
1 Unsupervised learning A

In the previous learning problems we had training examples with feature vectors x
and labels y. In this chapter we discuss unsupervised learning problems in which no
labels are given. Training on unlabeled examples restricts the type of learning that
can be done, but unsupervised learning has important applications and even can be
an important part in aiding supervised learning. Unsupervised does not mean that the
learning is not guided at all; the learning follows specific principles that are used to
organize the system based on the characteristics provided by the data. We will discuss
several examples in this chapter.

1.1 K-means clustering

The first example is data clustering. In this problem domain we are given unlabelled
data described by a set of features and asked to put them into k categories. In the first
example of such clustering we categorize the data by proximity to a mean value. That
is, we assume a model that specifies a mean feature value of the data and classifies the
data based on the proximity to the mean value. Of course, we do not know this mean
value for each class. The idea of the following algorithm is that we start with a guess
for this mean value and label the data accordingly. We then use the labeled data from
this hypothesis to improve the model by calculating a new mean value, and repeat these
steps until convergence is reached. Such an algorithm usually converges quickly to a
stable solution. More formally, given a training set of data points {x(1), x(2), ..., x(m)}
and a hypothesis of the number of clusters, k, the k-means clustering algorithm is
shown in Table 1.1. An example is shown in Figure 1.1 and the corresponding program
is shown is Table 1.2.

Table 1.1 k-means clustering algorithm

1. Initialize the means µ1, ...µk randomly.
2. Repeat until convergence: {

Model prediction:
For each data point i, classify data to class with closest mean

c(i) = argminj ||x(i) − µj ||
Model refinement:

Calculate new means for each class

µj = 1 1(c(i)=j)x(i)

1 1(c(i)=j)

} convergence

Unsupervised learning A2 |

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

A Unlabeled data B Data with initial centroids C 1st classi�cation

D 2nd classi�cation E 3rd classi�cation F 1st classi�cation

Fig. 1.1 Example of k-means clustering with two clusters.

1.2 Mixture of Gaussian and the EM algorithm
We have previously discussed generative models where we assumed specific models for
the in-class distributions. In particular, we have discussed linear discriminant analysis
where we had labelled data and assumed that each class is Gaussian distributed. Here
we assume that we have k Gaussian classes, where each class is chosen randomly from
a multinominal distribution,

p(z(i) = j) ∝ multinomial(Φj) (1.1)

p(x(i)|z(i) = j) ∝ N(µj ,Σj) (1.2)

This is called a Gaussian Mixture Model. The corresponding log-likelihood function
is

l(Φ, µ, σ) =

m∑
i=1

log

k∑
z(i)=1

p(x(i)|z(i);µ,Σ)p(z(i); Φ). (1.3)

Since we consider here unsupervised learning in which we are given data without
labels, the random variables z(i) are latent variables. This makes the problem hard. If
we would be give the class membership, than the log-likelihood would be

l(Φ, µ, σ) =

m∑
i=1

log p(x(i); z(i), µ,Σ), (1.4)

which we could use to calculate the maximum likelihood estimates of the parameter
(see equations ??-??),

φk =
1

m

m∑
i=1

11(z(i) = j) (1.5)

| 3Mixture of Gaussian and the EM algorithm

Table 1.2 Program to demonstrate k-mean clustering on Gaussian Data.

clear; clf; hold on;

%% training data generation; 2 classes, each gaussian with mean (1,1) and (2,2) and diagonal unit variance

n0=100; %number of points in class 0

n1=100; %number of points in class 1

x=[1+randn(n0,1), 1+randn(n0,1); ...

5+randn(n1,1), 5+randn(n1,1)];

plot(x(:,1),x(:,2),’ko’); % plotting points

mu1=[5 1]; mu2=[1 5]; % initial two centers

while(true) waitforbuttonpress;

plot(mu1(1),mu1(2),’rx’,’MarkerSize’,12)

plot(mu2(1),mu2(2),’bx’,’MarkerSize’,12)

for i=1:n0+n1;

d1=(x(i,1)-mu1(1))^2+(x(i,2)-mu1(2))^2;

d2=(x(i,1)-mu2(1))^2+(x(i,2)-mu2(2))^2;

y(i)=(d1<d2)*1;

end

waitforbuttonpress;

x1=x(y>0.5,:);

x2=x(y<0.5,:);

clf; hold on;

plot(x1(:,1),x1(:,2),’rs’);

plot(x2(:,1),x2(:,2),’b*’);

mu1=mean(x1);

mu2=mean(x2);

end

µk =

∑m
i=1 11(z(i) = j)x(i)∑m
i=1 11(z(i) = j)

(1.6)

Σk =

∑m
i=1 11(z(i) = j)(x(i) − µj)(x(i) − µj)T∑m

i=1 11(y(i) = k)
. (1.7)

While we do not know the class labels, we can follow a similar strategy to the k-
means clustering algorithm and just propose some labels and use them to estimate
the parameters. We can then use the new estimate of the distributions to find better
labels for the data, and repeat this procedure until a stable configuration is reached. In
general, this strategy is called the EM algorithm for expectation-maximization. The
algorithm is outlined in Fig.1.2. In this version we do not hard classify the data into

Unsupervised learning A4 |

one or another class, but we take a more soft classification approach that considers the
probability estimate of a data point belonging to each class.

1. Initialize parameters φ, µ,Σ randomly.
2. Repeat until convergence: {

E step:
For each data point i and class j (soft-)classify data as

w
(i)
j = p(z(i) = j|x(i);φ, µ,Σ)

M step:
Update the parameters according to

φj = 1
m

∑m
i=1 w

(i)
j

µj =
∑m

i=1 w
(i)
j x(i)∑m

i=1 w
(i)
j

Σk =
∑m

i=1 w
(i)
j (x(i)−µj)(x

(i)−µj)
T∑m

i=1 11w
(i)
j

.

} convergence

Fig. 1.2 EM algorithm

An example is shown in Fig. 1.3. In this simple world, data are generated with
equal likelihood from two Gaussian distributions, one with meanµ1 = −1 and standard
deviation σ1 = 2, the other with mean µ2 = 4 and standard deviation σ2 = 0.5. These
two distributions are illustrated in Fig. 1.3A with dashed lines. Let us assume that we
know that the world consists only of data from two Gaussian distributions with equal
likelihood, but that we do not know the specific realizations (parameters) of these
distributions. The pre-knowledge of two Gaussian distributions encodes a specific
hypothesis which makes up this heuristic model. In this simple example, we have
chosen the heuristics to match the actual data-generating system (world), that is, we
have explicitly used some knowledge of the world.

Learning the parameters of the two Gaussians would be easy if we had access
to the information about which data point was produced by which Gaussian, that is,
which cause produced the specific examples. Unfortunately, we can only observe the
data without a teacher label that could supervise the learning. We choose therefore a
self-supervised strategy, which repeats the following two steps until convergence:

E-step: We make assumptions of training labels from the current model (expectation
step)

M-step: use this hypothesis to update the parameters of the model to maximize the
probability of the observations (maximization step).

Since we do not know appropriate parameters yet, we just choose some arbitrary values
as the starting point. In the example shown in Fig. 1.3A we used µ1 = 2, µ2 = −2,
σ1 = σ2 = 1. These distributions are shown with solid lines. Comparing the generated
data with the environmental data corresponds to hypothesis testing.

The results are not yet very satisfactory, but we can use the generative model to
express our expectation of the data. Specifically, we can assign each data point to the
class which produces the larger probability within the current world model. Thus, we
are using our specific hypothesis here as a recognition model. In the example we can

| 5Mixture of Gaussian and the EM algorithm

-10 0 100

0.2

0.4

0.6

0.8

1

-10 0 100

0.2

0.4

0.6

0.8

1

-10 0 100

0.2

0.4

0.6

0.8

1

A. Initial condition B. After 3 updates C. After 9 updates

xx x

p(x) p(x)p(x)

Fig. 1.3 Example of the expectation maximization (EM) algorithm for a world model with two
Gaussian distributions. The Gaussian distributions of the world data (input data) are shown with
dashed lines. (A) The generative model, shown with solid lines, is initialized with arbitrary param-
eters. In the EM algorithm, the unlabelled input data are labelled with a recognition model, which
is, in this example, the inverse of the generative model. These labelled data are then used for
parameter estimation of the generative model. The results of learning are shown in (B) after three
iterations, and in (C) after nine iterations .

use Bayes’ rule to invert the generative model into a recognition model as detailed in
the simulation section below. If this inversion is not possible, then we can introduce
a separate recognition model, Q, to approximate the inverse of the generative model.
Such a recognition model can be learned with similar methods and interleaved with
the generative model.

Of course, the recognition with the recognition model early in learning is not
expected to be exact, but estimation of new parameters from the recognized data in the
M-step to maximize the expectation can be expected to be better than the model with
the initial arbitrary values. The new model can then be compared to the data again
and, when necessary, be used to generate new expectations from which the model is
refined. This procedure is known as the expectation maximization (EM) algorithm.
The distributions after three and nine such iterations, where we have chosen new data
points in each iteration, are shown in Figs 1.3B and C.

Simulation

The program used to produce Fig. 1.3 is shown in Table 1.3. The vector x0, defined
in Line 2, is used to plot the distributions later in the program. The arbitrary random
initial conditions of the distribution parameters are set in Line 3. Line 4 defines an
inline function of a properly normalized Gaussian since this function is used several
times in the program. An inline function is an alternative to writing a separate function
file. It defines the name of the functions, followed by a list of parameters and an
expression, as shown in Line 4. The rest of the program consist of an infinite loop
produced with the statement while 1, which is always true. The program has thus to
be interrupted by closing the figure window or with the interruption command Ctrl

C. In Lines 7–12, we produce plots of the real-world models (dotted lines) and the
model distributions (plotted with a red and a blue curve when running the program).

Unsupervised learning A6 |
Table 1.3 Program ExpectationMaximization.m

%% 1d example EM algorithm

clear; hold on; x0=?10:0.1:10;

var1=1; var2=1; mu1=?2; mu2=2;

normal= @(x,mu,var) exp(?(x?mu).^2/(2?var))/sqrt(2?pi?var);

while 1

%%plot distribution

clf; hold on; ylim([0 1]);

plot(x0, normal(x0,?1,4),k:);

plot(x0,normal(x0,4 ,.25) , k:);

plot(x0, normal(x0,mu1,var1),r);

plot(x0, normal(x0,mu2,var2),b);

waitforbuttonpress ;

%% data

x=[2?randn(50,1)?1;0.5?randn(50 ,1)+4;];

%% recogintion

p1=normal(x,mu1,var1);

p2=normal(x,mu2,var2);

nrm=p1+p2 ; p1=p1./nrm; p1=p1./sum(p1); p2=p2./nrm; p2=p2./sum(p2);

%% maximization

mu1 =x?p1; var1=(x?mu1).^2 ? p1;

mu2 =x?p2; var2=(x?mu2).^2 ? p2;

%equivalently :

%p1=p1./nrm; p2=p2./nrm;

%mu1=sum(x.?p1)/sum(p1); var1=sum(p1.?(x?mu1).^2)./sum(p1);

%mu2=sum(x.?p2)/sum(p2); var2=sum(p2.?(x?mu2).^2) ./sum(p2);

end

The command waitforbuttonpress is used in Line 12 so that we can see the results
after each iteration.

In Line 14 we produce new random data in each iteration. Recognition of this data
is done in Line 16 by inverting the generative model using Bayes’ formula,

P (c|x; G) =
P (x|c; G)P (c; G)

P (x; G)
. (1.8)

In this specific example, we know that the data are equally distributed from each
Gaussian so that the prior distribution over causes, P (c; G) is 1/2 for each cause.
Also, the marginal distribution of data is equally distributed, so that we can ignore
this normalizing factor. The recognition model in Line 16 uses the Bayesian decision
criterion, in which the data point is assigned to the cause with a larger recognition
distribution, P (c|x; G). Using the labels of the data generated by the recognition
model, we can then use the data to obtain new estimates of the parameters for each
Gaussian in Lines 17–21.

Note that when testing the system for a long time, it can happen that one of the
distributions is dominating the recognition model so that only data from one distribution

| 7Mixture of Gaussian and the EM algorithm

are generated. The model of one Gaussian would then be explaining away data from
the other cause. More practical solutions must take such factors into account.

