Je

CSCI 1108

Debugging

Bugs Suck (Mosquitoes too)

 Most programs have bugs
— Design flaws
— Typos
— Bad assumptions
— Logic and calculation errors
* Bugs cause programs to misbehave
— Crash
— Have incorrect behaviour
— Corrupt data
— Can cause loss of life, limb, and property

* Buggy programs must be debugged (fixed)

This Program Does Not Work... Why?

The robot is moving the distance d=2 in a given time interval. We want to
calculate the position x of the robot at each of the 10 intervals when the
position at the first time interval is x[0]=1

vari
var x[10]=[0,0,0,0,0,0,0,0,0,0]
var distance=2

x[0]=1

for iin1:9do
X[1]=x[i-1]+distance

end

[1,3,5,7,9,11,13,15,17,19] [1,2,0,0,0,0,0,0,0,0]

Asking the Right Questions

Why is the program not working?
— Because it has a bug...

Assumption: Most of the program is correct

Observation: The bug’s location is the point in
the program where it starts to misbehave

Conclusion: So, we ask where is the bug?
— When does the bug appear?

— How does the bug manifest?

The When and the How

* Question: Why do we care about
— When the bug appears?
— How the bug manifests?

* Answer:
— Programs are large and complicated

— Want to restrict our bug search to part of the
program

— This makes debugging easier, but ...
 Still need to find the bug

Where to Start ...

Recall: We assume that program misbehaviour
begins shortly after bug is encountered

Goal: Narrow our search for the bug

Idea: Determine the first instance of program
misbehaviour

So... where in the program do things go wrong?

Manifestation, Location, Match

* |dea:
— Bugs manifest in program misbehaviour
— Misbehaviour corresponds to a program location
— Need to match the manifestation to the location

e Todo:

— |dentify the bug manifestation
 How do we know that something is wrong?

— |dentify the manifestation location
* Where in the code does this something occur?

Bug Manifestation

var min

var max onevent prox

var mean call math.stat(prox.horizontal[0:4],

var state = STOPPED min, max, mean)

onevent button. forward when state== FORWARD and max > THRESHOLD do
state = FORWARD state = TURN
motor.left.target = SPEED motor.left.target = -SPEED
motor.right.target = SPEED end

onevent button.backward when state == TURN and max <= THRESHOLD do
state = STOPPED state = FORWARD
motor.left.target = 0 motor.right.target = SPEED
motor.right.target = 0 end

* This program fails to make the robot move forward after the
robot starts to turn
e Where in the code does it fail?

max

var mean
var state = STOPPED

onevent button.forward
state = FORWARD
motor.left.target = SPEED
motor.right.target = SPEED

onevent button.backward
state = STOPPED
motor.left.target = 0
motor.right.target = 0

onevent prox

9p0) weidoud

call math.stat(prox.horizontal[0:4],
min, max, mean)

when STATE == FORWARD and ma
state = TURN
motor.left.target = -SPEED
end
when state == TURN and max <= 0 do
state = FORWARD .
motor.right.target = SPEED How do we know what part of execution
end

corresponds to what part of the program?

The “printf” Method

 We have two options:
— Visually match code to execution (ok for small programs)
— Use a mechanical procedure to narrow our search

e Goal:

— Need to determine when we have reached specific
locations in our program

— Want the program to let us know when it has reached a
specific location

e |dea:

— Perform output when specific locations are reached
— l.e., Turn on LEDs when our program reaches a set location

Add LED Activations

var
var
var
var

call leds.circle(0,0,0,0,0,0,0,0)

min
max
mean
stat

onevent
state
motor.

motor

onevent
state

motor

motor.

e = STOPPED

button. forward
= FORWARD
left.target = SPEED

.right.target = SPEED

button.backward
= STOPPED

.left.target = 0

right.target = 0

onevent prox
call math.stat(prox.horizontal[0:4],
min, max, mean)

when STATE == FORWARD and max > THRESHOLD do
state = TURN
motor.left.target = -SPEED

end

when state == TURN and max <= THRESHOLD do

call leds.circle(32,0,0,0,0,0,0,0)

state = FORWARD

call leds.circle(32,32,0,0,0,0,0,0)

motor.right.target = SPEED

call leds.circle(32,32,32,0,0,0,0,0)
end

Use the circle of LEDS on top of the robot
call leds.circle(a,b,c,d,e,f,g,h)

* Parameters range between 0 (off) and 32 (very bright) '

Run the program

Aledf *led7

The Result

min
max
mean
stat

var
var
var
var

call leds.circle(0,0,0,0,0,0,0,0)

onevent
state
motor.
motor

onevent
state
motor
motor.

.right.target

.left.target

e STOPPED

button. forward
FORWARD
left.target

SPEED
= SPEED
button.backward
STOPPED

=0

right.target = 0

onevent prox

call math.stat(prox.horizontal[0:4],
min, max, mean)

when STATE
state

motor.left.target

end

when state

state

call leds.circle (32, 3256567670707 69

motor.right.target
call leds.circle(32,32,32,0,.0.0

end

TURN

FORWARD

TURN and max <=
call leds.circle(32.-0..0,0,0 0 0

-SPEED

SPEED

0)

FORWARD and max > THRESHOLD do

THRESHOLD do

e Observation: The LEDs light up

* Therefore, the second when statement is being executed

e But the motors are not behaving correctly
e So the bug is likely in this part of the code

e

Deduction

* All three LEDs came on
— Where in the program does this occur?

— What else happens in the same part of the
program?

— Is this correct?

— Why or why not?

e Assume: Bug is near by (not always the case)

Where is the Bug?

var min
var max

var mean

var state = STOPPED

onevent prox

call math.stat(prox.horizontal[0:4],
min, max, mean)

call leds.circle(0,0,0,0,0,0,0,0) when STATE == FORWARD and max > THRESHOLD do
state = TURN
onevent button.forward motor.left.target = -SPEED
state = FORWARD end
motor.left.target = SPEED
motor.right.target = SPEED when state == TURN and max <= THRESHOLD do
call leds.circle(32,0,0,0,0,0,0,0)
onevent button.backward state = FORWARD
state = STOPPED call leds.circle(32,32,0,0,0,0,0,0)
motor.left.target = 0 motor.right.target = SPEED
motor.right.target = 0 call-Teds.circle(32,32,32,0,0,0,0,0)
efd
e Should be

motor.left.target
e Because the left motor was set to —SPEED earlier on

SPEED

Drowning in Complexity

* Observations:
— This is a simple program
— Yet, debugging it was not easy
— Imagine what happens with more complex programs

* Question: How do we debug large programs?
— Sometimes bugs are not near their manifestation

— We cannot use LEDs everywhere
* Too few LEDs
* Takes too long to do

— We need to be selective

* We need a debugging strategy!

Divide and Conquer

Question: How do you search a phonebook?

Idea: We can search a program for bugs in the
same manner

Observation:

— Programs are linear entities

— Programs comprise phases or stages

Question: Does the bug occur before Stage 37

Finding the Bug

Key Idea: The partitions are where you place print blocks (LEDs)

1 1
1 1
Stagel { Stage?2 i Stage 3 Stage 4 Stage 5
P >
£ ’ h S N
>
S

£
Stage 2a
’
V4 A
7 . : S

1 1
HEE

—

Question: What happens if the program cannot be subdivided
further?

Example

var min
var max
var mean
var state = STOPPED

onevent button.forward
state = FORWARD iﬂ:
motor.left.target = SPEED
motor.right.target = SPEED

2

onevent button.backward
state = STOPPED
motor.left.target = 0
motor.right.target = 0

onevent prox
call math.stat(prox.horizontal[0:4],
min, max, mean)

when STATE == FORWARD and max > 0 do

state = TURN
-SPEED Efn

motor.left.target =
0 do

30

end

when state == TURN and max <=
state = FORWARD
motor.right.target = SPEED
end

Discussion

* Debugging is an art, not a science
— It’'s hard to do
— A little different each time
— Requires you to solve many small problems
— Can take a long time

* There is no silver bullet (no quick fix)

* There systematic approaches to ease debugging
— Use output to identify location of bug manifestation
— Use “divide and conquer” to narrow your search
— Have someone look over your shoulder (really!)

Debugging Rules of Thumb

Use an output mechanism (such as LEDs) to
ocate the point in your program where the

oug manifests

Use divide and conquer to narrow your search
in large programs

Use as few LEDs as possible

Compare closely your expectation with
program outut

Have good luck

