
2 Practical ML programming with
Python

This chapter is a brief introduction to scientific programming with the Python pro-
gramming environment and more specific examples of using ML libraries. The basic
idea behind this chapter is to jump right away into some examples. So we will inten-
tionally only cover some essential basics to keep us going. We will continue to refine
programming issues throughout the course and will talk about the science behind the
algorithms later.

2.1 General scientific programming in Python

2.1.1 Resources and installation

Python is a high level programming language that gains increasing popularity in the
machine learning community (Matlab has been dominating before). We assume some
familiarity with programming concepts and concentrate on the specific environment
and supporting libraries for this class. A comprehensive documentation and tutorials
are available at https://www.python.org. Some good resources for scientific computing
with Python are:

• numpy-useful for itsN-dimensional array objects
http://www.numpy.org/

• matplotlib- 2D plotting library producing publication quality figures
http://matplotlib.org/

• scikit-learn - collection of machine learning functions and tools
http://scikit-learn.org/stable/

The heart of numpy is support for specific data types, in particular for N-dimensional
arrays on which most of our code will be based. Together with scipy, which contains
useful scientific routines, and plotting packages such as Matplotlib, this defines a
useful scientific high-level numerical programming environment similar to Matlab
and R. The main reason to use Python is that it is freely available and that it also
provides a good base language for packages such as tensorflow which we will be using
for deep learning. There are a variety of good documentations on the associated web
pages. We will be using the Ubuntu operating system with Python 3 and supporting
programs. An image with these components is provided so that you can install this on
your own computer or use computers in our faculty. Please see the helps desk for any
problems with the installation.
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2.1.2 The Spyder programming environment

We will be using a programming environment called Spyder that provides a graphical
user interface to basic tools such as an editor and an python interpreter. Start Spyder
and you should see the programing environment similar to the one shown in Figure
2.1. On the left is a editor window in which we can write the program. On the right is
the console that executes and interpreted the code.

Fig. 2.1 The Spyder programming environment for Python.

2.1.3 Main programming constructs

The following lines of course are intended to show the syntax of the basic program-
ming constructs that we need in this course. We will be using Python as a scientific
programming language, and we will always import the pylab library that includes a lot
of useful functions.

from p y l a b import ⇤

Next we consider the basic data types that we are using. We are mainly concerned
here with numerical data of which a scalar is the simplest example,

# b a s i c da ta t y p e s

s c a l a r =4
p r i n t ( s c a l a r )

Note that we can include comment lines with the hashtag symbol. We also included a
print function that will report the value of the variable scalar that we defined here.
Note that the type of the variables are dynamically assigned in python.

Most of the time we need to work on a large collection of data so that we need a
contract to access the data collection. For we use some form of lists. There are slightly
different concepts of such constructs in python. The basic one dimensional list if given
by enclosing a semicolon-separated list in square brackets such as
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l i s t = [ 1 , 2 , 3 ]

However, basically need to perform well defined mathematical operations with these
list, which makes these one dimensional list formally a vector. The basic data structure
for a collection of data is usually called an array in computer science. Thus, the
mathematical concept of a vector is a one-dimensional array with some operations
defined to it. To confuse this matter a bit more, we will use the numpy constrict of
an array to implement a vector. bumpy is a collection of numerical functions that is
included in pylab. The bumpy function array() turns a Python list into a vector,

v e c t o r = a r r a y ( [ 1 , 2 , 3 ] )
p r i n t ( v e c t o r )
p r i n t ( v e c t o r [ 1 ] ; v e c t o r [ �1])

As shown in the last line, we can access an element of the array with indices in square
brackets, and the first element in an array has the index 0. The index -1 accesses the
last element in the vector.

Of course, we can generalize such data collections to higher dimension arrange-
ments. For example, a two dimensional array with the appropriate definition of math-
ematical operations is called a matrix and can be defined and accessed in python
like

m a t r i x = a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ] )
p r i n t ( m a t r i x )
p r i n t ( m a t r i x [ 1 ] [ 2 ] )

Corresponding mathematical constructs in higher dimensions are called a tensor that
we will talk about later. Some element-wise operations on matrices are

m a t r i x 2 = a r r a y ( [ [ 5 , 5 , 6 ] , [ 7 , 8 , 9 ] ] )
r e s u l t 2 = m a t r i x ⇤ m a t r i x 2 # e lemen t�wise

r e s u l t 3 = m a t r i x ⇤⇤3 # e lemen t�wise e x p o n e n t i a t i o n :

r e s u l t 4 = m a t r i x >3 # f i n d t h e i n d i c e s where ( m a t r i x > 3)

A basic matrix multiplication, also called a dot product, is implemented as function
dot(a,b) and in Python 3 also as operator @,

r e s u l t 5 = m a t r i x @ m a t r i x 2 . T
p r i n t ( r e s u l t 2 , r e s u l t 3 , r e s u l t 4 , r e s u l t 5 )

So far we have discussed the basic data types that we need. Besides these numerical
data ties there are of course others such as logical or characters. Please consult Python
documentation for these data types when needed. We now mention three more basic
programming constructs, that of loops, logical statements, and functions.

To loop through some code one can use the following construct,

f o r i in range ( 4 ) :
p r i n t ( i )

which starts at i=0 and goes in steps of one until i=3. Note that Python is sensitive to
the code position; the indented code represents the block of statements executed inside
the loop.

A conditional statement takes the form
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i f s c a l a r <1:
p r i n t ( " t r u e " )

e l s e :
p r i n t ( " f a l s e " )

Again note the indentation to specify the block of code for each condition.
To structure code better, specifically to define program constructs that can be

reused, we have the option to define functions like

def f unc ( arg1 , a rg2 = 1 0 ) :
a r g = a rg 1 + a rg 2
re turn a r g ;

Variables are passed by reference.
One final example of basic programming we need is that of plotting graphs. Plotting

graphs is a useful scientific tool, and an example of a basic line plot can is given in the
following code.

# p l o t t i n g

x= a r a n g e ( 1 0 0 ) #same as a r r a y ( range ( 1 0 ) )

y= s i n ( 0 . 1 ⇤ x )
p l o t ( x , y )

When you summit plots in an assignment or paper, you always need axis labels to
know what is plotted. This can be done with

x l a b e l ( " x " )
y l a b e l ( " y " )

2.2 Further useful functions

import t ime
t i c = t ime . c l o c k ( )
t o c = t ime . c l o c k ( )
t o c � t i c

ones, zeros, size, ndim, shape, nonzero, reshape, shape, max, min, mean, std, sum,
sqrt, exp, floor, ceil, single, int, rand, randn, seed, savefig, savetxt, csv, ...

show multiple plots, barplots, scatter plot,...)

2.3 Cross validation example from Intro

To practice Python programming and to deepen our understanding of cross validation,
we will now review the program that was used to produce the linear model with cross
validation of the example.

In the code below we start by generating the training set consisting of 4 data points
that are derived from a line y = 2x+ 3 with added Gaussian noise,

from p y l a b import ⇤
# t r a i n i n g s e t
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n=4
x= a r r a y ( range ( 4 ) ) ; y=2⇤x+3+ randn ( n )
p l o t ( x , y , ’⇤ ’ )

For the learning tasks we chose a linear model ŷ = ax + b, see it as a wise choice,
with two parameters, the slope a the the intercept b. Our task is now to determine the
values for these parameters from the data. Since we have only two unknown we only
need two data point to determine, so let us choose the first two,

# one example

a =( y [1]�y [ 0 ] ) / ( x [1]�x [ 0 ] )
b=y [0]� a⇤x [ 0 ]
y h a t =a⇤x+b
p l o t ( x , yha t , ’b��’ )
y t r u e =2⇤x+3
p l o t ( x , y t r u e , ’g�’ )

We plotted here this specific solution in black and well as the best possible solution
in green which we know as we know what the parameters were that have been used
to generate the data and also since the Gaussian noise is unbiased (symmetric around
zero)

Of course, this solution is only one possible solution since we could have used any
other pair to determine the parameters. Indeed, we should try out all and use all the
remaining points to see how good one specific solution will predict the reminder. This
is exactly the essence of cross validation.

To determine all the possible combination we use a preferred function from the
itertools collection,

# c r o s s v a l i d a t i o n

import i t e r t o o l s
c = l i s t ( i t e r t o o l s . c o m b i n a t i o n s ( x , 2 ) )

The list c contains now all possible pairs. We then loop over all the pairs and determine
the parameters for each choice, and also calculate the error for predicting the other
data points not used in the determination of the parameters,

# t r y o u t a l l p o s s i b l e p a i r s

e r r o r = [ ]
f o r i in range ( l e n ( c ) ) :

# t r a i n f o l d

k=c [ i ] [ 0 ]
l =c [ i ] [ 1 ]
a =( y [ l ]�y [ k ] ) / ( x [ l ]�x [ k ] )
b=y [ k]�a⇤x [ k ]

e r =0
f o r j in range ( n ) :

i f j != k and j != l :
e r = e r +( y [ j ]�a⇤x [ j ]�b )⇤⇤2

e r r o r . e x t e n d ( [ e r ] )
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This ends the loop. We then take the pair with the minimal cross validation error as
our final answer,

# s e a r c h f o r b e s t p a i r w i t h s m a l l e s t c r o s s v a l i d a t i o n e r r o r

i = e r r o r . i n d e x ( min ( e r r o r ) )
k=c [ i ] [ 0 ]
l =c [ i ] [ 1 ]
#and use t h i s as answer

a =( y [ l ]�y [ k ] ) / ( x [ l ]�x [ k ] )
b=y [ k]�a⇤x [ k ]
y h a t =a⇤x+b
p l o t ( x , yha t , ’ r��’ )

2.4 Classification with support vector machine using
scikit-learn

We will now show an explicit example of classification using a support vector machine
from the scikit-learn collection of machine learning methods at http://scikit-learn.org/.
This library started as a Google Summer of Code project by David Cournapeau and
developed into an open source library. We will later have a look of what kind of
algorithms are implemented, but for now we are just using one of the methods for
classification called support vector machine. The SVM in scikit-learn is actually a
wrapper to the very popular SVMLIB implementation by Chih-Chung Chang and
Chih-Jen Lin. We will go through the code here with some explanations.

We begin as usual by importing libraries we need and to create the training set.

from p y l a b import ⇤
from s k l e a r n import svm

# t r a i n i n g

n=100
x1= a r r a y ( [ r andn ( n )+ 1 , r andn ( n ) + 1 ] ) ; y1= z e r o s ( n )
x2= a r r a y ( [ r andn ( n )+ 3 , r andn ( n ) + 3 ] ) ; y2= z e r o s ( n )+1
x = h s t a c k ( ( x1 , x2 ) ) . T
y = h s t a c k ( ( y1 , y2 ) )

In real world application the data set is of course usually supplied by a third party often
through a data file. Here we simulate an example that consists of two 2-dimensional
Gaussian classes each with a unit covariance matrix and different means. The mean of
the first class is µ

1

= (1, 1) and the second class has µ
2

= (3, 3). The distributions of
these two classes are shown in Fig. 2.2.

We now define a classifier model. We are using a Support Vector Classifier, as
specific support vector machine for classification, with two parameters that we will
discuss only later, namely we are using a linear kernel and regularization parameter
C = 1,

SVC = svm . SVC( k e r n e l = ’ l i n e a r ’ , C=1)
SVC . f i t ( x , y )
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Fig. 2.2 Two 2d-Gaussian curves with unit covariance and different means.

The second line implements the learning, that is it tales the examples in arrays x and
y and fit the model to it. At this point we have a trained model SVC that we can use to
predict data. We will test its performance with some new sample data,

# t e s t i n g

x1= a r r a y ( [ r andn ( n )+ 1 , r andn ( n ) + 1 ] ) ; y1= z e r o s ( n )
x2= a r r a y ( [ r andn ( n )+ 3 , r andn ( n ) + 3 ] ) ; y2= z e r o s ( n )+1
x = h s t a c k ( ( x1 , x2 ) ) . T
y = h s t a c k ( ( y1 , y2 ) )

that we also plot with different symbols and color. We use the model for predicting the
labels for the class with the command

a=SVC . p r e d i c t ( x )

and calculate the percentage of correct labels with

p r i n t ( " P e r c e n t a g e C o r r e c t : " , ( n�sum ( abs ( y�a ) ) ) / n )

Finally, we also like to plot the results

p l o t ( x1 [ 0 , : ] , x1 [ 1 , : ] , ’ x r ’ )
p l o t ( x2 [ 0 , : ] , x2 [ 1 , : ] , ’ ob ’ )
show ( )

2.5 Other classification methods including MLP with
Tensorflow

The final example here is using two more classifiers in addition to the SVM on the
same two-Gaussian example, namely a random forrest (RF) classifier and a multilayer
perceptron MLP). The RF is also implemented in sklearn and is hence verst similar.
We are only changing the name of the model. For the MLP we use Googles Tensorflow
implementation which is also quite similar to the sklearn notation. The only difference
is that the model has of course different parameters and hyper-parameters.
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from p y l a b import ⇤
from s k l e a r n import svm
from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r
import t e n s o r f l o w as t f
from t e n s o r f l o w . c o n t r i b import l e a r n
t f . l o g g i n g . s e t v e r b o s i t y ( t f . l o g g i n g .ERROR)

# da ta ( g e n e r a t i o n o f t r a i n i n g da ta )

n =100
x1= a r r a y ( [ r andn ( n )+ 1 , r andn ( n ) + 1 ] ) ; y1= z e r o s ( n , i n t )
x2= a r r a y ( [ r andn ( n )+ 3 , r andn ( n ) + 3 ] ) ; y2= z e r o s ( n , i n t )+1
x = h s t a c k ( ( x1 , x2 ) ) . T
y = h s t a c k ( ( y1 , y2 ) )
p l o t ( x1 [ 0 , : ] , x1 [ 1 , : ] , ’ x r ’ )
p l o t ( x2 [ 0 , : ] , x2 [ 1 , : ] , ’ ob ’ )
show ( )

# making model and t r a i n i n g ( f i t t i n g ) them

SVC = svm . SVC( k e r n e l = ’ l i n e a r ’ , C=1)
SVC . f i t ( x , y )

RF = R a n d o m F o r e s t C l a s s i f i e r ( n e s t i m a t o r s =10)
RF . f i t ( x , y )

f e a t u r e c o l u m n s = [ t f . c o n t r i b . l a y e r s . r e a l v a l u e d c o l u m n ( " " , d imens ion = 4 ) ]
MLP = l e a r n . D N N C l a s s i f i e r (

f e a t u r e c o l u m n s = f e a t u r e c o l u m n s ,
h i d d e n u n i t s = [ 1 0 , 20 , 1 0 ] ,
n c l a s s e s = 2)

MLP. f i t ( x , y , s t e p s = 500 , b a t c h s i z e = 128)

# g e n e r a t i n g t e s t i n g da ta

x1= a r r a y ( [ r andn ( n )+ 1 , r andn ( n ) + 1 ] ) ; y1= z e r o s ( n )
x2= a r r a y ( [ r andn ( n )+ 3 , r andn ( n ) + 3 ] ) ; y2= z e r o s ( n )+1
x = h s t a c k ( ( x1 , x2 ) ) . T
y = h s t a c k ( ( y1 , y2 ) )

# p r e d i c t i o n

a=SVC . p r e d i c t ( x )
b=RF . p r e d i c t ( x )
c= l i s t (MLP. p r e d i c t ( x , a s i t e r a b l e =True ) )

# e v a l u a t i o n

p r i n t ( ’ P e r c e n t a g e C o r r e c t SVM: ’ , ( n�sum ( abs ( y�a ) ) ) / n )
p r i n t ( ’ P e r c e n t a g e C o r r e c t RF : ’ , ( n�sum ( abs ( y�b ) ) ) / n )
p r i n t ( ’ P e r c e n t a g e C o r r e c t MLP : ’ , ( n�sum ( abs ( y�c ) ) ) / n )
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The result of running the program is shown in Fig. 2.3. All three classifiers give
the same result in this run which is close to the optimal result in this example. When
running this program repeatedly there will be slight differences in the answers. We
will later discuss the stochastic nature of machine learning.

Fig. 2.3 The plot shows the data points in the two-Gaussian example that consists of two Gaussian
classes with the same unit co-variance but different mean values. The problem is that these classes
overlap. Below the figure is the percentage correct of three machine learning classifiers, that of
a Support Vector Machine (SVM), a Random Forrest (RF) classifier), and a multilayer perceptron
(MLP).

2.6 Applying ML methods to specific problems

As we have seen in the previous section, writing a program that applies ML algorithms
to data is usually not too difficult. It is common that new algorithms will find its way
to graphical data mining tools, which makes them available to an even larger applica-
tion community. However, applying such algorithms correctly in different application
domains can be challenging and it is well known that some experience is required.
We therefore concentrate in the following in explaining what is behind these algo-
rithms and how different theoretical concepts are explored by the different algorithms.
Some understanding of the algorithms is absolutely necessary to avoid pitfalls in their
application.

Each application is different, and David Wolpert coined the so called "No free
lunch" theorem which basically states that there is not a single algorithms that covers
all applications better than some other algorithms. This is further complicated by
the fact that many machine learning algorithms suffered from the need of carefully
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choosing parameters of the algorithms, which again requires experience as well as
experimentation. The first substantial breakthrough in the application of machine
learning methods outside a small research community came with the SVM classifiers
as they were somewhat easier to apply than earlier neural networks or Bayesian
methods. SVMs are often a good starting place when exploring new applications.
However, we see now their limitations and know that deep networks have been able to
advance applications that are difficult for basic SVMs. We will later explore the reason
for this.

The basic first step for the application of ML methods is how to represent the data.
We discussed already in the first chapter how to convert different type of inputs to
numerical vectors or tensors. However, there are usually many different possibilities to
represent the data, such as a fine grain representation or using some summary statistics.
In the past it has been crucial to work out an appropriate high level data representation.
However, the recent progress in deep learning has enabled to treat this representation
itself as part of the learning problem. Representational learning has thus become an
important part of machine learning.

Once the problem has been defined by representing the data and possible goals in
an appropriate way, and once the appropriate ML algorithm has been chosen, it is then
the main challenge to chose good parameters of the algorithms such as the number of
neurons or layers of neurons in neural networks, which kernel to use in support vector
machines, how many training steps to take in gradient descent learning, or how many
data to use for learning versus validation. We call these parameters of the algorithms the
hyperparameters. Choosing the right hyperparameters is commonly a major question
and to make it clear from the start, there is no simple answer. Thinking about how to
approach this question with appropriate experiments and to understand the options and
possible approaches is hence a mayor part of machine learning applications.


