk about how to describe various types of relations. Thus, in order to talk about situations with multiple random variables, or multivariate statistics, it is useful to know basic rules. We start by illustrating these basic multivariate rules with two random variables since the generalization from there is usually quite obvious. But we will also talk about the generalization to more than two variables at the end of this section.

1.8.1 Basic definitions

We have seen that probability theory is quite handy to model data, and probability theory also considers multiple random variables. The total knowledge about the cooccurrence of specific values for two random variables X and Y is captured by the

$$
\begin{equation*}
\text { joined distribution: } \quad p(x, y)=p(X=x, Y=y) \tag{1.26}
\end{equation*}
$$

This is a two dimensional functions. The two dimensions refers here to the number of variables, although a plot of this function would be a three dimensional plot. An example is shown in Fig.1.2. All the information we can have about a stochastic system is encapsulated in the joined pdf. The slice of this function, given the value of one variable, say y, is the

$$
\begin{equation*}
\text { conditional distribution: } \quad p(x \mid y)=p(X=x \mid Y=y) \tag{1.27}
\end{equation*}
$$

A conditional pdf is also illustrated in Fig.1.2 If we sum over all realizations of y we get the

$$
\begin{equation*}
\text { marginal distribution: } \quad p(x)=\int p(x, y) d y \tag{1.28}
\end{equation*}
$$

If we know some functional form of the density function or have a parameterized hypothesis of this function, than we can use common statistical methods, such as maximum likelihood estimation, to estimate the parameters as in the one dimensional cases. If we do not have a parameterized hypothesis we need to use other methods, such as treating the problem as discrete and building histograms, to describe the density function of the system. Note that parameter-free estimation is more challenging with increasing dimensions. Considering a simple histogram method to estimate the joined density function where we discretize the space along every dimension into n bins. This leads to n^{2} bins for a two-dimensional histogram, and n^{d} for a d-dimensional problem. This exponential scaling is a major challenge in practice since we need also considerable data in each bin to sufficiently estimate the probability of each bin.

Fig. 1.2 Example of a two-dimensional probability density function (pdf) and some examples of conditional pdfs.

1.8.2 The chain rule

As mentioned before, if we know the joined distribution of some random variables we can make the most predictions of these variables. However, in practice we have often to estimate these functions, and we can often only estimate conditional density functions. A very useful rule to know is therefore how a joined distribution can be decompose into the product of a conditional and a marginal distribution,

$$
\begin{equation*}
p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x) \tag{1.29}
\end{equation*}
$$

which is sometimes called the chain rule. Note the two different ways in which we can decompose the joined distribution. This is easily generalized to n random variables by

$$
\begin{align*}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =p\left(x_{n} \mid x_{1}, \ldots x_{n-1}\right) p\left(x_{1}, \ldots, x_{n-1}\right) \tag{1.30}\\
& =p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) * \ldots * p\left(x_{2} \mid x_{1}\right) * p\left(x_{1}\right) \tag{1.31}\\
& =\prod_{i=1}^{n} p\left(x_{i} \mid x_{i-1}, \ldots x_{1}\right) \tag{1.32}
\end{align*}
$$

but note that there are also different decompositions possible. We will learn more about this and useful graphical representations in Chapter ??.

Estimations of processes are greatly simplified when random variables are independent. A random variable X is independent of Y if

$$
\begin{equation*}
p(x \mid y)=p(x) \tag{1.33}
\end{equation*}
$$

Using the chain rule eq.1.29, we can write this also as

$$
\begin{equation*}
p(x, y)=p(x) p(y) \tag{1.34}
\end{equation*}
$$

that is, the joined distribution of two independent random variables is the product of their marginal distributions. Similar, we can also define conditional independence. For
example, two random variables X and Y are conditionally independent of random variable Z if

$$
\begin{equation*}
p(x, y \mid z)=p(x \mid z) p(y \mid z) \tag{1.35}
\end{equation*}
$$

Note that total independence does not imply conditionally independence and visa versa, although this might hold true for some specific examples.

1.8.3 How to combine prior knowledge with new evidence: Bayes rule

One of the most common tasks we will encounter in the following is the integration of prior knowledge with new evidence. For example, we could have an estimate of the location of an agent and get new (noisy) sensory data that adds some suggestions for different locations. A similar task is the fusion of data from different sensors. The general question we have to solve is how to weight the different evidence in light of the reliability of this information. Solving this problem is easy in a probabilistic framework and is one of the main reasons that so much progress has been made in probabilistic robotics.

How prior knowledge should be combined with prior knowledge is an important question. Luckily, basically already know how to do it best in a probabilistic sense. Namely, if we divide this chain rule eq. 1.29 by $p(x)$, which is possible as long as $p(x)>0$, we get the identity

$$
\begin{equation*}
p(x \mid y)=\frac{p(y \mid x) p(x)}{p(y)} \tag{1.36}
\end{equation*}
$$

which is called Bayes theorem. This theorem is important because it tells us how to combine a prior knowledge, such as the expected distribution over a random variable such as the state of a system, $p(x)$, with some evidence called the likelihood function $p(y \mid x)$, for example by measuring some sensors reading y when controlling the state, to get the posterior distribution, $p(y \mid x)$ from which the new estimation of state can be derived. The marginal distribution $p(y)$, which does not depend on the state X, is the proper normalization so that the left-hand side is again a probability.

[^0]: ${ }^{1}$ Probabilities are sometimes written as a percentage, but we will stick to the fractional notation.

[^1]: ${ }^{2}$ Note that this is a probability function, not a density function.

