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Abstract When retrospective revaluation phenomena (e.g.,
unovershadowing: AB+, then A−, then test B) were discov-
ered, simple elemental models were at a disadvantage because
they could not explain such phenomena. Extensions of these
models and novel models appealed to within-compound asso-
ciations to accommodate these new data. Here, we present an
elemental, neural network model of conditioning that explains
retrospective revaluation apart from within-compound associ-
ations. In the model, previously paired stimuli (say, A and B,
after AB+) come to activate similar ensembles of neurons, so
that revaluation of one stimulus (A−) has the opposite effect on
the other stimulus (B) through changes (decreases) in the
strength of the inhibitory connections between neurons acti-
vated by B. The ventral striatum is discussed as a possible
home for the structure and function of the present model.

Keywords Associative learning . Classical conditioning .

Cue competition . Generalization . Retrieval

Introduction

Early reports of retrospective revaluation phenomena identified
two different effects—namely, recovery from overshadowing
(Kaufman & Bolles, 1981; Matzel, Schachtman, & Miller,
1985) and backward blocking (Shanks, 1985). In the first phase
of recovery from overshadowing, a compound stimulus is
conditioned (AB+). This causes overshadowing, where the

stimuli of the compound each receive less associative strength
than they would have had they been conditioned alone. In the
second phase, only one stimulus from the original compound is
presented, and it is not reinforced (A−), extinguishing that
stimulus’s associative strength. Recovery from overshadowing
is the finding that responding to B, the absent stimulus, is
increased relative to a control group (e.g., that receiving C− in
the second phase). In backward blocking, the first phase also
involves conditioning a compound stimulus (AB+). In the
second phase, however, one element is presented and rein-
forced (A+). Backward blocking is the finding that responding
to stimulus B decreases below the level in a relevant control
group. The phenomenon gets its name because it is the reverse
of the standard blocking procedure (phase 1, A+; phase 2,
AB+). Research in the years that followed these reports turned
up several other forms of retrospective revaluation—namely,
backward conditioned inhibition (Chapman, 1991; Urcelay,
Perelmuter, & Miller, 2008), recovery from forward blocking
(Blaisdell, Gunther, & Miller, 1999), recovery from condi-
tioned inhibition (Lysle & Fowler, 1985), and others.
Retrospective revaluation phenomena have not always been
found when tested for, however (e.g., Dopson, Pearce, &
Haselgrove, 2009; Shevill, & Hall, 2004).

The associative models in the early days of retrospective
revaluation findings were unable to account for these phe-
nomena. For example, the Rescorla–Wagner model (Rescorla
& Wagner, 1972) predicts that no change to the absent stim-
ulus will occur during the second phase. The Rescorla–
Wagner model is defined as

ΔV i ¼ αiβ λ − ΣVð Þ; ð1Þ

where Vi is the associative strength of stimulus i and pa-
rameters αi and β (both range between 0 and 1) are learning
rates related to the salience of the conditioned stimulus (CS)
and unconditioned stimulus (US), respectively. The
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parameter λ represents the total associative strength sup-
portable by the US (a positive value when present and
0 when absent), and ΣV =Σ j Vj is the sum of the associative
strengths of all stimuli present on a trial. The associative
strength of a CS is updated after each trial in proportion to
the surprisingness of the US (λ − ΣV) and the learning rate
parameters associated with the CS and US. In recovery from
overshadowing, if A and B have equal salience, an AB+ phase
leaves each stimulus with half of the total associative strength. In
phase 2, an A− treatment extinguishes stimulus A’s associative
strength but does not affect the associative strength of stimulus
B, because its absence gives it a salience, αB, of zero. Likewise,
Wagner’s standard operating procedures (SOP) model (Wagner,
1981) could not account for the phenomena. In SOP, associative
elements representing each stimulus can be either in the inactive
state or in one of two active states (A1 or A2, corresponding to
being in focal attention or peripheral attention, respectively).
Whenever a stimulus is presented, some of its elements are
moved from the inactive state to A1. Over time, these elements’
activity decays, moving from the A1 state into A2 and, even-
tually, into the inactive state. When a stimulus is presented,
elements of its past associates enter A2, and again decay back
to the inactive state. Associations between stimuli occur
depending on the states in which their elements reside. If the
elements of two stimuli are in the A1 state, the strength of their
association is increased. If the elements of one stimulus are in
the A1 state and the elements of another stimulus are in the A2
state, an inhibitory association from the first stimulus to the
second stimulus is formed, but not vice versa. In the first phase
of recovery from overshadowing, the elements of stimulus A
and B are associated with those of the US and of one another.
In the second phase, stimulus A is presented alone, causing its
elements to enter A1 and activating elements of its associates B
and the US into A2, thereby reducing its association with them.
Stimulus B’s association with the US remains unchanged,
since no associations are formed between two stimuli concur-
rently present in the A2 state.

In response to retrospective revaluation phenomena, the
Rescorla–Wagner model and SOP were retrofitted to explain
them (Aitken & Dickinson, 2005; Dickinson & Burke, 1996;
Van Hamme &Wasserman, 1994). Both models make use of
within-compound associations presumably developed in the
first phase to associatively retrieve the absent stimulus. Then
each model uses a mechanism to revalue the absent stimulus.
In the case of Dickinson and Burke’s extension of SOP, two
associative learning rules are added. The first is that when the
elements of two stimuli are in the A2 state, excitatory con-
nections form between them. Also, when one stimulus is in
the A1 state and another is in the A2 state, inhibitory asso-
ciations between the stimuli are formed in both directions
(e.g., A→B and B→A), instead of only one, as before. Now,
when A is presented without the US in the second phase (i.e.,
recovery from overshadowing), the representations of both B

and the US are in A2, satisfying the condition for formation
of an excitatory association between them. Thus, during test,
responding to stimulus B increases. If, instead, A is pre-
sented and reinforced in the second phase (i.e., backward
blocking), the representations of A and the US will enter into
the A1 state, while the representation of stimulus B, their
associate, will be called into the A2 state. B in A2 and the US
in A1 result in the formation of an inhibitory association
between B and the US, thus reducing its associative strength.
So the associative strength of B and the response to it in a test
phase are greater in the recovery from overshadowing design
than in backward blocking. In the case of the Van Hamme
and Wasserman extension of the Rescorla–Wagner model,
the absent stimulus is retrieved and given a negative alpha
value. This leads to revaluation of the absent stimulus in the
opposite direction as the presented stimulus. The Van
Hamme andWasserman model was recently elaborated upon
byWitnauer andMiller (2011). Their model further develops
the use of within-compound associations to enable it to
account for second-order retrospective revaluation phenom-
ena, which we will discuss later. Within-compound associa-
tions are also featured in other associative models of retro-
spective revaluation (e.g., Jamieson, Crump, & Hannah,
2012; Kasprow, Schachtman, & Miller, 1987; Kutlu &
Schmajuk, 2012). For example, in the comparator hypothesis
(Kasprow et al., 1987; Miller & Matzel, 1988; Stout &
Miller, 2007), the within-compound associations become
important during the test phase. The presence of a stimulus
at test evokes previously paired stimuli through within-
compound associations. The presented stimulus’s response-
evoking power becomes the associative strength of the
presented stimulus B minus a fraction of the product of A’s
associative strength and the strength of the A→B within-
compound association. In recovery from overshadowing,
subsequent extinction of cue A makes the product of the
B→A association and A→US association smaller than in a
control group, thereby increasing the response-evoking pow-
er of cue B at test.

A few models have taken a different approach, explaining
retrospective revaluation phenomena apart from within-
compound associations. The APECS model (Le Pelley &
McLaren, 2001; McLaren, 1993, 2011) explains these phe-
nomena using configural units that represent memories of
compound trials. A few elemental associative models
(Dawson, 2008; Ghirlanda, 2005) also explain the phenomena
apart from within-compound associations. Yet the models of
Ghirlanda and Dawson bear a key flaw. As we will show,
substantial revaluation in these models can occur without an
associative history between the elements, an apparent failure
to match the experimental data (e.g., Matzel et al., 1985) and
the present general understanding of these phenomena. The
present work pushes forward this enterprise by overcoming
this particular issue. Since stimulus input excites activity in
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individual neurons of our model, the neurons begin to com-
pete by inhibiting one another through lateral connections
until only a subset (or ensemble) of neurons remains active.
The activities of these neurons collectively express or repre-
sent the associative strength for the stimulus input. After a
compound is conditioned, the constituent stimuli presented
separately tend to activate a significantly similar ensemble of
neurons. So, when one of the stimuli is subsequently
conditioned/extinguished, learning in their common compet-
itive lateral inhibitory connections is increased/decreased,
which has the effect of oppositely revaluing the absent con-
stituent. Without the compound conditioning phase, however,
stimuli would activate largely separate ensembles of neurons
(and lateral connections) and, thus, would not significantly
affect one another during a revaluation.

Background

The models of Dawson (2008) and Ghirlanda (2005) represent
simple elemental models of retrospective revaluation phenom-
ena. Dawson offers a model similar to the Van Hamme and
Wasserman (1994) extension but gives negative α values to all
absent stimuli. Ghirlanda took a different approach, which we
will now discuss in some depth. This model represents stimuli
in a distributed format, instead of the usual one-to-one stimulus-
input arrangement. Each stimulus in this model is described as a
compound of many stimulus elements (ministimuli). For a
feature such as color, we could model 100 stimulus elements
spanning the visible color spectrum, each element representing
a different wavelength. Here, Ghirlanda represents each punc-
tate stimulus (e.g., stimulus A) as a Gaussian pattern of stimulus
elements, as shown in Fig. 1. Formally, the input provided to
Ghirlanda’s model is

Si ¼ K þ
X

j

α je
−

i
N − μ jð Þ2

σ2 ; ð2Þ

where Si represents the ith stimulus element’s input salience, αj

is the salience of the jth stimulus (analogous to the Rescorla–
Wagner model’s α term), and N represents the number of
stimulus elements. Each stimulus’s Gaussian pattern of stimu-
lus elements is centered about a specific feature value (e.g.,
wavelength) between 0 and 1 (μj) and has a certain width (σ). In
simulations of Ghirlanda’s model and our proposed model, we
use 100 stimulus elements spanning between feature values of
0 and 1 and useσ ¼ 1

10
ffiffi
2

p to fit several Gaussian-shaped stimuli

into this range. The environmental context’s representation
does not have a Gaussian shape. Instead, it is represented as a
flat function, such that all 100 stimulus elements have the same
value, K = 0.2. In a simulated trial, the input provided to
Ghirlanda’s model (Si) is the sum of the Gaussian patterns for
each presented stimulus and the flat background context. The
Gaussian shaped stimuli L, T, and C that we use in our simu-
lations are shown in Fig. 1, as well as an example input LTC
compound, which incorporates the context (X).

Learning proceeds after each trial as in the Rescorla–
Wagner model, except that each stimulus element has an
associative strength that is updated, instead of associative
strengths for punctate CSs,

ΔWi ¼ Siβ λ − rsð Þ ð3Þ

rs ¼
X

i

W iSi; ð4Þ

where Wi represents the ith distributed stimulus element’s
associative strength and rs computes the total associative
strength for all stimuli including the context on a given trial.
For simple Pavlovian conditioning (i.e., AX+, X−, where X−
represents the extinction of the context during the intertrial
interval), the AX+ trials pull the Wi values upward toward
rAX = 1, while the X− trials pull Wi values downward toward
rX = 0. At the end of this tug-of-war,Wi values are found that
satisfy both pulls, and thus asymptotes are reached. The
resulting associative strengths can be pictured as a Gaussian
curve shifted downward (negatively) by an amount similar to
the context value, K.

One of the earliest investigations of recovery from
overshadowing was reported by Matzel et al. (1985). In
Experiment 3, they paired a light and a tone in the first phase,
followed by reinforcement (TL+). They also reinforced sep-
arate presentations of a click stimulus (C+). In the second
phase, they separated subjects into three groups: Group ET
received nonreinforced presentations of the tone, Group EC
received nonreinforced presentations of the click stimulus, and
Group O was placed in conditioning chambers (as was done
for the other groups), but no additional stimulus presentations
were made. In the third phase, testing was performed. Results
from their experiment and results from a simulation of this

Fig. 1 Distributed stimuli used in a simulation of the Ghirlanda (2005)
model. Gaussian-shaped stimuli L, T, and C represent conditioned
stimuli, and the flat function X represents the context. The input to
Ghirlanda’s model is the sum of the present stimuli and the context, of
which the example LTCX is given. There are 100 stimulus elements
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procedure using Ghirlanda’s (2005) model are shown in Fig. 2.
The first phase of simulation (TLX+, CX+, X−) leads to a set
of Wi values that could be depicted as three negatively shifted
Gaussians (rT = 0.50, rL = 0.50, rC = 1.0). In the second phase,
the extinction of the tone (rT = 0.0) in Group ET inflates
responding to the light (rL = 0.61), which corresponds to the
ordinal findings in Matzel et al. However, when we examine
Group EC, where the separately conditioned click stimulus is
extinguished, we find that responding to the light stimulus has
also been inflated (rL = 0.71), which is at variance with the
experimental data in Fig. 2. The extinction of the tone stimulus
in Group ET also inflated responding to the click stimulus
above Group O, the control (Group ET, rC = 1.11; Group O,
rC = 1.0) and extinction of the click stimulus in Group EC also
inflated the tone above Group O (Group EC, rT = 0.71; Group
O, rT = 0.50). These two revaluations also disagree with the
experimental findings. In summary, these simulations show
that retrospective revaluation in Ghirlanda’s model does not
require a history of compound conditioning. Instead, it predicts
that the revaluing of a conditioned stimulus will substantially
affect the associative strength of even separately conditioned
stimuli. Dawson’s (2008) model makes the same prediction,
apparently employing a negativeα for all absent stimuli. These
simple associative models disagree not only with the findings
of Matzel et al. and others (Cole, Barnet, & Miller, 1995;

Miller, Barnet, & Grahame, 1992), but also with the current
general understanding of these phenomena (but see Amundson,
Escobar, &Miller, 2003; Escobar, Pineño, &Matute, 2002). In
practical terms, if conditioning a stimulus could substantially
alter the responses to unrelated stimuli, such interference could
accumulate and confuse an organism about what each stimulus
actually predicts.

Instead of simulating the experiment by Matzel et al.
(1985), we could also have shown Ghirlanda’s (2005) model
in a within-subjects design retrospective revaluation para-
digm, with AB+ and CD+ in the first phase and A+ and C− in
the second phase. This combination of recovery from over-
shadowing and backward-blocking designs demonstrates
retrospective revaluation when response to B in the test
phase is smaller than the response to D (Chapman, 1991;
Shanks, 1985). Since Ghirlanda’s model revalues stimuli that
have not been previously associated with one another, the
conditioning of A affects stimuli C and D as much as it does
stimulus B, and the extinction of C similarly affects A and B.
Because the conditioning of A and extinction of C both pull
on B and D, but in opposite directions, we will find a near
zero change in the values of B and D relative to their pre-
second-phase values, which is not the retrospective revalua-
tion result commonly reported for this paradigm. Although
interesting, the problematic mechanisms that bring about a

Fig. 2 Results of a lick suppression experiment (3) in Matzel,
Schachtman, and Miller (1985) and its simulation using the model of
Ghirlanda (2005). Responding shown in the upper panels is in terms of
mean log latency (in seconds) to make 25 licks in the presence of the light
stimulus. Longer latencies indicate greater suppression and greater asso-
ciative strength. Corresponding simulations of associative strengths from
Ghirlanda’s model are provided in the lower panels. In the simulations, a
procedure similar to that in the experiment was used (‘X’ is the context):
phase 1: TLX+, X−, CX+, X−; phase 2: Group O, X−, X−; Group ET,
TX−, X−; Group EC, CX−, X−; phase 3: LX− TX−, CX− (all groups).

Sufficient trials were used in each phase of simulation to ensure that
responses to a stimulus reached asymptotic levels. In Ghirlanda’s model,
extinction of the tone in phase 2 (Group ET) inflated the light above the
overshadowing control group (Group O), which corresponds to the find-
ings of Matzel et al.. The extinction of the click (Group EC) in simulation,
however, also strongly inflated the light, which is a failure to predict the
associated experimental data. The extinction of the tone in the model also
inflated the click and vice versa, but this also fails to occur in the data.
Experimental data from Matzel el al. (1985), Experiment 3, used by
permission
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near zero change in this paradigm are readily understood
from our simulation of recovery from overshadowing.
Therefore, we do not pursue a within-subjects design in later
comparisons.

As we will show, the present model overcomes the prob-
lems described above and yet, like the simple associative
models, does not rely upon within-compound associations.
In what follows, we will describe the present model and then
look at the contributions of each of its mechanisms by
enabling them one at a time while simulating several classi-
cal conditioning phenomena. Ultimately, we will arrive at an
explanation for retrospective revaluation phenomena.

The present model

Here, we show how associative strength is computed and up-
dated in our neural network model, as illustrated in Fig. 3.
Where possible, we attempt to maintain biological plausibility
andwill brieflymentionwhere this motivation influences certain

design decisions. Possible neurobiological correspondences
reflecting specific structural and learning rule details are
discussed in a later section.

We represent a stimulus in the same Gaussian form as in
Ghirlanda’s (2005) model. Unlike the Ghirlanda model,
however, the present model does not use a flat function to
represent the context. Instead, the context is expressed by its
own Gaussian-shaped curve, to represent that an environ-
mental context is really a collection of stimuli itself. This
approach also allows the possibility of having different con-
texts, if so desired. Given a certain distributed CS as input,
the model responds with activity in its neurons, which equals
the excitatory input minus the lateral competition. Upon
stimulus presentation, each neuron is allowed to settle into
an internal activity (uj) according to

Δuj ¼
1
τ

uj −
1
N

X

i ¼ 1

N

SiwI
ij −

1
M

X

k ¼ 1

M

r ukð ÞwL
kj

 ! !

ð5Þ

where τ = 10, N = 100 is the number of stimulus elements,
andM = 2,500 is the number of neurons in the model. We use
a large number of model neurons because it improves the
consistency of the simulation results. The distributed stimu-
lus elements, Si, are connected to each neuron with a certain
connection probability (PI = .25). Subsequent equations
appear to invoke full connectivity. However, an absent con-
nection is represented as an immutable connection weight of
zero, which helps to simplify both the formal description and
implementation of the model. This partial connectivity al-
lows certain neurons to prefer activating in response to one
stimulus or another and agrees with the reality that neural
projections are not fully connected. The synaptic weights
receiving stimulus input, wI

ij, are initialized with a value of
20 for each connection made. Note that the indices i and j
represent specific stimulus elements and specific model neu-
rons respectively. So, instead of having a single weight per
stimulus element, as in the Ghirlanda model, there is a single
weight per stimulus element for each neuron in the model.
Each neuron also has lateral synaptic weights, which receive
inhibitory inputs from competing neurons. The lateral weight
wL

kj is located on neuron j and receives input from compet-
ing neuron k. These weights are also initialized to 20 for
connections made, and recurrent connections are permitted;
the connection probability is PL = .25. The term r(uk) is an
activation function transforming the internal activation into a
mean neuron firing rate,

r ukð Þ ¼ L ukð Þ2; ð6Þ

where L(uk) = 0 when uk < 0 and otherwise L(uk) = ukp. L(uk)
is a threshold-linear function (Usher & McClelland, 2001),
which here reflects that neurons become silent when their

Fig. 3 The present model. The stimulus element inputs represented by
the rounded boxes take exactly the same distributed input as that used in
Ghirlanda’s (2005) model, except that the context here is also modeled
as a Gaussian pattern. Each dashed line in the model represents a
connection that will (or will not) be established upon model initializa-
tion with some fixed probability. Neurons in the model, represented by
circles, receive input and become excited. The connections between the
neurons are inhibitory. These connections induce competition between
the neurons, which reduces neuron activities and leads to a subset of
neurons that dominates and suppresses all other neurons. The activities
of the neurons are accumulated (bottom-center circle), where one half of
these neurons add and the other half subtract from the sum. The total is
appropriately scaled and represents the sum of associative strengths
(ΣV) for the input stimuli. Conditioning is accomplished by changing
the connection weights of model neurons. This is a function of the
several factors including the US surprisingness (computed in the bot-
tom-left circle), which is represented by the broad arrow leading back to
the input and lateral connections. Importantly, the stimuli presented on a
trial determine the ensemble of active neurons that develops through
competition. Since it is the sum of activities of model neurons that gives
the associative strength, the active neural ensembles come to represent
the associative strengths of the stimuli that evoke them
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internal activation goes below zero (analogous to real neu-
rons). The outputs of these model neurons converge as a sum
of the neuron firing rates, r(uj), with half of the neurons
increasing the output and the other half decreasing it:

@V ¼ λS

M

X

j¼ 1

M

T jð Þr u j
" #

; ð7Þ

T jð Þ ¼ sgn
2 j
M

−1
$ %

; ð8Þ

where the sgn() function returns the sign of its argument and
λS is a factor that translates the output from a sum of activities
into units of associative strength (λS = 2,500). The function
T(j) is +1 for half of the neurons (hereafter called positive
neurons) and −1 for the other half (negative neurons) based on
their index, j. The final sum represents the combined associa-
tive strength of the input stimuli, or the expected associative
strength (ΣV), the analogue to rs in Equation 4 from
Ghirlanda’s model. This approach permits both positive and
negative associative strengths by using a population of posi-
tively contributing and negatively contributing neurons. For a
positive associative strength, the positive neurons are (on aver-
age) more active than the negative neurons. Negative associa-
tive strengths are expressed by the opposite difference of activ-
ity. The segregation of neurons into these two groups allows all
input connection weights to be consistently positive, which is
more plausible biologically speaking. There are few instances
where a real neural connection can switch from having a
positive to a negative influence. Also, as we will see, having
two segregated groups of neurons contributes to generating a
novel configural mechanism from elemental inputs.

Importantly, the ensemble of neurons that wins the com-
petition and remains active is determined by the stimulus
input provided. Because it is the activities of model neurons
that ultimately combine to express associative strength, the
active neural ensembles come to represent the associative
strengths of the stimuli that evoke them. The learning rules
cooperate by only updating the active ensemble neurons and
only for nonzero stimulus elements (i.e., present stimuli).
The learning rule used to update the input weights of each
neuron is

ΔwI
ij ¼ T jð ÞSiβ λ−ΣVð ÞL uj

" #
: ð9Þ

Note that updates to a neuron are proportional to its
internal activation when it is above zero only (i.e., L(uj))
and thus is part of the ensemble of active neurons. Also note
that weights associated with distributed stimulus elements
that have zero salience will also not change. This ensures that
input weights are updated only for presented stimuli. The

learning rule for the lateral weights, which receive inputs
from other neurons, is

ΔwL
kj ¼ T jð ÞH ukð Þρ λ−ΣVð ÞL uj

" #
; ð10Þ

where H() is the Heaviside or unit step function (1 when the
argument is greater than zero and 0 otherwise), which means
that learning will occur only if the sending neuron, indexed as
k, is active. The parameter ρ in Equation 10 is the learning rate
parameter for lateral weights (ρ = 0.5β). In this model, an
individual neuron’s weights, wij

I and wjk
L, are always positive.

This keeps the stimulus input influence excitatory and the
lateral influence inhibitory in Equation 5. Weight changes
must have opposite signs for the positive and negative neu-
rons, so that these opposing pathways learn cooperatively. The
function T ( j) defined in Equation 8 achieves this. Equation 9
is essentially a Hebbian learning rule (from its pre- and post-
synaptic activity terms) modulated by the US surprisingness
error term.

Classical conditioning simulations

The present model is readily integrated into trial-based sim-
ulations of classical conditioning experiments. A single trial
consists of presenting stimuli, presenting the outcome (US or
no US), computing the surprisingness, and adjusting synap-
tic weights according to the learning rules. Although we
simulate phenomena that develop CS–US associations, the
model does not explicitly exclude the notion of developing
CS–CS associations, although these do not occur in the
present simulations. The present model, like many others,
does not define any CS–US timing, thereby excluding cer-
tain temporal phenomena (e.g., serial feature-positive dis-
crimination) from its scope. Experimental findings and mod-
el predictions are ordinal in nature, so the usual assumption
that associative strength is monotonically translated into
conditioned responding is made here.

Salience levels play a role in our simulations. The US
(β = .1) has a value of λ = 100 when the US is present and
λ = 0 when it is absent. Conditioned stimuli have a salience of
α = 1, while the context (X) has a salience of α = .2. Each
intertrial interval is simulated like a single conditioning trial,
where the context is presented but not reinforced (X−), just as in
simulations of Ghirlanda’s (2005) model. Associative strength
accrued to the context is partly extinguished during these
intertrial intervals. Parameters of the model used in simulations
have been specified in the preceding section. A similar version
of the present model was described in Connor and Trappenberg
(2011) and shows how performance of the model varies within
appropriate ranges for selected parameters.

An example of how conditioning proceeds in this network
is shown in Fig. 4. In excitatory conditioning (CS→US)
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trials, the synaptic weights of active positive neurons are in-
creased, while the synaptic weights of active negative neurons
are decreased. This results in increased activity in the positive
neurons and decreased activity in the negative neurons for
subsequent trials. The difference between the activity in these
two pathways gives a final positive associative strength. As
conditioning trials continue, the associative strength will grow
until it matches that supportable by the US. More and more
neurons are also silenced through lateral inhibition as an en-
semble of neurons increasingly dominates. During extinction,
the opposite process happens, cutting down positive neuron
activity and restoring negative neuron activity. Also, the active
ensemble will grow to include more neurons once again. In
short, increases and decreases in associative strength track in-
creases and decreases of synaptic weights in the positive neu-
rons, and the opposite relationship exists between associative
strength and the synaptic weights of negative neurons.

In the following sections, we use additional classical con-
ditioning simulations to show how certain model mechanisms
affect model behavior. Beyond the acquisition example in
Fig. 4, we do not revisit demonstrations of the mechanisms
borrowed from the Rescorla–Wagner model but, rather, focus
on the unique mechanisms of the present model. Building
upward, we first show how the combination of the activity-
dependent learning term L(uj) and having dual pathways (i.e.,

positive and negative neurons) develops configural represen-
tations from individual stimuli. Then we demonstrate how
adding lateral inhibition sculpts ensembles of active neurons
and, finally, how learning in these lateral connections enables
retrospective revaluation effects.

Activity-proportional learning and dual pathways perform
configuration

Recall that there are positive and negative neurons in the model
whose influences sum to provide the overall associative
strength. Changes to the weights of these neurons are made
in proportion to their internal activation, L(uj) (Equations 9 and
10). The combination of these two mechanisms leads to the
development of configural cues. To demonstrate this, we sim-
ulate the negative patterning procedure, which in a single phase
interleaves trials of AB− with A+ and B+ trials. The ordinal
finding is that responding to the compound AB during a
subsequent test is less than responding to either A or B alone
(Delamater, Sosa, & Katz, 1999; Harris, Gharaei, & Moore,
2009; Redhead & Pearce, 1995; Woodbury, 1943). To demon-
strate the combined efforts of the two mechanisms, Fig. 5
shows simulated negative patterning results for our model with
and without each of them. In addition, results when lateral
inhibition and lateral learning are enabled are also given to

Fig. 4 The present model during excitatory conditioning, simulated
using only 50 neurons for demonstration purposes. a Activity in some
positive neurons (neurons 26–50) increases with the number of trials.
Other neurons lose the competition and are silenced. Negative neurons
(1–25) are either suppressed or very weakly active. b Overall associative

strength increases, approaching asymptote within 30 trials. c The average
change in input synaptic weights for each neuron between the first and
last trials shows a substantial increase for positive neurons and a slight
decrease for negative neurons. d Lateral synaptic weights also increase
for positive neurons and decrease for negative neurons
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show that these additional mechanisms do not interfere. Note
that to disable the dual-pathway nature of the model, we
eliminate excitatory input to the negative neurons to silence
them. To disable activity-proportional learning, we simulate
without the last term in Equations 9 and 10. Disabling lateral
inhibition is accomplished by fixing all lateral weights to zero
and disabling lateral learning is done by setting ρ = 0.

As Fig. 5 shows, when either the dual-pathway or activity-
proportional learning mechanisms work alone, negative pat-
terning fails. When both mechanisms are engaged, however,
the phenomenon emerges. The way in which the model ac-
complishes this can be seen from the input weights. Figure 6

shows that when activity-proportional learning and both path-
ways are enabled, positive neuronweights specialize for either
stimulus A or B, while negative neuron weights grow simi-
larly for each stimulus. When only a single stimulus (A or B)
is present, the specializing positive neurons activate strongly,
whereas the unspecialized negative neurons activate little. The
sum of large positive neuron activations minus small negative
neuron activations results in asymptotic (λ) conditioned
responding. Now, recall that the activation function is r(uj) =
L(uj)

2, which means that doubling the stimulus input (which
doubles uj) will quadruple a neuron’s output. So, when both
stimuli are present (AB), the negative neurons’ activations are
increased exponentially, which enables them to balance out
the positive neuron activations, resulting in zero conditioned
responding. The weights develop as follows. Initial stages of
training show that for positive neurons that are activated more
strongly for a certain stimulus (e.g., A), the input weights
increase more on A trials than they decrease on AB− trials.
Conversely, weights receiving connections from the stimulus
for which a positive neuron’s activation is weaker (e.g., B)
will have a net decrease because their reinforced trial increases
the weights less than does the decrease occurring from AB−
trials. Negative neuron weights decrease in early stages be-
cause the reinforced trials have a larger positive error term
(which decreases negative neuron weights) than the negative
error term on AB− trials. As associative strength increases to
the individual stimuli, however, this situation reverses, and
negative neuron weights begin to growmore on the AB− trials
and do so roughly evenly for A and B.

Fig. 6 Correlation between the weights in a random selection of model
neurons and stimuli A (∑SiAwij I) and B (∑SiBwij I) when both pathways
and activity-proportional learning are enabled (i.e., lateral inhibition
and lateral learning are disabled). Negative neurons grow relatively
evenly for both stimuli A and B, making them respond substantially
more to the compound AB than to A or B alone. In contrast, positive
neurons’weights tend to specialize (increase) for either stimulus A or B
and decrease for the other stimulus

Fig. 5 Simulation of negative patterning using various configurations of
the present model for 15 differently initialized models or stat rats (error
bars are barely visible for all but one of the panels). Each block consists of
three trials (A+, B+, AB−). Negative patterning requires that both the

positive and negative neurons exist and that there is activity-proportional
learning. The lateral inhibition and lateral learning mechanisms do not
assist but also do not substantially interfere. DP, dual pathway; APL,
activity-proportional learning; LI, lateral inhibition; LL, lateral learning
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Although not the focus of the present article, this approach
to developing configural cues is quite novel. Its elemental basis
puts it in the same realm as Harris’s elemental model (Harris,
2006) and the replaced elements theory (Brandon & Wagner,
1998; Wagner, 2003; Wagner & Brandon, 2001). In such
models, each stimulus is represented by a set of elements.
Elements that are active (or within an attentional buffer) during
conditioning receive larger changes in associative strength than
do the others. Certain elements for each stimulus are allowed to
become activated depending on whether the stimulus is
presented alone or in compound. Therefore, in the negative
patterning procedure, some stimulus elements are primarily
conditioned in the single-stimulus trials, but not the compound
trials, and vice versa. This allows some elements to encode the
single-stimulus associative strength and others to help repre-
sent an opposite compound associative strength. The present
model departs radically from this idea, not needing to deacti-
vate stimulus elements but, instead, deriving its configural
ability from its dual pathways and activity-proportional learn-
ing in the context of a squared activation function. Additional
work is needed to evaluate this approach by simulating other
experimental paradigms and drawing thorough comparisons
with the other configural models on the market. For the present
work, however, we have focused on the model’s ability to
explain retrospective revaluation phenomena, which is sup-
ported by lateral inhibitory connections and the learning there-
in, to which we now turn.

Adding lateral inhibition

Figure 7 shows the neuron response following negative
patterning for a model with only 200 neurons for illustration

purposes, where both panels show models that have activity-
proportional learning and both pathways are enabled. In the
top panel, lateral inhibition is disabled, and in the bottom
panel, it is enabled (without learning, ρ = 0). Although the
difference in associative strength between the two conditions
will be small (see, e.g., the comparison in Fig. 5), the neural
activity takes a new form. Without lateral inhibition, all
neurons are active for every input. When lateral inhibition
is enabled, a unique ensemble of active neurons takes shape
in response to the presentation of each stimulus or com-
pound. On the surface, it may seem that this mechanism is
very similar to the replaced elements mechanism of models,
noted above, that perform configuration. Although lateral
inhibition may technically be able to behave in this way, it
is ancillary in our simulations. In fact, lateral inhibition does
not appear to explain any additional phenomena in this
context, besides taking part in helping lateral learning ex-
plain retrospective revaluation phenomena, which will be
discussed later. A potential benefit, however, is that because
it uses fewer neurons to represent the same information, the
overall capacity of the system to learn further stimulus–
outcome relationships should increase.

With lateral inhibition enabled, unique active ensembles
emerge for specific input stimuli, such that when the input
stimuli change, so will the active ensemble to some degree.
Roughly speaking, the weights of the neurons in the ensem-
ble match the distributed stimulus input profile more closely
than do the weights of neurons that are silenced. Thus, the
similarity between two ensembles depends on the similarity
of the two stimuli and is reduced as stimuli become dissim-
ilar. This is shown in Fig. 8, where the ensemble similarity
between a previously conditioned stimulus having a specific

Fig. 7 Model neuron activity after negative patterning. Using only 200
neurons for demonstration purposes, the simulated activity for each stim-
ulus or compound is computed and drawn as a stacked column in the bar
graph, where each column represents one neuron. The length of each
differently shaded bar in the stack is the amount of activity observed for
the condition it represents. The left half of the neurons (1–100) are

negative neurons, and the right half (101–200) are positive neurons. When
lateral inhibition is disabled, all neurons respond to some degree for every
stimulus and, thus, take part in representing every stimulus’s associative
strength.When lateral inhibition is enabled, however, only a fraction of the
neurons are active for any given stimulus. This means that each neuron
takes part in representing only certain stimuli’s associative strengths
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feature value (e.g., green light) and all feature values (i.e.,
green, red, blue, yellow, etc.) is computed, both for when
lateral inhibition is disabled and for when it is enabled (but
no lateral learning). Although there is no difference in asso-
ciative strength with and without lateral inhibition (upper
panel), the similarity between the neural activations of vastly
different features (e.g., 0.5 vs. 0.2 or 0.5 vs. 0.9) is smaller
with lateral inhibition (lower panel). Without lateral inhibi-
tion, there will be a greater similarity between the neural
activations of different features, because every neuron is
active for every feature.

Until now, we have discussed similarity between two
distinct stimuli. Consider a related case in which one stimu-
lus is joined by a second stimulus to make a compound.
Because there is substantial similarity between the com-
pound and its constituents, the activation of neurons by the
compound will be more similar to the activation evoked by
one of its constituents than to the activation evoked by an
unrelated stimulus.

Adding lateral learning

Simulations of recovery from overshadowing using the present
model are shown in Fig. 9, following Matzel et al. (1985) and
the simulations of Ghirlanda’s (2005) model described earlier.
In particular, these simulations show (1) that recovery occurs
only when lateral learning is enabled and (2) that revaluing a
conditioned stimulus significantly affects only the associative
strengths of stimuli with which it was previously paired, and
not unrelated stimuli.

To understand how lateral learning accomplishes all of this,
we will focus on two positive neurons and explain how recov-
ery from overshadowing can occur, as shown in Fig. 10.

Negative neurons do not play a major role in this phenomenon
but may take a more significant role in other retrospective
revaluation phenomena (e.g., recovery from conditioned inhi-
bition by extinction of the excitor). Excitatory conditioning of
a compound (phase 1) increases the input weights of its active
neurons. Because ρ > 0, the lateral inhibitory connections
between the active neurons grow as well. In phase 2, only
one of the constituents (A) is presented. Because of its history
of activating the ensemble associated with the compound
(AB), there is a substantial degree of similarity between the
ensembles activated by AB and A, and thus these same two
positive neurons are activated again. When the presentation of
A is followed by no reinforcement, these active neurons’
A-specific input weights and their lateral weights are de-
creased. In phase 3, when the absent stimulus (B) is tested,
we detect a change. Although the B-specific input weights did
not change (because there was no input from stimulus B in
phase 2), its active ensemble’s lateral inhibitory weights are
smaller. As a result, there is less inhibition, which increases
these positive neurons’ overall activities and, thereby, increases
the associative strength of B. Intuitively speaking, excitatory
conditioning of a compound ties its constituents together in
terms of causing them to activate similar ensembles of neurons
in future trials. Then interactions occur between these stimuli
through lateral learning in their shared connections. The result
is that extinguishing one increases the associative strength of
the other (i.e., recovery from overshadowing), and increasing
one’s associative strength will decrease the other’s (i.e., back-
ward blocking). In this way, the shared lateral connections play
a similar role as the within-compound associations found in
other models but do not retrieve explicit stimuli per se. Without
the compound conditioning step, as is the case for unrelated
stimuli, there would be fewer shared neurons (and thus, lateral

Fig. 8 Measures of associative strength and active ensemble similarity
between a previously conditioned stimulus (feature value = .5) and all other
feature values (0 to 1) with and without lateral inhibition. In both cases , we
see that CSs with similar feature values evoke substantially similar ensem-
bles and, thus, associative strengths. Adding lateral inhibition tends to lower

the similarity between the ensembles activated by unrelated stimuli. Simi-
larity is computed as the cosine of the angle (i.e., the normalized dot
product) between the neural ensembles activated for the previously condi-
tioned stimulus and the test stimulus
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connections) in the ensembles of the individual stimuli. As a
result, there would be far less change in the lateral inhibition for
an absent stimulus were an unrelated stimulus presented and
revalued.

Second-order retrospective revaluation and relation
to other models

In recent years, theorists have focused on the phenomena of
second-order retrospective revaluation. The second-order
retrospective revaluation procedure involves conditioning,
in successive phases, two compounds that share a common
element (i.e., phase 1, AX+; phase 2, XB+) and, in a third
phase, revaluing one of the nonshared stimuli (A).

Houwer and Beckers (2002) ran three experiments, using
a weapons/tanks procedure. In the first experiment they did
the following: phase 1: CT1+, phase 2: T1T2+, and phase 3:
either C+ or C− between groups. Group C+ had a much
higher rating of C, a lower rating of T1, and a higher rating
of T2. The next experiment looked at third-order retrospec-
tive revaluation: phase 1: CT1+, phase 2: T1T2+, phase 3:
T2T3+, and phase 4: C+ or C− between groups. Group C+
had higher ratings for C and T2 than Group C− did, but lower
ratings for T1 and T3. All the effects were substantial. The
next experiment looked at second-order retrospective reval-
uation in a within-subjects design—essentially, phase 1:

C1T1+, C2T3+, phase 2: T1T2+, T3T4+, and phase 3:
C1+, C2−. Ratings of C1 were higher than those of C2,
and T3 was rated higher than T1 (first-order retrospective
revaluation). There was also a big second-order retrospective
revaluation effect: T2 was higher than T4. Melchers,
Lachnit, and Shanks (2004) obtained results similar to those
of Houwer and Beckers in a within-subjects experiment
within the foods/allergies setting. Their Experiment 3 looked
at second-order retrospective revaluation (e.g., phase 1:
AB+, BC+, phase 2: C+ vs. phase 1: DE+, EF+, phase 2:
F−) and its direct analogue (e.g., where the element trials
came before the compound trials). First-order retrospective
revaluation occurred (e.g., B < E), and second-order ret-
rospective revaluation was in the opposite direction (e.g., A >
D). Denniston et al. (2001), using rats, employed a between-
groups paradigm: phase 1: CA+, phase 2: BA+, then either C−
or nothing. The conditioned response to Bwas lower in the C−
group than in the controls. This finding is consistent with
Houwer and Beckers and with Melchers, Lachnit, and
Shanks (2004).

McLaren, Forrest, and McLaren (2012) reported an exper-
iment on retrospective revaluation using the foods/allergies
setting. First- and second-order retrospective revaluations
were assessed in a within-groups design: phase 1: BC+,
DE+, phase 2: AB+, EF+, and phase 3: A+, F−. Ratings of
B and C both declined, relative to D and E, and the first-order
effect was about as big as the second-order effect. Their

Fig. 9 Simulations of recovery from overshadowing (Matzel, Schachtman,
&Miller, 1985, Experiment 3) using the present model when lateral learning
is disabled (ρ = 0) and enabled (ρ > 0). Error bars represent the small
deviation in results for 15 differently initialized models (stat rats). The
simulation procedure matches that used for earlier simulations of the
Ghirlanda (2005) model: phase 1 (50 trials): TLX+, X−, CX+, X−; phase
2 (200 trials), GroupO, X−, X−; Group ET, TX−, X−; Group EC, CX−, X−;

phase 3 (1 trial), LX−, TX−, CX− (all groups). Circled in the results, we see
that extinction of the tone in phase 2 of the simulation (Group ET) revalued
(inflated) the light above the control group (Group O) when lateral learning
is enabled, but not when it is disabled. Also in agreement with the experi-
mental data, the simulations did not substantially revalue any other stimuli
(regardless of whether or not lateral learning was enabled), in contrast to the
simulations of Ghirlanda’s model
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second-order result is the opposite of the findings described
above. McLaren et al. reported that if they instead provided all
the data at once on handouts, which they interpreted as
entailing a low memory load, then they got a different result;
ratings of B and C moved in opposite directions after A+, and
ratings of D and Emoved in opposite directions after F−. They
further suggested that the findings of Melchers et al., which
were opposite to their own, were the result of a relatively low
memory load. This hypothesis needs to be tested in an exper-
iment that varies memory load.

So, we have a data conflict, but what do the models
predict? McLaren et al. (2012) said that their participants
who received all the data on handouts reported using rational
inference to derive their conclusions, so that after phase 1:
BC+, phase 2: AB+, and phase 3: A+, they reasoned that if
food Awas responsible for the allergy, then food B must not
have been, and if food B was not responsible, then food C
was responsible.

Witnauer and Miller (2011) compared the second-order
retrospective revaluation predictions that are made by the Van
Hamme and Wasserman (1994) extension of the Rescorla–
Wagner (1972) model with their own extension that involved
more development of the role of within-compound associa-
tions. The Van Hamme and Wasserman extension modeled
retrospective revaluation by updating an absent stimulus’s as-
sociative strength with a negative learning rate, whenever a
stimulus was presented with which it had a within-compound

association. Witnauer and Miller’s extension additionally mul-
tiplied this by the sum of within-compound associations be-
tween each of the present stimuli on a trial and the absent
stimulus. Witnauer and Miller show that while both models
demonstrate first-order retrospective revaluation effects, on-
ly their extension demonstrates the most commonly ob-
served second-order retrospective revaluation effects, in
which the first- and second-order associates move in oppo-
site directions. It appears that the critical difference is that
Witnauer and Miller’s enhanced within-compound model
encodes the sign of the within-compound associations (i.e.,
the inhibitory association between the nonshared elements
of the two compounds), whereas the Van Hamme and
Wasserman extension does not. Witnauer and Miller noted
that Stout and Miller’s (2007) SOCR model also predicts the
second-order (and higher-order) effects and that Dickinson
and Burke’s (1996) modification of SOP does not. They
concluded that all models that can explain the most com-
monly observed higher-order retrospective revaluation ef-
fects use within-compound associations.

In a second-order retrospective revaluation experiment
with phase 1: AB+, phase 2: BC+, phase 3: A−, the present
model predicts a different result than would be made by
within-compound models. Because of lateral learning, recov-
ery from overshadowing will occur to the shared element (i.e.,
B’s associative strength will increase), but the model also
predicts that the other, nonshared element (C) will also elicit

Fig. 10 Recovery from overshadowing as demonstrated in the present
model. This diagram focuses on two positive neurons represented by
circles that are active whenever A, B, or AB is presented. Each neuron
receives excitatory inputs from stimuli A and B and an inhibitory con-
nection from the other neuron. a The neurons’ synaptic weights, which are
represented thermometer style in the rectangles associated with each
connection, are initialized to about half value. b After conditioning to
compound AB (phase 1), input weights connecting A and B to the

neurons are increased. Also increased are the lateral weights between
these active neurons. c In the second phase, A is presented but not
reinforced, which decreases its input weights and lateral weights. d
Subsequent testing of B shows an increase of associative strength. Al-
though B’s input weights are unchanged, its lateral weights have de-
creased. Less inhibition means greater activity in these positive neurons,
which translates into more associative strength (Equation 7)
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more responding, when tested. The reason for this is that when
BC is conditioned, it will gravitate toward using a relatively
similar ensemble of neurons as the previously conditioned
AB. As a result, as A is extinguished, C’s somewhat similar
ensemble will have its lateral inhibition lowered as well. This
leads to greater positive neuron activity upon presentation of
C and, thus, greater associative strength.

If retrieval by within-compound association is the mech-
anism by which retrospective revaluation occurs, we would
expect that large within-compound associations should lead
to greater retrospective revaluation than weak within-
compound associations. Consider the following procedure:
phase 1: AX+, phase 2: AX-−, phase 3: AY+, BX+, phase 4:
A−, phase 5: X−, Y− (test). After the first two phases, the
within-compound associations between A and X should be
relatively large, despite the fact that responding to AX after
the second phase should have returned to near initial condi-
tions (i.e., low responding). In the third phase, A and X are
separated but conditioned in compound with Y and B, re-
spectively. Given that the AX within-compound association
is stronger than the AY within-compound association after
phase 3, then within-compound models predict that stimulus
X should be revalued more than stimulus Y. The present
model makes the opposite prediction, that Y will be revalued
more than X. The first phase develops a neural ensemble for
AX, but the second phase extinguishes this, essentially restor-
ing the network to initial conditions. The third and fourth
phases are then seen as a simple recovery from overshadowing
paradigm, where Y is revaluedmore than X. Rational inference
makes the same prediction as the present model because, at the
end of phase 2, the inference would be that neither A nor X
predicts the US. In this way, the third and fourth phases
become a simple recovery from overshadowing paradigm.

The present model differs from other models of retrospec-
tive revaluation that do not employ within-compound asso-
ciations. Although it revalues an absent stimulus according
to associative mechanisms, it does so only when the stimulus
presented in the second phase was previously paired with the
absent stimulus to be revalued (i.e., unlike Ghirlanda, 2005,
and Dawson, 2008). The present model also does not make
use of memory retrieval, although this is another route apart
from within-compound associations to explain the phenom-
ena. For example, the APECS model (Le Pelley & McLaren,
2001; McLaren, 1993, 2011) takes this approach. It is a
connectionist style approach that recruits a new hidden layer
neuron for each unique trial it experiences (e.g., separate
nodes for A+, A−, and AX+). Although a detailed descrip-
tion of the model is not feasible here, the bias of a node
representing a compound behaves in much the same way as
our lateral inhibition mechanism. In recovery from over-
shadowing, the first phase establishes a compound node
(“AB+”) and associates it with the US. During the intertrial
intervals of this phase, the “bias” weight for this node is

made negative, to offset the increased prediction made by the
node when the inputs are absent. In the second phase, a new
node is established (“A−”), and during the intertrial intervals
of this phase, the “AB+” node’s bias is increased. This in-
creases the “retrievability” of node “AB+,” which then leads
to an increased response upon presentation of stimulus B
(i.e., recovery from overshadowing). The bias of the APECS
model functions like the lateral inhibition of the present
model, except that it has the opposite sign: In our model,
during extinction of stimulus A in the second phase, lateral
inhibition is decreased, making the positive neuron response
to B larger. In both models, the second phase does not change
the input weights associated specifically with the absent (B)
stimulus but, rather, the lateral weights for the present model
and the bias for APECS.

Having two opposing pathways to compute associative
strength is also a feature of the comparator hypothesis
(Kasprow et al., 1987; Miller & Matzel, 1988). However,
the comparator hypothesis uses the second pathway to evoke
CS–CS associations and compare the associative strengths of
different stimuli, while the present model simply uses the
second pathway to help represent negative associative
strengths. The dual-pathway structure also bears resem-
blance to the division of CS–US and CS–no-US associations
discussed in Le Pelley (2004). A model of spontaneous
recovery from extinction by Pan, Schmidt, Wickens, and
Hyland (2008) uses positive and negative weights, which
are changed in opposite directions and are summed to pro-
duce a measure of responding.

Application to other retrospective revaluation findings

In Fig. 11, we show that the present model can also explain
the backward-blocking effect (Denniston, Miller, & Matute,
1996; Shanks, 1985; Wasserman & Berglan, 1998). Using
the backward-blocking procedure in Shanks along with an
additional control group (see Fig. 11 for details), we correct-
ly simulate the effect (p < .001, Wilcoxon signed-rank test,
for 15 different model initializations or stat rats) with the
present model. In the figure, it appears that without lateral
learning, the procedure increases, rather than decreases,
responding to the blocked stimulus relative to a control
group (BX). However, this is simply due to greater extinction
of the context in the control group, which is overwhelmed
when lateral learning is enabled.

Backward conditioned inhibition (Chapman, 1991; Urcelay
et al., 2008) refers to the paradigm in which a nonreinforced
compound is presented in the first phase (AX−) followed by
a phase where one element is reinforced (A+). The result is
that the other element becomes inhibitory relative to a
control group. An experiment by Espinet, Iraola, Bennett,
and Mackintosh (1995) preexposed compounds AX and
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BX (AX−, BX−). In the second phase, conditioning to one
of the nonshared constituents was conducted (A+). The
result of these manipulations was that stimulus B’s associ-
ation with illness either was weakened or became inhibito-
ry. This is called the Espinet effect. Formally, the Espinet
paradigm is the second-order analogue of the backward
conditioned inhibition paradigm. The present model does
not explain these effects. For the same reasons as in the
Rescorla–Wagner model, preexposure has no effect on sub-
sequent conditioning phases. As a result, no sharing of neural
representations occurs, unlike compound conditioning when a
US is presented. If the present model were extended to devel-
op similar neural representations during a preexposure phase
(as occurs in a conditioning phase), then the model might also
come to explain these two effects.

Reminder-induced recovery from overshadowing (Kraemer,
Lariviere, & Spear, 1988) is the finding that presentation of the
overshadowed stimulus somewhere between the conditioning
sessions and test sessions (the day following conditioning and 2
days prior to test in Kraemer et al., 1988) enhances responding
to an overshadowed stimulus. Corresponding reminder-induced
recovery has also been discovered in the blocking (Schachtman,
Gee, Kasprow, & Miller, 1983), relative validity (Cole,
Denniston, & Miller, 1996), and latent inhibition (Kasprow,
Catterson, Schachtman, & Miller, 1984) paradigms. One prom-
inent interpretation of the reminder-induced recovery from
overshadowing findings is that the overshadowed stimulus’s
associative strength is not reduced by being conditioned in com-
pound, as the notion of cue competition suggests, since later we
find that responding has “recovered.” More formally, the

interpretation says that overshadowing is due to a deficit in
performance (e.g., memory retrieval failure in the test phase),
rather than to a deficit in acquisition through cue competition in
the conditioning phase. The question remains, however, as to
what mental processes the reminder treatment might invoke.
One remaining potential acquisition-deficit explanation (but
see Schachtman et al., 1983) is that the reminder treatment
strengthens a within-compound association between the over-
shadowed stimulus and the overshadowing stimulus. Then,
when the overshadowed stimulus is later tested, the oversha-
dowing stimulus is thereby retrieved and submitted as internal
input to the associative learner, thereby generating a greater (or
“recovered”) level of responding. A similar mechanism might
also explain spontaneous recovery from overshadowing
(Kasprow, Cacheiro, Balaz, & Miller, 1982), which has also
been thought to indicate a performance deficit rather than an
acquisition deficit in learning. In this phenomenon, responding
to the overshadowed stimulus is greater after a retention interval.
The acquisition-deficit explanation would say that time, instead
of a reminder treatment, may lead to stronger within-compound
associations. There is some evidence within a sensory precon-
ditioning paradigm, however, that within-compound associa-
tions degrade, rather than strengthen, when there is a delay
between conditioning and test (Pineño, Urushihara, & Miller,
2005). Additional experimental work testing the strength of
within-compound associations after reminder treatments and
postacquisition delays may better discriminate between the
performance-deficit and acquisition-deficit explanations.

Retrospective revaluation effects are not always observed
(Dopson et al., 2009; Shevill & Hall, 2004). Within-
compound association-based approaches can often explain
this as a failure in within-compound association-based retriev-
al during either conditioning or test. In the present model,
retrospective revaluation phenomena are reduced when the
conditioned stimuli in the initial pairing are similar—that is,
when there is significant overlap between their distributed
input representations. Consider when stimuli are nearly iden-
tical. This will generate strongly similar input representations
such that subsequent conditioning or extinction of one will
similarly affect the other, because the model treats them as
essentially the same stimulus. This is the opposite of retro-
spective revaluation behavior and is referred to as mediated
conditioning, which has been found to occur when the paired
stimuli are strongly similar (Liljeholm & Balleine, 2009).
Then to observe neither mediated conditioning nor retrospec-
tive revaluation in the present model, one explanation is that
the stimuli making up a compound stimulus have some
middle-ground degree of similarity. From our model, another
possible explanation of why retrospective revaluation is some-
times not observed is that the lateral learning rate (ρ) changes
dynamically. In the present model, we set ρ > 0, which
supports retrospective revaluation phenomena. As is noted in
Fig. 9, when ρ = 0, no retrospective revaluation occurs.

Fig. 11 Responding to stimulus B in the test phase of backward-blocking
simulations when lateral learning is disabled (i.e., ρ = 0) and enabled (i.e.,
ρ > 0) using the paradigm of Shanks (1985) and an additional control
group.With lateral learning enabled, the backward-blocking group (Group
BB: phase 1 (50 trials): ABX+, X−, phase 2 (200 trials): AX+,X−, phase 3
(1 trial): BX− [Test]) expressed lower responding (p < .001, Wilcoxon
signed-rank test, 15 differently initialized simulations or stat rats) than did
both control groups, Group BC and Group BX. In Group BC, phase 2
trials reinforced a novel stimulus (phase 2: CX+ X−), while in Group BX,
phase 2 trials did not involve any stimulus presentations (phase 2: X−X−).
In the other phases, these groups received the same treatment and test as
Group BB. Note that in phase 2, conditioning of A and the novel stimulus
C reached asymptotic levels of responding in their respective groups. This
simulation shows that lateral learning leads to a weak but significant
backward-blocking effect
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Furthermore, if we set ρ < 0, the opposite of retrospective
revaluation would occur (i.e., mediated conditioning) because
lateral learning would change weights in the opposite direc-
tion. For example, recall the process in Fig. 10. Instead of
reducing lateral weights, which increased the absent stimulus
B’s associative strength, the lateral weights would be in-
creased, which would reduce activity and associative strength
when B is presented. Thus, as stimulus A is extinguished, so
would be its previously partnered stimulus B.

In a recovery from overshadowing experiment, Liljeholm
and Balleine (2006) found that the extinction of the more
salient element of the compound revalued the less salient
element more than the other way around. In the present
model, the more salient stimulus takes a larger share of the
associative strength due to cue competition. This means that
the more salient stimulus will have more associative strength
to extinguish and its lateral weights will be reduced propor-
tionally. Thus, extinction of a salient stimulus will lead to
more revaluation of the absent stimulus than will extinction
of a weakly salient stimulus. In more general terms, the
larger the change in a present stimulus’s associative strength,
the more the absent stimulus is revalued.

The present model’s relationship to the neurobiology
of the striatum

The present model, although described in an abstract way, can
be readily related to features of the neurobiology of the ventral
striatum and basal ganglia. The positive and negative neurons
map to the striatal projection neurons belonging to the direct
and indirect pathways of the basal ganglia, respectively. The
input weight learning rule (Equation 9) corresponds with
experimental findings regarding the effects of dopamine
(λ−∑V) and pre- (Si) and postsynaptic activity (L(uj)) on
cortico-striatal synapses (Frank & Fossella, 2011; Reynolds
& Wickens, 2002; Schulz, Dayan, & Montague, 1997; Shen,
Flajolet, Greengard, & Surmeier, 2008). The key feature of the
present model that sets it apart from related neurobiological
models of the basal ganglia (Frank, 2005; Houk, Adams, &
Barto, 1995) is its lateral inhibition and lateral learning. The
projection neurons of the striatum have inhibitory (Plenz,
2003; Tunstall, Oorschot, Kean, & Wickens, 2002) lateral
connections that freely contact other projection neurons, re-
gardless of pathway (Yung, Smith, Levey, & Bolam, 1996).
There is, at most, about a one-third probability of one neuron
sending an inhibitory connection to another (Taverna, Illijic,
& Surmeier, 2008). As a result, these lateral inhibitory con-
nections are usually one-way (at best only one in nine con-
nections are reciprocated in a randomly connected network).
Although the lateral inhibitory connections are believed to be
weak, fast spiking inhibitory interneurons provide additional
inhibition (Gruber, Powell, & O’Donnell, 2009; Tepper,

Wilson, & Koos, 2008). Therefore, the lateral inhibitory com-
ponent of this model could roughly be viewed as representing
the contributions of both types of inhibition. Neurobiology
concerning the lateral learning rule, however, is less clear than
evidence concerning its input weight counterpart. Long-term
learning has been found to occur in the lateral synaptic connec-
tions of striatal projection neurons (Rueda-Orozco et al., 2009),
although how this relates to a dopamine-based error term is not
clear. In the model, the learning rule for these lateral connec-
tions is similar to that of the input connections, except that the
CS intensity, I, is replaced by a term related to the activity of
one of its laterally inhibiting neurons.

Conclusions

The present model provides an elemental associative expla-
nation for key retrospective revaluation phenomena apart
from within-compound associations, based on novel mech-
anisms that correlate to some degree with neurobiology. The
present model only allows stimuli previously conditioned in
compound to revalue one another, rather than permitting the
conditioning of a CS to substantially revalue a separately
conditioned CS. This model thus not only matches experi-
mental data that speak to this issue, but also agrees with the
natural intuition that independently conditioned stimuli
should have little effect on one another when one is revalued.

Author Note This work was financially supported by CIHR,
NSERC, the Walter C. Sumner Foundation, and Dalhousie University.
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