

AG

CSCI 1106 Lecture 20

Search

AG

Announcements

- Quiz #6 is this Friday, Dec. 4
- Robotics Olympics: Monday, Dec 7, 8:30-11
 - Location: TBA
 - Programs must be loaded on your robot at the start to compete in the Robot Olympics.
 - Files must be submitted to prof1106@cs.dal.ca on
 December 6 before your presentation period
- Technical Report in PDF or Word format
 - 8 pages
 - Must be submitted by email to prof1106 with subject line "report" to prof1106@cs.dal.ca of Dec 10

Announcements

- Today's Topics
 - Introduction to Search
 - Random Search
 - Fixed Pattern Search
 - Mark and Sweep

Introduction to Search

- One of the most common tasks in robotics is to map (explore) a given environment
 - Robot must know where it is and where it was
 - This includes searching (avoid searching same place twice)
- Example: Can the exit be found without location tracking?

AG

Random Search

- Algorithm: Loop:
 - Move in a straight line
 - Turn random amount when obstacle encountered

- Reasoning:
 - Robot selects random direction regularly
 - Robot is given sufficient time
 - Robot should eventually visit every location in area

Random Search

Pros

- Easy to implement
- Almost guaranteed to work
- Odometry not needed

Cons

- Inefficient
- Some locations visited multiple times
- Can't reproduce search

Pattern Based Search (e.g., Lawnmower)

- Algorithm:
 - Move to one corner
 - Sweep back and fourth until area is covered

- Reasoning:
 - Fixed pattern in a regular space will cover entire area
 - Determining where to start is relatively easy

Pattern Based Search

Pros:

- Simple and easy to implement
- Works well in empty rectangular areas
- Very efficient (time-wise)
- No need to remember visited locations

Cons:

- Requires good odometry
- Does not work in odd shaped areas
- Requires a priori knowledge of area
- Hard to implement if area contains obstacles

Mark and Sweep Search

- Algorithm:
 - Represent area by a grid
 - Mark keep track of all visited sections
 - Visit nearest unvisited sections

- Reasoning:
 - Grids are easy to store
 - Easy to determine which section to visit next
 - All unvisited sections will eventually be visited

Mark and Sweep Search

Pros:

- Efficient
- Works with obstacles and all areas
- Easy to track objects in the area
- Still relatively simple to implement

Cons:

- Requires good odometry
- Uses more memory

Discussion

- Q: What separates simple from complex search?
- A: How the search determines which section to visit next
- I.e.,

- Simple search bases its decisions on simple things:

- E.g., where is the nearest unvisited section?
- Complex search usually considers a number of factors in determining the next section to visit

Challenges

- Robot does not move where it is instructed to move
- Localization (knowing where you are) is hard
- Search area is typically not known
- Search area can contain hazards that affect robot's position and/or speed
- Search area is typically irregular or unbounded