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Abstract— Kohonen’s self-organizing map (SOM) is used to
map high-dimensional data into a low-dimensional representation
(typically a 2-D or 3-D space) while preserving their topological
characteristics. A major reason for its application is to be able
to visualize data while preserving their relation in the high-
dimensional input data space as much as possible. Here, we are
seeking to go further by incorporating semantic meaning in the
low-dimensional representation. In a conventional SOM, the
semantic context of the data, such as class labels, does not have
any influence on the formation of the map. As an abstraction of
neural function, the SOM models bottom-up self-organization but
not feedback modulation which is also ubiquitous in the brain.
In this paper, we demonstrate a hierarchical neural network,
which learns a topographical map that also reflects the semantic
context of the data. Our method combines unsupervised,
bottom-up topographical map formation with top-down super-
vised learning. We discuss the mathematical properties of
the proposed hierarchical neural network and demonstrate its
abilities with empirical experiments.

Index Terms— Context relevance, radial basis function (RBF)
network, self-organizing map (SOM), supervised learning,
topographical maps.

I. INTRODUCTION

THE expanding number of high-dimensional data
sets makes dimensionality reduction techniques

increasingly important. One of the most powerful data reduc-
tion and visualization methods is Kohonen’s self-organizing
map (SOM) [1], [2], which is able to map high-dimensional
data into a low-dimensional map while preserving some
of the data’s topological characteristics. In addition to
the biological importance [3], [4], the reason for such
low-dimensional embedding in technical applications is often
to visualize the data for humans by showing their semantic
relations. For example, in text mining, we might want to find
semantically related articles in a visually driven interface [5].
While closeness—such as measured by Euclidean distance
in feature space—has often some striking correlation to
semantic relations, this is certainly not always the case.
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Our long-term vision is to build models that resemble
brain organization in which a hierarchy of maps, which
are often topographic (at least close to the sensory input),
build up semantic representations on different levels of
abstraction. In this paper, we discuss a new method that
incorporates top-down semantic context into the bottom-up
process of embedding high-dimensional data. We name the
resulting map the context-relevant SOM (CRSOM). Our
map is unique, because it is organized as the internal layer
of a hierarchical supervised neural network that we called
restricted radial basis function (rRBF) network. The map is
organized in the supervised training process of the neural
network during which a bottom-up training signal to preserve
the topographical characteristics of the data is regulated by
a top-down regulatory signal to ensure the relevance of the
data’s context. Interestingly, our derivation of the method
shows that the top-down regulatory signal provides a repelling
force to separate similar data with different contexts. This
has interesting implications on the map formation process.

The proposed CRSOM can be utilized as an alternative
to the conventional SOM. In this paper, we mainly focus
on the utilization of the CRSOM in classification problems.
The basic method was first proposed in [6] and based on our
empirical experiments that indicate strong correlation between
the topographical representation and the learning abilities of
hierarchical neural networks [3], [7]. Here, we expand on the
formalization of the method by specifically discussing the
related energy function and by providing a more thorough
study of its behavior. We also propose a new measure with
which we can quantify the semantic separability of the data.
We show that CRSOM has a better representation of class
context, where data belonging to different classes are separated
with wider margin, while data belonging to the same class are
clustered closely to each other. The later characteristic leads
to sparser code, which also seems to be fundamental in the
brain [8], whereas SOM visualizes the structure of the data
alone, CRSOM visualizes the structure of the problem. This
kind of visualization may give us information not only on the
distribution of the data, but also on the complexity of their
classification. Importantly, as rRBF is trained to minimize a
well-defined energy function, CRSOM is an optimal internal
representation.

II. RELATED TOPICS

Here, some self-organization and dimensionality reduction
mechanisms that share some similarities with the proposed
rRBF and CRSOM models are reviewed.
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The CRSOM shares a similar objective with the
self-organizing semantic maps [9] that is to extend the princi-
ple of the conventional SOM to include semantical expression
in visualizing the underlying properties of high-dimensional
data. The objective is important for higher level information
processing where the relationship between data points is less
obvious from their intrinsic features only. The primary novelty
of the proposed rRBF is that in contrast to the self-organizing
semantic map that treats the semantical expression as an
extension for the data’s intrinsic features; here, the semantical
expression is the output of a higher layer of a hierarchical
network that utilizes the map as its internal representation.
In the rRBF, a semantical expression is more correctly treated
as the abstraction of a data point that should not be mixed with
the intrinsic features. Consequently, the map formation process
in rRBF is also significantly different from that of SOM.

The rRBF network’s structure is similar to the counterprop-
agation network (CPN) [10], [11]. However, the CPN executes
a two-phase training procedure: 1) the hidden layer is
self-organized using the input data independent of their con-
texts and 2) the self-organizing process of the same layer using
the teacher signals. While the idea of CPN for connecting input
and output based on their strongest correlation is intuitive,
there is no explicit energy function to optimize. The proposed
rRBF is different, in that the map is generated as an implication
of a learning process that minimizes the context error in the
output layer; hence, the map is an optimal representation of
the learned context.

Similar to the proposed CRSOM, in the past, various meth-
ods have been proposed to map high-dimensional data into
a low-dimensional space by optimizing a well-defined energy
function while preserving the data’s local characteristics. For
example, the linear locally embedding dimensionality reduc-
tion method [12] preserves the linear relationship of neighbor-
ing data points. Stochastic neighbor embedding (SNE) [13]
and its variant t-SNE [14] are elegant dimensionality
reduction algorithms that map high-dimensional data into
low-dimensional maps while preserving the conditional prob-
ability of their neighbor relation. These algorithms are to
some extent inspired by multidimensional scaling [15] and the
Sammon algorithm [16], which are dimensionality reduction
mechanisms that reflect the distance metric of the given data
into a low-dimensional map. While most of the methods utilize
Euclidean distance as a similarity measure, an interesting map
in [17] utilized geodesic or manifold distance. When these
methods are used to find low-dimensional visualizations of
semantic relations, it is implicitly assumed that semantically
related entities are close in the high-dimensional feature
space. However, this assumption often does not hold, and
the proposed model is hence more general than the topology-
preserving algorithms. In addition, in contrast to the proposed
method, it is not possible in most of the above methods to map
a new input, which is unobserved in the learning process, into
the generated maps.

Conventionally, SOM is a topology preserving mechanism
that is trained in an unsupervised manner. Several proposals
have been made to add supervised training procedures to the
standard SOM. The hypermap [18] was one of the earliest

attempts to combine SOM with a supervised training
mechanism, with the main objective to utilize SOM to visu-
alize high-dimensional data and at the same time to classify
unlabeled data. The hypermap takes labeled training data and
executes a two-phase learning procedure, where in the first
phase, the data are self-organized in an unsupervised manner
as in the conventional SOM, while in the second-phase, the
map is reorganized in a supervised manner. The supervised
phase is executed according to the training mechanism of
learning vector quantization [2], where a reference vector shar-
ing the same label as the input is modified toward the input,
while a reference vector having different labels is repelled
from the input. While the two-phase training mechanism of
the hypermap is intuitive, the generated map is not optimal
because there is no explicit energy function that is optimized
with this heuristic. The proposed rRBF also exerts a repelling
force during its training process, but it is based on a
well-defined energy function, hence the generated map is
optimal. Furthermore, rRBF does not require separate training
phases, as the self-organizing process is regulated by the
top-down supervised learning.

Models of SOM that concatenate labels into input vectors
were also proposed in [19]–[23] as classifiers. In the learning
process of these models, the best matching unit (BMU) is
decided based on the extended input, while in the classification
phase, given an unlabeled input, BMU is decided based only
on the input’s features while the extended components of
the reference vector associated with the BMU are used to
classify the input. While these SOMs incorporated data labels
in their training process, they fundamentally inherited SOMs
characteristic of pulling together similar inputs but not explic-
itly repelling away similar inputs when they have different
contexts. The proposed rRBF offers a more comprehensive
relation between the features and the contexts in which the
contextual error that occurs in the top layer regulates the self-
organization of the input in the bottom layers. The top-down
regularization allows the rRBF to repel similar inputs with
different contexts or to group together dissimilar inputs sharing
the same context. In [24], clustering was executed in the low-
dimensional space of SOM and further used for classifying
unknown data. The semantic context preservation in rRBF
often produces clusters in CRSOM. However, semantic context
preservation in rRBF inherently produces context-relevant
clusters in its topographical map, and hence does not require
an additional clustering mechanism.

Some variants of SOM also incorporate information that
are not embedded in the input vectors. For example, SOM for
structured data (SOM-SD) [25] was introduced to visualize
graph-structured data. GraphSOM [26] is an extension of
SOM-SD that further allows the inclusion of the contextual
information in a directed graph. It should be noted that
context in this paper has a different meaning from that of
the previous studies above. While in the previous studies,
context refers to the graphical relational structure of the data;
in this paper, we consider semantic interpretation of the data
as the context, which can be independent of their structure.
For example, different labels can be attached to the same
data set.
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Real-world data often have temporal context, which cannot
be directly visualized with the original SOM. A rich collection
of SOM models that attempt to visualize temporal context in
low-dimensional maps have been proposed. Temporal
Kohonen map [27] and its variant recurrent SOM [28] capture
temporal information of the input vector by utilizing leaky
integrator activation functions. Thus, in contrast to the original
SOM, in these models, the activity of a neuron in the map
depends not only on the current input but also on previous
inputs whose influence decays with time. Self-organizing time
map [29]–[31] is a 2-D SOM where a particular row of neurons
in the map is a 1-D projection of a multidimensional input at a
particular time, and adjacent rows receive inputs from adjacent
time steps. Merge SOM [32] merges the weight vectors with
a designated context descriptor—the weighted sum of the
past BMUs’ weight vectors—to characterize a neuron in the
map. While in the previous study, the primary objective is
the visualization of high-dimensional data in the context of
their dynamics, the proposed rRBF visualizes the data in the
perspective of semantical context that can be considered as the
higher level abstraction to describe the data.

There were also variants of SOM, which build topographical
maps based not solely on the similarities of the data. For exam-
ple, Visualization-Induced Self-Organizing Map [33] com-
bines topographical preservation with local distance preserva-
tion of the data, while the SOM model in [34] exerts a repelling
force so that the distances between the data in their original
high-dimensional space are more accurately preserved. While
the rRBF also generates a nonconventional SOM, it is unique
in that the self-organization process is influenced by the
semantic context of the data and optimizes a well-defined
energy function.

The rRBF is also unique in that during its regulated
bottom-up self-organizing process, the repelling force acts as
an inhibitory signal for some hidden neurons. This is because
the activations for those neurons decrease when they are
repelled. This inhibition results in sparser hidden represen-
tations compared with the conventional SOM. Although the
inhibition in rRBF is fundamentally different from that of
Willshaw–von der Malsburg SOM model [35], it is interesting
that rRBF, through repelling force, inhibits neurons to produce
sparser maps.

The multilayered perceptron [36] can also be used to map
high-dimensional data into a lower dimension in its hidden
layer. However, it does not generate a topographical structure
of the problem. For example, there is no mechanism to prevent
two similar inputs belonging to the same class from being
mapped into two distant points, so long as the weighted
value into the output neurons are identical. The topological
restriction in the activation in the hidden neurons in the rRBF
generates visualizable structures.

III. RESTRICTED RADIAL BASIS FUNCTION NETWORK

A. Learning-Regulated Topographical Map

The proposed rRBF network shown in Fig. 1 is based on
the conventional RBF network [37], [38]. It is a three-layered
network where the neurons in the hidden layers are aligned in

Fig. 1. rRBF network that includes a self-organizing representational layer
and an output layer that performs classification. Self-organization, which is
commonly considered a purely bottom-up process, is regulated by a top-down
teacher signal.

a 2-D grid like SOM. Receiving input vector X (t) at time t ,
rRBF selects a winning neuron to win among all the hidden
neurons according to

win = arg min
j

∥X (t) − W j (t)∥2 (1)

in which W j is a prototype vector associated with the j th
hidden neuron. Once the winner is decided, the output of the
i th hidden neuron can be calculated as

Oh
i (t) = e−I h

i (t)σ (win, i, t)

I h
i (t) = ∥X (t) − Wi (t)∥2. (2)

The function σ (win, i, t) is a neighborhood functions
defined

σ (win, i, t) = e− dist(win,i)
s(t)

s(t) = s0

(
send

s0

) t
tend

. (3)

In (3), dist(win, i) is the distance between the winner neuron
and the i th neuron in the hidden layer. Parameters s0 and send
are the neighborhood sizes at the beginning and end of the
learning process, respectively, and tend represents the number
of training iterations. They are empirically set to s0 = 200,
send = 0.01, and tend = 30 000. Thus, the neighborhood is
large to begin with such that all nodes are integrated into the
map, and then decreases in size to allow the nodes to increase
their specificity. For the experiments, we chose a parameter
set that produced relatively good MSE for all the problems,
though not necessarily optimal for any given problem. Once
chosen, the parameters were then fixed for all the experiments.

From (2), the output of the hidden neuron is topologically
restricted by the neighborhood function, hence we used the
term restricted to name the network. The outputs from the
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hidden neurons are then propagated to the output layer, so
that the output of the kth output layer can be calculated as

Ok(t) = f (Ik(t)) (4)

Ik(t) =
∑

i

vik(t)Oh
i (t) − θk(t)

f (x) = 1
1 + e−x . (5)

The parameter vik is the weight connecting the i th hidden
neuron and the kth output neuron, θk is the bias of the kth
neuron, while f is a sigmoid function.

Because rRBF is a supervised-training network, once the
output is defined, we can then calculate the energy function as

E(t) = 1
2

∑

k

(Ok(t) − Tk(t))2 (6)

where Tk(t) is the kth component of the teacher signal that
represents the ideal context of the input at time t . As in the
backpropagation algorithm [36], the learning process modifies
the connection weight with a gradient-descent rule

vik(t + 1) = vik(t) − η1
∂ E(t)
∂vik(t)

. (7)

Here, η1 is the learning rate for the connection weights
leading to the output layer, and adopting the delta rule [36]
yields the following:

vik(t + 1) = vik(t) − η1δk(t)Oh
i (t)

δk(t) = (Ok(t) − Tk(t))Ok (t)(1 − Ok(t)). (8)

The modification of the bias is as follows:

θk(t + 1) = θk(t) − η1
∂ E(t)
∂θk(t)

= θk(t) + η1δk(t). (9)

Similarly, the prototype vector of the i th hidden neuron is
modified as

Wi (t + 1) = Wi (t) − η2
∂ E(t)
∂Wi (t)

(10)

in which η2 is the learning rate for the prototype vector
modification. The modification of connection weight from
the j th input neuron to the i th hidden neuron, wi j , can be
calculated

∂ E
∂wi j

=
∑

k

∂ E
∂Ok

∂Ok

∂ Ik

∂ Ik

∂wi j

=
∑

k

∂ E
∂Ok

∂Ok

∂ Ik

∂ Ik

∂Oh
i

∂Oh
i

∂wi j

= e−I h
i

( ∑

k

δkvik

)
σ (win, i, t)(x j − wi j ). (11)

If we define δh
i (t) as

δh
i (t) = −e−I h

i (t)
( ∑

k

δk(t)vik(t)
)

(12)

the modification of the code vector associated with the
i th hidden neuron, Wi , becomes

Wi (t + 1) = Wi (t) + η2δ
h
i (t)σ (win, i, t)(X (t)−Wi (t)). (13)

The prototype vector modification in (13) is similar to the
weight modification in a standard SOM algorithm except that
in SOM, it is always corrected in the direction of input vec-
tor X . The modification in regular SOM can be achieved with
δh

i (t) = 1 in (13). In this paper, the sign of δh
i (t) is decided

by the value of
∑

k δkvik. It is obvious that the formation
process of CRSOM differs from the conventional SOM, in that
when δh

i (t) > 0, the prototype vectors are modified toward
the input vector, while when δh

i (t) < 0 they are repelled
from the input. Thus, δh

i (t) acts as a regulatory signal to the
modification of the prototype vectors. Because the value of
δh

i (t) is defined by the error from the supervised layer that tries
to learn the context of the data in the output layer, this signal
regulates the map formation process to reflect the context
of the data. Thus, only prototype vectors that contribute to
the decrease of the energy function are reinforced by being
moved toward the input, while prototype vectors that are not
contributing to the minimization of the energy function will
be repelled from the input. The repelling is a kind of penalty,
especially to the winning neurons that are not contributing to
the learning process, because by being repelled their competi-
tiveness of being chosen as the winning neurons decreases.
Gradually, there will be fewer neurons that are chosen as
winners, resulting in more efficient usage of hidden neurons.
The conventional SOM implicitly repels an input vector from
the neurons associated with dissimilar references vectors by
selecting a winner with more similar vector. The repelling
mechanism is more explicit in rRBF, in that an input vector can
be repelled from the winner according to the feedback from the
output layer.

B. Semantic Relevance Index

Here, semantic relevance index (SRI) to quantify the
ability of CRSOM to preserve the semantic relevance of
the data in a low-dimensional space is introduced. In this
paper, the focus is on classification problems, thus the
semantic relevance of a data point is its class label. The
SRI is the ratio between the interclass index that mea-
sures how well the CRSOM separates data belonging to
different classes and the intraclass index that measures how
well the CRSOM binds data belonging to the same class
label together. The interclass index, Iclass, is calculated as
follows:

Iclass = 1
N(M − 1)

N∑

i=1

∑

j ̸=C(Xi)

∥H (Xi) − H (minout(Xi, j))∥.

(14)

Here, H (Xi) is the coordinate of the winning neuron in the
map and minout(Xi , j) is the nearest data point to Xi in their
original high-dimensional space, belonging to class j. C(Xi )
is the class label of data point Xi . N and M are the number
of the data points and the number of classes, respectively. The
intraclass index, Oclass, is calculated as

Oclass = 1
N

N∑

i=1

∥H (Xi) − H (maxin(Xi ))∥. (15)
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Here, maxin(Xi ) denotes the data point belonging to
C(Xi ) having the largest distance from Xi in their
original high-dimensional space. The SRI is then defined as

SRI = Oclass

Iclass
. (16)

A semantic preserving map generates a large value of Oclass,
because data points belonging to different classes are repelled
from each other, while at the same time generates a small
value of Iclass because data belonging to the same class are
pulled toward each other. SRI gives a quantitative measure of
the topographical map’s semantic sharpness independent from
the size of the map.

C. Generalized SOM

The unsupervised training process of a regular SOM is
based on an heuristic prototype vector modification rule that
minimizes the difference between the input vector and the
winning neuron and its neighbors, and there is no known
global energy function for this learning process. Unlike the
conventional SOM, CRSOM is organized based on an explicit
energy function, as defined in (6). If the proposed rRBF can
be trained to generate conventional SOM, we can argue that
CRSOM is a generalized SOM. To generate SOM with rRBF,
the teacher signal for the energy function in (6) needs to be
defined. For deciding the teacher signal that will produce SOM
with rRBF, we can assume the activation of the hidden layer
will be sparse. This is because the activation function of the
hidden neurons, defined in (2), ensures that only neurons in the
vicinity of the winner are relevant to the learning process.
We can then uniquely generate a teacher signal that will
produce an SOM if we assume that the number of the hidden
neurons that significantly contribute to the learning process
is K, the same number as the output neurons. While this
may be a strong assumption in the beginning of the learning
process, it is mostly true after some learning iterations. It is
sufficient that we design a teacher signal so that δh in (13)
is 1. Hence

δh
i = −Oh

i

∑

k

vikδk = 1

i ∈ NK . (17)

In the above equation, NK is the set of the winner neuron
and its nearest K − 1 neighbors, while δk is the error signal
from the kth output neuron, as defined in (8). Defining

D =

⎛

⎜⎜⎜⎝

O1(1 − O1) 0 . . . 0
0 O2(1 − O2) . . . 0
...

...
. . .

...
0 0 . . . OK (1 − OK )

⎞

⎟⎟⎟⎠

V =

⎛

⎜⎜⎜⎜⎝

vn
11 vn

12 . . . vn
1K

vn
21 vn

22 . . . vn
2K

...
...

. . .
...

vn
K 1 vn

K 2 . . . vn
K K

⎞

⎟⎟⎟⎟⎠

and

W N = V D (18)

where vn
i j is the connection weight leading from the i th neuron

in the neighborhood set, Nk , into the j th output neuron,
and considering only neurons in NK , (17) can be written as
follows:

W N

⎛

⎜⎜⎜⎝

T1
T2
...

TK

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

1
Oh

n1
1

Oh
n2
...
1

Oh
nk

⎞

⎟⎟⎟⎟⎟⎟⎠
+ W N

⎛

⎜⎜⎜⎝

O1
O2
...

Ok

⎞

⎟⎟⎟⎠
. (19)

Here, ni ∈ Nk . Hence

⎛

⎜⎜⎜⎝

T1
T2
...

TNo

⎞

⎟⎟⎟⎠
= W−1

n

⎛

⎜⎜⎜⎜⎜⎜⎝

1
Oh

N1
1

Oh
N2
...
1

Oh
Nk

⎞

⎟⎟⎟⎟⎟⎟⎠
+

⎛

⎜⎜⎜⎜⎝

O1

O2
...

Ok

⎞

⎟⎟⎟⎟⎠
. (20)

Equation (20) shows the teacher signal that guarantee
δh

i = 1, i ∈ Nk , and thus generating conventional SOM
in the hidden layer of rRBF. Unlike the conventional SOM,
the rRBF-generated SOM has an explicit energy function, at
least for the neurons neighboring the winner. Equation (19)
shows that the generated teacher signal causes the same
modification as SOM for the prototype vector associated with
the neighborhood neurons. However, it is easy to increase the
number of output neurons so that it equals the number of
hidden neurons. Hence, SOM is a special case of CRSOM,
with floating teacher signals that change according to the
output and weights of the hidden layer.

D. Computational Scalability

One of the reasons for SOMs popularity is its computational
scalability with regard to the increase in data and map sizes.
Here, it is shown that rRBF inherits SOMs computational
scalability. Let LSOM be the calculation time needed to update
all the reference vectors in an SOM, d1 be the dimension of
the input vector, and M be the number of neurons in that
SOM. Naturally

LSOM ∝ Md1. (21)

For rRBF, let LrRBF be the calculating time needed to update
all the reference vectors, the connection weights between the
hidden and the output layers and the biases of the output
neurons, and d2 be the number of the output neurons, hence

LrRBF ∝ Md1 + Md2 + d2. (22)

Hence
LrRBF

LSOM
= 1 + d2

d1
+ d2

Md1
. (23)

Because it is natural that Md1 ≫ d2 and d2 ≤ d1

LrRBF

LSOM
≈ 1 + d2

d1
≤ 2. (24)

Equation (24) shows that the computational time for training
rRBF is at most twice that of SOM, hence rRBF inherits the
computational scalability of SOM.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Wine classification. Left: CRSOM(SRI = 32.76). Right: SOM(SRI = 1.23).

Fig. 3. Iris classification. Left: CRSOM(SRI = 5.47). Right: SOM(SRI = 0.57).

IV. EXPERIMENTS

In the experiments, we tested the proposed rRBF to create
CRSOM for a number of benchmark problems taken from UCI
machine learning repository [40]. For result comparisons, in
each experiment, the size of the map is set to ⌊

√
N⌋×⌊

√
N⌋,

where N is the size of the data.

A. Labeled Data

Fig. 2 shows the topographical maps for Wine classification,
which is a 13-D three-class classification problem. In these
maps, neurons that were selected as the winners for the
inputs belonging to the respective class are illustrated with
three different shapes (!, ⃝, and ♦). The size of these shapes
corresponds to their winning frequencies. Fig. 2 (left) shows
the CRSOM for this problem, while Fig. 2 (right) shows the
conventional SOM for this problem, where × is a neuron that
is chosen as a winner by multiple inputs from different classes.
A high SRI value for CRSOM clearly indicates that there are
distinct clusters of classes. Here, it is obvious that in their
current semantic context (three class labels), this classification
problem can be nicely separated into three clusters. While
from the conventional SOM shown in Fig. 2 (right), the topo-
graphical information of the data can be extracted, CRSOM
in Fig. 2 (left) offers information about the separability of the
problem. The large empty space in CRSOM is the implication
of the repelling force during the learning process. A winner
that is repelled from a particular input vector will become less
sensitive to the same input and eventually will lose to other
neuron, leaving it empty, thus creating large margins between
the clusters.

Fig. 3 shows two topographical maps for Iris classification,
a 4-D three-class problem. It is well known that in this
problem, one of the classes is linearly separable from the other
two, while those two are not. Given the natural semantic of this
problem, CRSOM in Fig. 3 (left) nicely captures the
well-known characteristics of this problem, in which the class
represented by ⃝ clearly forms a cluster that is separable
from the other two, while the separability of those two are
less obvious. The SOM in Fig. 3 (right) also visualizes the
topological characteristics of the data, where each class forms
a tight cluster, but fails to visualize the semantic relation. The
difference in semantic context preserving abilities between
CRSOM and SOM is also quantitatively represented by the
difference in their SRI values.

Fig. 4 (left) shows the CRSOM for thyroid classification
problem, two of the classes (! and ⃝) are, respectively,
represented by more than one clusters. This figure actually
captures the balancing mechanism between keeping the orig-
inal topological characteristics of the data and reflecting their
semantic contexts in the low-dimensional map. In this case,
CRSOM did not exert enough force to bring together the
three groups of !s to create one large cluster because of the
repelling forces from the nearby neurons. The conventional
SOM for this problem is shown in Fig. 4 (right).

The first three examples have shown the visualization
performance of CRSOM against relatively easy classification
problems. The next examples show the internal visualization
of more challenging problems.

Fig. 5 (left) shows that the CRSOM for Pima classifi-
cation problem did not form solid clusters for each of the
two classes, which is also quantified by its low SRI value.
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Fig. 4. Thyroid classification. Left: CRSOM(SRI = 11.08). Right: SOM(SRI = 0.44).

Fig. 5. Pima classification. Left: CRSOM(SRI = 0.85). Right: SOM(SRI = 0.055).

Fig. 6. Bupa classification. Left: CRSOM(SRI = 0.81). Right: SOM(SRI = 0.070).

Fig. 7. Balance classification. Left: CRSOM(SRI = 0.71). Right: SOM(SRI = 0.21).

Hence, there are multiple borders between the two clusters,
which strongly indicate that this is a nonlinear classification
problem. The conventional SOM for the same problem is
shown in Fig. 5 (right) where the borders between the two
classes are less obvious.

The next problem, Bupa classification, for which the
CRSOM is shown in Fig. 6 (left), is similar to the previous
one in that the two classes did not form two solid clusters

but many smaller clusters bordering each other. There are
also more × neurons, which indicates some misclassified
data. The conventional SOM for the same problem is shown
in Fig. 6 (right) where no distinctive cluster can be
observed.

The final example is the balance classification problem,
a three-class problem, with a very few examples for
one of the classes. In CRSOM in Fig. 7 (left), the
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Fig. 8. Learning curves with random representations, with SOM and CRSOM representations. The curves include example error bars depicting standard
deviation.

under-represented class is shown by !, and the two classes
formed a number of relatively large clusters. Many ×
indicate that this is a relatively difficult classification
problem.

Figs. 2–7 are shown to illustrate the difference in visualizing
the structure of the respective problem. Hence, training data
from each problem were used to build those maps.

Fig. 8 shows the learning curves of rRBF for the six clas-
sification problems. The learning process of rRBF, depicted
as CRSOM, is compared with two learning algorithms, one
with δh

i (t) in (13) fixed to 1 thus generating the conventional

SOM in its hidden layer, shown as SOM, and the other with
η2 = 0 thus having a random hidden representation, shown as
random, where the maps are shown in Fig. 9. Fig. 8 shows
that rRBF, with CRSOM as its internal representation, learns
more effectively than the other two networks, especially in the
last three problems where its internal representation appears
more organized than SOMs. The error bars in Fig. 10 shows
the mean of the classification over 10 random initializations
of the networks’ connection weights, where it can be observed
that CRSOM outperforms the other two networks in its
classification ability.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HARTONO et al.: LEARNING-REGULATED CONTEXT RELEVANT TOPOGRAPHICAL MAP 9

Fig. 9. Maps for the different problems with random initial condition when the learning rate of the self-organizing layer is set to zero. The results are
therefore random maps from which the perceptron has to work. (a) Wine. (b) Iris. (c) Thyroid. (d) Pima. (e) Bupa. (f) Balance.

Fig. 10. Mean classification error and standard deviation over 10 runs with
random initializations.

TABLE I

MEAN SRI

In this paper, the main objective is to show the superiority of
CRSOM in preserving the semantic context of the data, which
we qualitatively evaluate using SRI defined in (16). Table I
shows the mean SRIs of random map, CRSOM, and SOM. For
all the classification problems, CRSOM consistently outper-
forms SOM in SRI, which indicates that the learning process
of rRBF generates a low-dimensional map that balances the
topological preservation of the data with the consideration of
their semantic context. The context-preserving characteristic
of CRSOM gives us an alternative to the conventional SOM,
in that now we are able to visualize semantic context-relevant
high-dimensional data.

We also empirically analyze the sensitivity of the learning
process with regards to the change of the learning
hyperparameters. Here, because our focus is on the visual-
ization characteristics of CRSOM, we analyze the effect of
the bottom-up learning rate η2. Fig. 11 and Fig. 12 shows
the effect on the formation of CRSOM of varying η2 between
0 and 0.1 while η1 is fixed. Fig. 11(a) shows the CRSOM
in the case of η2 = 0, where no bottom-up learning occurs.
Along with the change in visual appearance of the CRSOM,
it is also interesting to observe the change in SRI value. It
can be observed that there is no significant change in the
appearance of the CRSOM and SRI value, when the value
of η2 is between 0.01 and 0.02. From this experiment, we
learned that the formation of CRSOM is to some extent
sensitive to the learning rate, η2, such that there is a critical
value, which has to be empirically set to generate CRSOM
with a large SRI value. However, our experiments with various
problems, and thus various map sizes, indicates that once the
appropriate η2 is found, it can be used in a wide range of
problems.

B. Visualizing Robot’s Internal Model

In the next experiment, the rRBF was tested against
real-world data acquired from a robotic experiment shown
in Fig. 13. In this experiment, a small robot, e-puck [39], with
eight proximity sensors ran in an environment with several
obstacles. The robot was trained to classify its current situation
as safe when it is located free from obstacles, or dangerous
when it was close to some obstacles. In this case, the inputs
to the rRBF were the sensor values and the outputs were their
context of safe or dangerous. Thus, the generated CRSOM
corresponds to visualization of the internal concept of safe
and dangerous for this robot.

The maps formed by the robot during interacting in this
environment are shown on the right side of Fig. 13, the
CRSOM results are on the top, while the SOM results are



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 11. Bottom-up learning sensitivity for Wine data. The maps with an increasing bottom-up learning rate are shown. Notice that there is an optimal
learning rate with respect to the SRI. (a) η2 = 0, SRI = 0.8. (b) η2 = 0.001, SRI = 5.04. (c) η2 = 0.005, SRI = 30.8. (d) η2 = 0.01, SRI = 42.2.
(e) η2 = 0.015, SRI = 32.8. (f) η2 = 0.02, SRI = 25.7. (g) η2 = 0.05, SRI = 7.96. (h) η2 = 0.1, SRI = 5.13.

Fig. 12. Bottom-up learning sensitivity for Pima data. The maps with an increasing bottom-up learning rate are shown. There is an optimal intermediate
learning rate with respect to the SRI. (a) η2 = 0, SRI = 0.63. (b) η2 = 0.001, SRI = 0.78. (c) η2 = 0.05, SRI = 0.95. (d) η2 = 0.01, SRI = 1.2.
(e) η2 = 0.015, SRI = 1.2. (f) η2 = 0.02, SRI = 1.1. (g) η2 = 0.05, SRI = 0.83. (h) η2 = 0.1, SRI = 0.82.

Fig. 13. Robot experiment. Left: setup of the robot learning example with an
e-puck in an enclosed area that includes three obstacles. Right: maps formed
from experience with CRSOM (top) and SOM (bottom).

on the bottom. The neurons that react for the safe and danger-
ous situations have thereby different symbols and shadings.
It is obvious that CRSOM shows a more complex structure

than SOM, in which the concepts of safety and danger
are not bound as single cluster but distributed as pocket
of clusters bordering each other. This structure is intuitive,
because dangerous situations in the environment can usually
be turned into safe ones with a number of maneuvers of the
robot.

C. Autoencoder

We also tested the proposed rRBF against problems with
different contexts. In the next experiments, rRBF was trained
using the same six problems not to classify the input but
to generate an autoencoder [41], in that the rRBF has to
reconstruct a given input in its output layer. Hence, the
internal layer is a kind of abstraction of the high-dimensional
input space. The CRSOM for the six problems are shown
in Fig. 14. Clearly, the CRSOMs with autoencoder context
differ from the respective CRSOM with label context on all
the problems. For these six CRSOMs, although the classes
of the input did not have any influence on the formation of
the map, for the purpose of clarity, each neuron is illustrated
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Fig. 14. CRSOM for autoencoder. (a) Wine. (b) Iris. (c) Thyroid. (d) Pima. (e) Bupa. (f) Balance.

with a different shape as before. The difference between
CRSOM with the same input but different contexts con-
firms that rRBF is able to build context relevant topographic
maps.

V. CONCLUSION

In this paper, we first explained the learning properties of
rRBF where the mathematical derivation shows that rRBF
organized high-dimensional data differently from the conven-
tional SOM. The empirical experiments support our arguments
that, unlike SOM which self-organized high-dimensional data
based on their topological properties regardless of their seman-
tic context, CRSOM incorporates the semantic context in
its top-down regulated self-organization process. As different
semantic contexts can be attached to the same data based on
free interpretation, CRSOM offers visualization not of the
data but of the problem, which is fundamentally different
from SOM and other similarity-based dimension reduction
techniques.

Our long-term objective is to develop a network model that
resembles brain organization and is based on layered maps
that represent hierarchical concepts. Hence, the immediate
future topic is to expand the rRBF into a deep structured
network [42], [43], and investigate how a multilayered rRBF
forms a set of CRSOMs. It is also of interest to observe the
evolution of the map over the learning process, as this can
give insights into the formation of internal concepts inside
a classifier. It is also interesting to observe the change of
internal representation of a classifier during concept drifting
in nonstationary problems [44]. In this paper, we only imple-
mented rRBF with one hidden layer; however, it is easy to
extend the number of hidden layers. Although in this paper,
the main focus was the context-preserving visualization of
high-dimensional data, in the next study, the generalization
performance of the rRBF, as a classifier, will be investigated.
The sparsity in the internal representation of rRBF may cause
overfitting, hence modifications to the learning rule, including
mapping and learning parameters, need to be considered.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

The proposed rRBF can also potentially be applied for semisu-
pervised training [45], since once rRBF is partially trained, it
is easy to map unlabeled data into its internal layer, and utilize
CRSOM to generate the labels for the data before executing
the supervised learning.
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