//// Integration of Hodgkin--Huxley equations with Euler method clear; clf; //// Setting parameters // Maximal conductances (in units of mS/cm^2); 1=K, 2=Na, 3=R g(1)=36; g(2)=120; g(3)=0.3; // Battery voltage ( in mV); 1=n, 2=m, 3=h E(1)=-12; E(2)=115; E(3)=10.613; // Initialization of some variables I_ext=0; V=-10; x=zeros(3,1); x(3)=1; t_rec=0; // Time step for integration dt=0.01; //// Integration with Euler method for t=-30:dt:50 if t==10; I_ext=10; end // turns external current on at t=10 if t==40; I_ext=0; end // turns external current off at t=40 // alpha functions used by Hodgkin-and Huxley Alpha(1)=(10-V)/(100*(exp((10-V)/10)-1)); Alpha(2)=(25-V)/(10*(exp((25-V)/10)-1)); Alpha(3)=0.07*exp(-V/20); // beta functions used by Hodgkin-and Huxley Beta(1)=0.125*exp(-V/80); Beta(2)=4*exp(-V/18); Beta(3)=1/(exp((30-V)/10)+1); // tau_x and x_0 (x=1,2,3) are defined with alpha and beta tau=[1]./(Alpha+Beta); x_0=Alpha.*tau; // leaky integration with Euler method x=(1-dt./tau).*x+dt./tau.*x_0; // calculate actual conductances g with given n, m, h gnmh(1)=g(1)*x(1)^4; gnmh(2)=g(2)*x(2)^3*x(3); gnmh(3)=g(3); // Ohm's law I=gnmh.*(V-E); // update voltage of membrane V=V+dt*(I_ext-sum(I)); // record some variables for plotting after equilibration if t>=0; t_rec=t_rec+1; x_plot(t_rec)=t; y_plot(t_rec)=V; end end // time loop //// Plotting results plot(x_plot,y_plot); xlabel('Time'); ylabel('Voltage');