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Abstract—The ongoing discussion of AGI is often mixed with
claims about the ability of models to mimic brain functions.
This position paper argues that mimicking human behavior at
some level is not enough to understand brain functions. We
point specifically to system-level organization of brain functions
facilitated by complementary processes such as dual decision
pathways, called System 1 and System 2 by Daniel Kahneman.
System 1 resembles many of the abilities captured by deep
learning, such as large language models (LLMs). System 2 is
mostly associated with structural causal models (SCMs). We
outline some important areas where more research is needed.
This includes the interplay between multiple process pathways
and how System 2 learns and evolves to represent the causal
relations in our world during the lifetime of agents that are
interacting with the world. We also argue about the danger of
how systems beyond the capabilities of the human brain carry
the risk of considerable harm to our society. Addressing them
requires serious discussion.

I. INTRODUCTION

Artificial intelligence is having an increasing impact on our
society, to which we need to respond. We refer to these models
as large X models (LxM) that include large language models
(LLM) such as OpenAI’s GPT and foundation models for other
modalities as well as their derivatives such as agentic AI. The
astonishing capabilities of such large deep networks trained on
huge datasets trigger many discussions about the feasibility of
artificial general intelligence (AGI) [1]. Although the precise
definition of AGI is still debated [2], there seems to be some
consensus that this implies a form of intelligence that is at
least equivalent to common human abilities in a wide variety of
tasks. It is clear that foundation models will have an increasing
impact on our society with new opportunities and challenges.
However, this new era also requires judicial and ethical debates
and advanced education. For these debates, we need to be
clear about the relation of AI to the human mind. It is often
assumed that our current models are like the brain. But even if
these models look like thinking, do they really reflect human
thinking as in Fig. 1? There are certainly many aspects of
current AI models that shed light on some brain processing.
However, the purpose of this position paper is to point out
some key differences between the brain and AI, and to discuss
some important areas that require more attention.

There are now considerable debates as to whether AGI is
achievable with deep neural networks [3]. Of course, machines
have long outperformed humans in isolated tasks, such as
multiplying two large numbers, and LLMs can be very im-
pressive when answering questions, although recent scientific
studies reveal a more cautious picture of comprehension in
LLMs [4]. On some level, it cannot be denied that a deep

Fig. 1. Is making robots look like they are thinking really making them
intelligent?

neural network can learn the human mind as they are universal
function approximators, and our brain is, in essence, a deep
neural network. However, this is a rather superficial view as
there are many details in the brain, some of which will be
highlighted below. Understanding the differences between AI
models and information processing in the brain is important
for many reasons. For example, due to their differences, both
systems might have superior abilities and shortcomings that
are important to understand. In addition, many scientists want
to understand the human mind, and we will argue that current
machine learning models have limited applicability to entangle
brain and mind functions.

The recent progress with LxMs is clearly an enormous
engineering feat with very useful applications. Such models
have proven to be very good associators of known answers
from context encoded in the attentional mechanisms in such
networks, and they are trained on an enormous collection of
data. They should hence be considered great search engines,
and they are able to provide a lot of factual knowledge.
Such models might actually be better characterized as large
(associative) memory models (LMM instead of LLM). Such
large associative memories are proving to be very useful in
engineering applications, allowing us to automate things that
we were not able to do just a few years ago. However, foun-
dation models are also creating great new challenges facing
our society, such as deliberate misuse or unintentional harm
due to the lack of preparedness to use such tools appropriately.
Some limitations manifested themselves with an early draft of
this paper when trying to improve the readability of the draft
with chatGPT. While chatGPT did a great job in summarizing



the known parts of this paper, such as a description of the
dual process theory, the novel thoughts in this paper were
completely misunderstood and changed to versions that did
not reflect our intentions or were skipped altogether. This
anecdotal example is mainly brought up to warn users to
be vigilant with such tools. They are enormously helpful
as advanced search engines that can summarize a breadth
of known knowledge, but this does not mean that they can
replicate thought processes useful for tasks that are more than
mere summaries of known knowledge.

This paper is not intended to be a critique of the usefulness
of LxMs, but rather to point to research directions that we
think can enhance our understanding of the human mind.
Foremost, this includes the subject of causal reasoning and
it’s relation to habitual control. As Chomsky et al. [1] put
it, we should think about "the most critical capacity of any
intelligence: to say not only what is the case, what was
the case, and what will be the case, that is, description and
prediction, but also what is not the case and what could and
could not be the case". In other words, this is the ability to
reason about counterfactuals [5], [6]. A lot of machine learn-
ing capabilities, although impressive, cover mostly prediction
based on associations with past experience. This is considered
the first on Pearl’s Ladder of Causation reproduced in spirit in
Fig.2. The second step, intervention, represents some more

Fig. 2. Pearl’s ladder of causation [adopted in spirit from [6]].

recent machine learning research, which is certainly not a
major part of current foundation models. The highest level
of intelligence in Chomsky’s [1] and Pearl’s [6] views is the
level of counterfactual, which is the ability to reason about a
novel situation beyond basic interpolation.

It is true that the latest versions of LLMs, such as o1 [7]
or DeepSeek-R1 [8], seem to be able to provide reasons for
their answers to questions, but from the architectures it is
still most likely that these are memorized associations with
reward-guided biases on reasoning associations. But even if
these models somehow developed their own reasoning modes
as argued in [9], the main endeavor we are seeking as scientists

is to understand how something works. It is essential to know
how the mind works, or more specifically how the mind
emerges from the brain’s information processing capabilities,
for example, if we want to develop new treatment methods for
mental health challenges.

The phrase "understanding the brain" can mean many things
on many different levels. For example, understanding the
biochemical mechanisms on a subcellular level is important for
drug design. Or it could mean understanding the organization
and dynamics of the brain to know how to intervene in medical
situations such as deep brain stimulation to alleviate symptoms
of Parkinson’s disease. The area we want to discuss further
is human decision-making, in particular the variety of mecha-
nisms humans seem to be able to use in various circumstances.
More specifically, we will discuss the human system-level
organization that is captured by the dual process theory (DPT)
that Daniel Kahneman popularized in his book ‘Thinking Fast
and Slow [10]. We will briefly discuss this theory on Marr’s
three levels of analysis [11], the computational, algorithmic,
and implementation perspective. Our focus is then on the
development of such systems, in particular that of learning
individual causal models for System 2.

II. WHAT IS DIFFERENT

The brain is certainly a deep neural network if one considers
the number of layers or synaptic connections along the pro-
cessing pathways. The retina is already a complex structure
that is considered to have 10 layers [12] by itself, and the
downstream visual pathways have dozens of more connections
until it reaches the motor neurons to guide actions. In contrast
to common deep learning models such as convolutional neural
networks in computer vision [13], [14] or transformer models
for language processing [15], the brain has massive recurrent
connections. Although "attention is all you need" [15], bidi-
rectional projections between brain areas and feedback loops
are prominent in the brain. In fact, it is considered that there
are as many forward connections in the brain as there are
backward connections. Even in the retina, there are already
recurrent connections. Of course, recurrent neural networks
have also long been considered, such as the Hopfield network
[16] and long-short-term memory (LSTM) [17]. In particular,
the LSTM model and related architectures can be considered
deep networks in itself, which should become clear when
considering a way of training by unfolding them in time [18].
However, recurrencies in the brain are also considered to have
a quite different role than just implementing a form of memory
by reverberating information. In particular, predictive coding
and the principle of free energy have been argued to be a
fundamental principle of organization in the brain [19]. That is,
each layer in such a network is designed to predict the activity
of the previous layer, which is an intricate balance between
bottom-up and top-down processes. This kind of information
processing might be necessary due to physical limitations such
as the speed of information processing in biological neurons.

There are other differences between foundation models
and the brain. For example, the brain is not a homogeneous



structure. There are many distinguishable areas in the brain,
including the areas of the brain stem and midbrain, or regional
differences in the neocortex. We want to understand the
consequences of these architectures on the cognitive processes
of our mind. As an example, the structure and functionality of
motor control have some elegant similarities to control systems
[20].

On a more cellular scale, there is ongoing debate about the
simplifications of neuron models compared to real neurons in
the brain. A neuron certainly represents a capacitor on some
level that can integrate synaptic currents and then produce an
action potential that ultimately releases neurotransmitters at
axional terminals. However, there is much evidence for more
complex information processing, including axonal interactions
[21], internal calcium stores [22], systematic quantification
of neurotransmitter release probabilities [23], and important
differences between different types of neurons [24]. And
neurons are also not the only cells that are networked and
that seem to be actively involved in the information processing
abilities of the brain. For example, there is increasing evidence
that glia cells have important functions that can modulate basic
neuron activities [25]. It is clear that artificial neurons are a
crude approximation of real neurons and that there are many
different types of neurons that are often specialized in some
way, and there are many subcellular mechanisms that do not
commonly play a role in AI models.

The point of this section is to remind us that there are many
physical details of brains that are not well captured by the
current foundation models. Of course, it could be argued that
these differences just reflect an implementation level of the
system, but that Marr’s other two levels of analysis [11], that of
computation and algorithmic level, are not different. However,
even on a human performance level, there are interesting dif-
ferences. The ARC competition [26] demonstrated that there
are examples of human cognitive abilities with a form of novel
generalization from a few examples where the foundation
models have difficulties. On the other side of the spectrum,
superhuman memory recall ability can also be seen to be
problematic in understanding brain processes, as it is likely
that we developed methods to compensate for implementation
issues such as memory limitations and slow processing.

III. DUAL PROCESS THEORY

The brain and mind can be discussed on many different
levels. We choose here to focus on a system-level description
with features that are not included in current AGI architec-
tures. In particular, our starting point for discussing human-
style cognitive processes on this level is dual process theory
(DPT) [27], [28] that was popularized by Kahneman around
components he called System 1 and System 2 [10]. System
1 encapsulates fast thinking, the process that makes decisions
quickly and easily, often based on ’gut feeling’ or automated
behavior. Automation of common tasks is an important ability
of humans; Without this, we would be very inefficient in
many tasks that are necessary for daily survival. This system
seems good at automating highly practiced repetitive tasks

that we will, after training, be able to perform effortlessly
and often unconsciously. In contrast, System 2 is the rational
brain, the one that uses reasoning to make decisions. This
process requires mental effort and generally requires conscious
attention [29], [10].

An illustrative example of these two complementary sys-
tems is learning to drive a car. An instructor will usually first
explain with instructions the tasks we have to perform such
as how to start the car, to put on the seat belt, and looking
over the shoulder when turning. This is followed by driving
practice sessions, where the instructor usually has to remind
the students of a task, such as looking over the shoulder before
turning. These sessions usually require full attention of the
student, and the process, with all the motor actions that must
be followed, can be slow at first. Decisions of motor initiations
in such unfamiliar situations are therefore largely driven by
System 2. Gladly we have System 1 that can automate such
tasks with practice, making driving effortless after some time.

It is instructive to discuss DPT with respect to Marr’s
three levels of analysis [11]. Marr’s computational level covers
the big idea of what problem the system addresses. As
already mentioned above, System 1 is good at automating
repetitive tasks, and System 2 might be necessary to find
solutions in novel situations. An example of a dual process
system is the model that combines model-based and model-
free reinforcement learning (RL). The model refers in the RL
domain to a model of the world where the reward function
and the transition function of an agent are known [30].
System 1 corresponds to a model-free RL model. Most modern
implementations of model-free reinforcement learning, such
as deep reinforcement learning, use neural network models to
represent value functions (critic) or policy functions (actor).
However, such neural network models are not the world model
mentioned above. These neural networks are simply a function
approximator for the critic and actor without the need of
much knowledge of how the world works. Model-free RL
is often implemented by Monte Carlo sampling techniques
such as TD-learning [30], which requires active sampling from
the environment. In this sense, fast decision making of the
system is really enabled by slow and effortful learning from
experiences in the world. Although model-free RL is often
applied to novel tasks, System 1 is not good at finding new
solutions quickly in novel situations. Increasing the learning
rate can not help speed up the learning process, as fast changes
of system parameters would make the system very unstable
and lead to forgetting of robust solutions to situations that
might occur again.

This is where System 2 comes in. Based on the understand-
ing of causal relations in the world, System 2 can engineer
new actions that might be able to solve a situation. Model-
based reinforcement learning is therefore a model that can
be used to find new solutions. In most current engineering
implementations of model-based RL, the world model is based
on supervised learning of the reward function and the transition
function so that these known functions can be used in the
Bellman equations to calculate optimal policies. Although RL



typically seeks to find the optimal value function or the optimal
policy, it is important to realize that in the context of DPT
and understanding brain function, we do not require finding
optimal solutions. Even some suboptimal functions might be
sufficient in a specific time-constrained situation and System
1 might be able to optimize the task later more thoroughly.
Although System 2 should be good at quickly finding new
solutions, we need to acknowledge that it takes time to develop
a model of causal structures in the world that could then be
used to derive a new solution to a novel problem. How to learn
this world model is a major remaining research question.

When thinking about Marr’s implementation level of Dual
Process Theory, it seems that the brain is well suited for such
architectures. In fact, there are many examples of comple-
mentary process pathways, such as pathways to initiate eye
movements [31]. The existence of what seems to be redundant
processing pathways might just reflect the consequence of
evolutionary repetitions, but evolution might have learned
to take advantage of such complementary system. There is
additional specific evidence for model-free and model-based
reinforcement learning [32]. A good example is the discussion
of a theory of how different pathways in the basal ganglia
support DPT given in [33], suggesting that the dorsomedial
striatum controls novel actions while the control is passed to
the dorsolateral striatum for highly trained control. More re-
search on verifying and advancing such more detailed models
could help to understand human behavior more deeply and
could advance mental health treatments.

IV. TOWARDS AN ALGORITHMIC MANIFESTATION AND
MODELING OF DPT

To conceptualize the algorithmic implementation of DPT,
in particular with regard to the interaction of the processing
streams and their developmental learning, we propose to
conceptualize System 1 as a deep learning system such as
predictive generative transformers [15], while System 2 can
be conceptualized as a causal system [34]. Ultimately, System
2 is also implemented in a deep neural network, although it
might be best to conceptualize them first with structural causal
models discussed in the following. Both areas are usually
studied separately, and our point here is that their interaction
and complementarity are important for understanding human
behavior, in particular with respect to decision making. It is
clear that these systems do not work in isolation and that
they can influence each other. For example, it is well known
that even in situations where we make gut decisions, we fill
in reasons later to justify these conditions [10]. Such post-
hoc reasoning is important to keep our causal world system
grounded.

An obvious challenge with a dual process system is that
each process might produce different outcomes. Therefore,
an arbitrator must moderate their use in specific situations,
and there is some evidence of arbitrage in the brain [35]. An
example of such a system with an arbitrator is the Arbitrated
Predictive Actor Critic (APAC) [36] that explored DPT in the
context of arm movements with a simple robotic in different

contexts of changing environments such as slow changing of
arm geometry (like growing) or rapid perceptual changes (such
as prism glasses). This paper demonstrates an example of
how System 1 is good in fast execution and adaptation of
highly trained movements in the context of small changes,
while System 2 is good in novel situations with more rapid
changes, consistent with the comments on the computational
level above [36]. Another demonstration of switching from
highly trained automating responses to finding novel solutions
in a novel situation was given in a seminal paper by Dehane
et al. [37]. They proposed a global workspace theory where
specialized components can be chained to enable rapid auto-
matic responses in repetitive situations. When these automatic
tasks networks fail, the workspace network can be activated
to find new solutions.

Fig. 3. Architecture of dual process theory with arbitrator.

These two approaches are combined in the conceptual
architecture proposed in Fig. 3. The figure illustrates the
components of System 1 and System 2 in the upper repre-
sentational layers of the architecture. However, the systems
are likely not exclusive; it is likely that both systems can
recruit cortical and subcortical pathways in their decision
models. The arbitrator is illustrated to work on different
levels in the system that mediate both learning and vigilance
that trigger activation of the workspace in search for novel
solutions, as in [37]. This is likely to be mediate by dopamine,
which has long been associated with reinforcement learning
[38]. Interestingly, there is an ongoing debate on whether
dopamine indicates reward predictions. An alternative view is
that dopamine is strongly triggered by surprise and is related
to causal associations [39]. Our proposal would resolve such
ongoing debates in light of its dual interconnected role.

The components of System 1 might be well modeled with
systems like LLMs that can be learned with a combination of
supervised and reinforcement learning. This is straightforward
if there are enough training data available. This seems to fit
well in the context of DPT, where System 1 is thought to
automate frequent tasks. A reasonable model for System 2
are causal models that are commonly described with directed
graphs where nodes represent entities for reasoning. In graph-
ical Bayesian networks, these nodes are random variables,



and the links represent factors that influence the conditional
probabilities. For example, Fig. 4 illustrates some reasoning
about cancer C from smoking S and anxiety A. We hypothesize
that smoking causes cancer. Another possibility, admittedly
less considered, is that anxiety causes cancer, perhaps through
brain-gut interactions. It would then be possible that people
only smoke to alleviate anxiety, and hence smoking by itself
does not cause cancer but just flags people with anxiety
(please, keep in mind that this is only a hypothetical example).
We can formulate a probabilistic model for the joint probabil-
ity with the factorization suggested by the graph:

P (C, S,A) = P (C|S,A)P (S|A)P (A)

With specific parameterized models for the conditional proba-
bilities, we can estimate the corresponding parameters with
maximum likelihood estimation, and we would maximize
predictions of further examples. However, we really want to
know the cause of cancer, not just circumstantial correlates.
The graph in Fig.4 only describes correlational factors, that
is, what conditions are typical when developing cancer or not.
To investigate whether smoking is a cause, it is not sufficient,
for example, to collect only smokers and analyze the data.
In Fig.4 we indicate that we consider smoking as given with
the second circle around the variable S. We might observe
a high percentage of cancers among smokers, but note that
this would not rule out the possibility that there are more
smokers among people with anxiety that might cause cancer.
To study this causal effect, we cannot select smokers post-
hoc from our data, but we need to tell people regardless if
they want to smoke or not that they have to smoke. So, rather
than P(C|S) we have to evaluate P(C|do(S)). This is a form of
active learning that is necessary to evaluate the causal relation
among entities, something which is not really part of learning
in foundation models.

Fig. 4. A structural causal model (SCM) of the example with the hypothesis
that both smoking and anxiety can cause cancer. An admittedly unethical
experiment with the intervention where people have to smoke is shown on
the right. This would remove the causal link between anxiety in the chosen
population.

This kind of active learning is not the only learning chal-
lenge in causal systems. In fact, there are at least two more
fundamental challenges. One is the challenge of coming up
with a hypothesis graph in the first place, which is the area
of causal representation learning [34]. A straightforward way
would simply be to consider all possible graphs and then use
data and do-operations to rule out certain links. However, the
number of possible graphs grows factorial, and this approach is
thus not feasible in the real world. Another challenge is learn-
ing what the entities for reasoning should be in the first place.

Thus, a central factor is the principle of compositionality that
has gained a great deal of recent interest [40]. Understanding
how humans approach these challenges during development
and learning is crucial to begin understanding the human mind.

It is clear that the development of our individual world
model is an ongoing process of the human mind. The older
we get and the more experiences we have, our world model
evolves into more complex structures. A world model does not
have to be perfect. Indeed, a leaned model cannot be perfect
as we cannot learn the correct causal model with a limited
set of data. And we also need to start acting in the world,
so even a suboptimal model has to do. And while evolving
our world model, we need a level of consistency and to be
grounded. The world has to make sense at any stage of our
journey. Otherwise, a child should feel lost before completing
university (although a Ph.D. degree might leave you with more
questions than answers).

The need for internal consistency of a world model can have
interesting consequences. It is clear that the development of a
world model is a highly personal and circumstantial affair.
There are of course many areas where we would develop
common models. We will all learn readily that water can
lessen thirst and that apples fall straight-down from the trees.
But there are many other more complex circumstances in
life. The causal reasons for a downturn in one’s economic
livelihood are likely complex, and blaming a scapegoat is
much easier. In fact, conspiracy theories are considered an
easy way to satisfy the need for causal explanations to preserve
the internal consistency of one’s world model [41], [42]. Such
self-preservation attempts might also underlie the affinity for
some people to cults [43].

So, how would we learn a world model iteratively and
interactively? As system 2 does not work in isolation, it is
possible to first learn simple associations such as getting fed
as a baby when crying. As long as the world model works
to make predictions and decisions based on it to achieve
goals, there is no need to change it. Slight adaptations to a
correlational model such as the deep learning System 1 is also
possible, although even there the plasticity-stability dilemma is
well recognized. But a fundamental different situation occurs
when the predictive errors of the world model become severe
enough so that it is clear that new solutions must be found. As
argued in [36], this is when System 2 has to jump into action.
The precise process of what constitutes a severe prediction
error is not yet clear, although some suggestions have been
made, such as surprise [44]. It is also known that confidence
is an important modulator of human decisions, and confidence
is explicitly represented in the frontal cortex [45], in contrast
to the more common approach in machine learning [46].

V. CHALLENGES FOR OUR SOCIETY

Understanding brain processes is important for many areas,
such as the development of effective drugs, the development
of advanced mental health strategies, and the fight against
conspiracy theories. The architectural differences between the



brain and foundation models make the usefulness of foun-
dation models in understanding brain processes questionable.
The differences also bear the potential risk of applying AI
models in our society. The specific architecture of the brain,
its biological realization, and our physical limitations provide
a general limit to human abilities. As AI does not have these
principle constraint, then there is the risk of opening Pandora’s
box. What if the superhuman abilities of AI lead to the
enslavement of the human race?

We would like to argue that this is to some extent already
the case. The problem is thereby not so much the superhuman
ability of AI but rather the naivete of how human work
with such technologies. For example, foundation models are
excellent for writing assays. Their language skills outperform
by far those of the average student, and their access to an
immense body of knowledge allows for a comprehensive depth
of some subject areas. Teachers are now concerned that they
are spending too much time determining whether AI tools
have been used. We would like to argue that the use of
AI tools is not the main problem per se. In fact, humans
and our society benefit a great deal from our ability to use
tools. Hence, we think the teacher should be less concerned
about if tools have been used or not. What is important is
that the work submitted by students should be considered the
student’s work and that the student is responsible for all that
is said. This includes the possibility of including work that
would be considered plagiarism, but also incorrect statements
or inappropriate components. The problem is not that students
use the AI tool, but that the students are too naive and blindly
trust the result of AI. It is also questionable that teachers ask
questions that an AI tool can answer. Such a question has little
value in the context of modern education.

We would like to argue that the risk of technology for our
society is real and that there are already concerning examples.
We already mentioned above how conspiracy theories are
thought to satisfy the need for consistency of our System
2 world model. It is widely recognized that social media
are largely contributing to the rampant increase in conspiracy
theories, likely due to their dynamic of creating self-consistent
groups. This was certainly not the intention of creating social
media platforms, but an unintended consequence due to the
lack of awareness of such threads.

It is clear that a major shift is needed in our educational
system to respond to the disruptive change that AI tools
bring. Asking ChatGPT to write an assay is not a skill, but
being able to evaluate the output of ChatGPT is. It could
therefore be argued that it is now more important to focus on
eduction of more holistic skills like the ability of evaluating
computer code rather than teaching how to write computer
code. This somewhat reflects the discussion of calculators
when they became more widely available. After some initial
struggles, it is now well recognized that there is a need to
understand mathematical concepts, while using a calculator
definitely has its place. However, one could also argue that
AI now brings a new level of tools that make it impossible
for humans to supervise them. That is, ChatGPT can provide

excellent answers that likely outperform the knowledge of
many people. Hence, how should we be able to evaluate their
output. However, this is not necessarily different from other
tools. We commonly use the output of tools without much
questioning, at least if the output is reliable. There is no
need to question a calculator as we know that their output
is commonly correct. Of course, there could be circumstances
where this is not the case, and recognizing these instances is
the real skill that we need. This is also true for less reliable
tools, where it becomes more common that we make risk
assessments when relying on the results of tools. Education
about how to use tools appropriately is now an urgent matter.

VI. CONCLUSION

Foundation models and their derivatives provide enormously
useful new tools for automating tasks that have traditionally
been performed by humans. We might be building amazing
machines that can write computer code, answer common
questions, and draw pictures that can be used in presentations.
Having tools that can automate human tasks is great at a time
where we have so many challenges that need attention, such
as providing solutions to climate change or to providing care
of elderly and less fortunate.

We should not be afraid of solutions that can do better
than humans. We have already engineered many solutions that
outperform humans in many areas. The car can transport us
from A to B faster than we can run, and tractors can plant
much faster than we could do by hand. Of course, driving
a car can also be dangerous, so it is important to address
negative concerns. Here, certainly, lies a new magnitude of
possible threads. If AI tools are becoming so good at an-
swering questions and giving advice, we might start trusting
their advice with bad consequences. Even if we are aware
of these threads, maybe these machines become good enough
to manipulate our minds to start serving the machines rather
than the machines serving us. Although we need vigilance, the
spread and belief in fake news is already rampant. We need
to solve this problem.

The point of this position paper is not the dismissal of AI,
but to point out that we need to react to the changing situations,
and that we need to go beyond those models if we want to
understand the brain and the human mind. Going back to the
car example, while cars can travel, they do not speak to the
understanding of how humans run or how human physiology
works. Generative AI has reached human and maybe even
superhuman capabilities in many areas, but this does not mean
that we understand the human mind. Understanding the human
mind is still important to tackle mental challenges and to
comprehend our position in the world on a more philosophical
level.

It is increasingly recognized that understanding human
intelligence does require the embedding of complementary
Systems 1 and System 2. For modeling purposes, we roughly
equated System 1 with deep learning approaches and System
2 with causal modeling. A lot of research is dedicated to
their individual understanding, and we want to emphasize



here that there is a vacuum on understanding their interaction
and algorithmic implementation. Furthermore, in contrast to
deep learning, where powerful approaches to learning are
known and widely used in practice, the Learning of System 2
models is at the forefront of research, with so far few practical
solutions [47]. Such algorithms for learning individual-world
models would provide new insights into the understanding of
human behavior that are relevant for our society. Although
neural networks have exploded onto the scene in recent years,
it is clear that there are many more questions to be answered
than just creating more powerful foundation models.
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