
1 Background

1.1 Why Machines should learn

1.1.1 AI and machine learning
The ability of the human mind has marvelled scientists and philosophers alike for many
centuries and has continuously inspired our quest for intelligent machines. The famous
Dartmouth conference in 1950 brought together leading minds in this area, and this
is where the label Artificial Intelligence(AI) was coined for this emerging scientific
area. AI has become to be used as a synonym for more advanced – and sometimes
even human-like – information processing with a large array of unique methods and
diverse approaches. AI is closely related to cognitive science, the science of thinking
systems, which has itself strong links to psychology on one side and computer science
or informatics on the other end of the spectrum.

A major focus of research considers symbolic systems which includes such areas as
knowledge representation, expert systems and semantic networks. This area employs
formal logic for inference, where inference mean here the act of using observations
to argue about situations and to draw conclusions that guide further behaviour. For
example, we might be concerned with the navigation of vehicles in traffic. The vehicle
‘car’ could thereby perform an action such as ‘move’ or ‘stop’ depending on a condition
such as a ‘traffic light’. The states of the logic variable ‘traffic light’ can have several
states such as ‘green’ or ‘red’. Describing systems with logical expressions is central
in such symbolic systems.

Symbolic systems can be contrasted with explicit systems that work on raw data.
Such explicit systems are concerned with explicit sensory information data like a
visual system and how to translate them to higher level knowledge that are typically
the starting point of symbolic reasoning systems. We are mainly concerned here with
such explicit systems. Of course, the boundaries of these systems is sometimes blurry,
and ultimately we think that both approaches will need to merge.

A central theme in most of these areas is the ability to learn from data and experi-
ences. Indeed, the ability of humans to find solutions to new problems from experience,
and the robustness of such systems in uncertain environments, are increasingly con-
sidered to be a key ingredient to advance these research areas and to enable new
application. We focus here on how machines can learn from data to improve their
performance or learn how to solve problems. This should enable advanced machine
applications, and considering the theory of learning in general can help us to shed
light on how human learn. Ultimately this area, which is now generally called Ma-
chine Learning, should be able to bridge gap between the explicit and the symbolic
approach in AI by learning to meaning from data. A prime example in this area is
object recognition. Machine Learning is now a widely respected scientific area with a
growing number of applications, and algorithms cmd out of this research have enabled

Background2 |

new approaches to information processing that made it possible to create new con-
sumer electronics and lead to recent breakthroughs in autonomous robotics. Machine
Leaning is now a major enabler driving many business solutions.

While the field of Machine Learning has matured considerably in the last decade,
its roots and early breakthroughs are firmly grounded in the 1950s. Indeed, the history
of AI is tightly interwoven with the history of machine learning. For example, Arthur
Samuel’s checkers program from the 1950s, which has been celebrated as an early AI
hallmark, was able to learn from experience and thereby was able to outperform its
creator. Basic Neural Networks, such as Bernhard Widrow’s ADALINE (1959), Karl
Steinbuch’s Lernmatrix (around 1960), and Frank Rosenblatt’s Perceptron (late 1960s),
have sparked the imaginations of researcher about brain-like information processing
systems. And Richard Bellman’s Dynamic Programming (1953) has created a lot
of excitement during the 1950s and 60s, and is now considered the foundation of
reinforcement learning. We will detail some of these approaches in this book.

Biological systems have often been an inspiration for understanding learning sys-
tems and visa versa. Donald Hebb’s book The Organization of Behavior (1943) has
been very influential not only in the cognitive science community, but has been mar-
velled in the early computer science community. While Hebb speculated how self-
organizing mechanisms can enable human behavior, it was Eduardo Caianiello’s influ-
ential paper Outline of a theory of thought-processes and thinking machines (1961) who
quantified these ideas into two important equations, the neuronic equation, describing
how the functional elements of the networks behave, and the memnonic equation that
describe how these systems learn. This opened the doors to more theoretical investiga-
tions. But such investigations came to a sudden halt after Marvin Minsky and Seymore
Papert published their book Perceptrons in 1969 with a proof that simple perceptrons
can not learn all problems. At this time, likely somewhat triggered by the vacuum
in AI research by the departure of learning networks, mainstream AI shifted towards
symbolic systems for much of the 1970s and early 1980s.

Explicit learning systems the form of Neural Networks became again popular in the
mid 1980 after the backpropagation algorithms was popularized by David Rumelhart,
Geoffrey Hinton and Ronald Williams (1986). There was a brief period of extreme hype
with claims that Neural Networks could soon forecast the stock-market and how these
learning systems would quickly become little brains. The hype backslashed somewhat.
Neural Networks predictive power in scientific explanations became questioned as they
seemed to conveniently fit any data and since claims of immanent progress did not
substantiate. It turned out that there are two major problems with the basic networks
studied in the late 1980s which are generalizability and scalability. Generalizability
refers to the ability to predict previously unseen data in contrast to mainly memorizing
training examples. Scalability refers to the ability of such systems to be used on
large real world problems in contrast to simple examples often used to illustrate their
behaviour.

However, there has been major progress in the understanding of learning systems
since the late 1980s through several factors. A major contributed was a better grounding
of learning methods in statistical learning theory with more rigorous mathematical
insights. A good example is the work by Vladimir Vapnik as published in his book The
Nature of Statistical Learning Theory in 1995. And more general Bayesian methods

| 3Why Machines should learn

Fig. 1.1 Some pioneers in AI and machine learning.From top left to bottom right: Alan Turing
has thought much about AI in general and has foreseen much of its development. Arthur Lee
Samuel was an influential early AI researcher and created the first checker program that could
learn and was able to beat its creator. Such reinforcement learning was formalized in the 50s
by Richard Bellman. Many universal learning machines are inspired by brain functions. Frank
Rosenblatt invented the perceptron, and Geoffrey Hinton has made many important contributions,
specifically to probabilistic neural networks. Finally, Judea Pearl invented graphical models to
describe probabilistic causal systems that are today at the heart of many learning and inference
systems.

and graphical models (Judea Pearl, 1985) have clarified and transformed the field.
Unsupervised learning, in particular sparse structural learning, is an exciting new area
in machine learning. And even more recently it has been shown that deep learning
systems, which are basically the good old Neural Networks with a few more tricks and
insight applied to larger problems on fast GPUs are now starting to outperform many
other systems. It is an exciting time for Machine Learning with major breakthoughts
and increasing applications.

1.1.2 Supervised, unsupervised and reinforcement learning

Traditional AI provides many useful approaches for solving specific problems. For
example, search algorithms can be used to navigate mazes or to find scheduling
solutions, and expert systems can manage large databases of expert knowledge and
use this data to argue about (infer) specific solutions. A drawback of such system is
that they often require a well defined and structured environment. Learning systems, in
contrast, are thought to be a possible approach to situations for which closed solutions
are not known. A good example are situations where systems change over time or
when systems encounter situations for which they were not designed such as robotics

Background4 |

systems that are often helpless when employed outside their common environment.
There is thus an increasing desire to include methods in computing systems that are
able to adapt to changing situations and generalizations to unseen environments or
unforeseen circumstances. While many AI systems have adaptive components, we are
specifically focusing on the theory of learning machines. We will distinguish thereby
various learning circumstances such as having a detailed teacher or only receiving
feedback after some time. Much of the theoretical investigation is concerned with
what would be a good or even optimal solution, at least to give us some perspective of
what is possible.

Learning machines are supposed to learn from the environment, either through in-
structions, by reward or punishment, or just by exploring the environment and learning
about typical objects and relations in space and time. For the systematic discussion
of learning systems it is useful to distinguish three types of learning circumstances,
namely supervised learning, reinforcement learning, and unsupervised learning as
briefly outlined next.

Supervised learning is characterized by using explicit examples with labels that
the system should use to learn to predict labels of previously unseen data. The training
labels can be seen as being supplied by a teacher who tells the system exactly the
desired answer in response to a specific situation as specified by a particular input
to the learning system. For example, an important requirement of natural or artificial
agents is its ability to decide on an appropriate course of action given a specific
situation. The specific circumstances are communicated to the agent by sensors that
specify values of certain features. Let’s represent these feature values as vector x.
The goal of the agent is then to determine an appropriate response (label y) based on
this input,

y = f(x). (1.1)

This corresponds to the functional form of a controller that we will discuss further in
Chapter 2. In Chapter 3 we argued that a probabilistic framework is more appropriate
to address uncertainties. The corresponding statement of the deterministic function
approximation of equation (1) is then to find a probability density function

p(y|x). (1.2)

A common example is object recognition where the feature values might be RGB
values of pixels in a digital image and the desired response might be the identification
of a person in this image. A learning machines for such a task is a model that is given
examples with specific feature vectors x and corresponding desired labels y. Learning
in this circumstance is mainly about adjusting the model’s parameters from the given
examples. Since this type of learning is based on specific training examples with give
labels, this type of learning is called supervised. Adjusting the parameters should
thereby be guided by the best performance of generalize, that of predicting appropriate
labels of previously unseen feature vectors.

Reinforcement learning is somewhat similar in that the system receives some
feedback from the environment, but this feedback is typically delay in time and does
not specify which of the previously taken actions contributed to a success or failure.
A main challenge of reinforcement learning is hence to solve the credit assignment

| 5Why Machines should learn

problem, and the goal of reinforcement learning is to discover the sequence of actions
which maximizes reward over time.

The third form of learning that we will distinguish from the former two is unsuper-
vised learning. The aim of this learning is to find useful representations of data based
on regularities of data without labels. This includes clustering methods and more so-
phisticated data-transformation methods to find appropriate new data representations.
Finding an appropriate representation of data using unsupervised learning methods
is often a key in solving supervised learning problems. While it is useful to distin-
guish such classical learning systems, they can also augment each other. Examples are
semi-supervised learning methods or the combination of supervised and reinforcement
learning methods.

Learning systems can help to solve problems for which more direct solutions are
not known. This is particularly true for systems that are unreliable or applied in
uncertain environments. For example, a program might read data in a specific format,
but some user might supply corrupted files. Software used for public release is often
lengthy mostly to consider all kind of situations that could occur. However, it is also
increasingly realized that considering all possible situations is often impossible. The
situation of unreliable inputs is very apparent in robotics where sensors have often
severe limitations. We will see that estimating the state of the system is a major
challenge in robotics due to limited data, the inability to process data sufficiently in
time, or due to limited resources.

Major progress in many AI areas, in particular in robotics and machine learning,
has been made by using concepts of (Bayesian) probability theory. This language of
probability theory is appropriate since it acknowledges the fundamental limitations we
have in real world applications (such as limited computational researches or inaccurate
sensors). The language of probability theory has certainly helped to unify much of
related areas and improved communication between researchers. Furthermore, we will
see that the representation of uncertain states as a probabilistic map will be very
useful. Also, probability theory will provide us with an elegant and powerful solution
for a basic computational need common in learning systems, that of combining prior
knowledge with new evidence.

1.1.3 Regression and classification

It is useful to outline at this point more specifically the essence of supervised learning
with regards to probabilistic regression and classification. As pointed out above, the
goal of supervised learning is to make predictions of labels y from feature vectors
x from example (training set) that include feature vectors with their corresponding
labels. In a first approximation, not taking probabilistic relationships into account, this
relation can be seen as a function that we want to find

y = f(x). (1.3)

Unfortunately, finding this function is a really hard problem. However, we can usually
guess some form by looking at data. For example, in Fig. 1.2a we plotted some example
points of a one dimensional feature space. From the examples we might guess that
there is a linear relation between the y-values and the x-values. The functional form
of this relations is described by the formula

Background6 |

y = ax+ b, (1.4)

Where a and b are parameters that describe the slope and the offset, respectively. This
is an important step in machine learning, making a parameterized hypothesis of the
relations between feature values and labels. We often gather the parameters into a
parameter factor

✓ =

✓
a
b

◆
(1.5)

and indicate the parameterized form of a general hypothesis as

y = f(x, ✓). (1.6)

What remains to be done in this supervised learning problem is to determine the
specific parameter values for this particular example. The readers might be familiar
with some regression methods to achieve this, such as mean square regression, and we
will discuss the theory behind this shortly.

A: Linear regression problem B: Linear-separable classi!cation problem

X X1

X2y

ï� ï� 0 � �ï��

ï��

ï��

0

��

��

��

0 ��� 0.4 0.6 0.8 �0

���

0.4

0.6

0.8

�

Fig. 1.2 Example of supervised learning in form of (a) linear regression and (b) linear classification.

Another popular subdomain of supervised learning is classification. In classifi-
cation we have a set of discrete labels y that we call classes. In the following we
will consider the simplest case, that of only two class labels. This is called binary
classification. An example of a training points from two classes in a two-dimensional
feature space, where the labels are indicated with different plotting symbols, y = o
and y = x, is shown in Fig. 1.2b. In this example we seek to find a decision boundary,
a line which separates the two classes. This line can be used to make predictions to
which class future unlabelled data belong. If we assume that the data of the two classes
are similarly distributed beside its mean, then it is possible to show that the line which
maximizes the margin, the space between the line and all the data points, is a optimal
solution.

We will later discuss these examples in more detail, but they demonstrate already
the gist of the most basic supervised learning. Of course, one of the main challenges
of supervised machine learning is to generalize the above ideas to nonlinear cases.

| 7Why Machines should learn

ï� ï� 0 � �ï��

ï��

ï��

ï��

0

��

��

A: Non-linear regression problem B: Non-linear classi!cation problem

X X1

X2y

0 ��� ��� 0.6 0.8 �0

���

���

0.6

0.8

�

Fig. 1.3 Example of a nonlinear regression and classification problem.

Table 1.1 Using libsvm for classification

%example of nonlinear classification
clear; clf; hold on;

%generating training data and plotting them
x=rand(2,100); y=zeros(1,100);
y(x(1,:)<0.5&x(2,:)<0.5)=1;
plot(x(1,y>0.5),x(2,y>0.5),’o’)
plot(x(1,y<0.5),x(2,y<0.5),’x’)

%train Support Vector Machine
svm=svmtrain(x,y,’kernel_function’,’rbf’);

%generating test data and predicting labels
x=rand(2,100);
ypred=svmclassify(svm,x’);
plot(x(1,ypred>0.5),x(2,ypred>0.5),’ro’)
plot(x(1,ypred<0.5),x(2,ypred<0.5),’rx’)

%plot correct decision boundary
plot([0,0.5],[0.5,0.5],’k’);
plot([0.5,0.5],[0.0,0.5],’k’);

Such a nonlinear regression and classification with nonlinear decision boundaries are
shown in Fig. 1.3. The example of a binary class problem shown in Fig. 1.3b consists of
uniformly distributed data in four quadrants of which the data in the lower-left quadrant
are set to a different class than the other three quadrants. Table 1.1 shows how to use two
functions of the Matlab statistics toolbox that includes an implementation of a Support
Vector Machine (SVM). Run this function to explore how the program predicts labels
of new data for which we did not supply the theoretical labels. If you don’t know how
to run this program yet, please wait until Section 1.4 where we will introduce how to
use Matlab.

This example is meant to show how easy it is in practice to use sophisticated
machine learning methods within a few lines of Matlab code thanks to the large

Background8 |

number of machine learning algorithms published in Matlab. You might even be
able to apply this to binary classification problems you encounter or you can design
your own examples. SVMs are now widely used in practice and often work well.
However, there are also many reports where they fail. It is important to learn more
about the underlying algorithms as a appropriate application can depend on this. These
discussions will also lead us to a deeper understanding of learning and its limits,
challenges and new opportunities.

1.2 Classical Robotics
In the following journey we will demonstrate and explore algorithms and associated
problems in machine learning not only with the help of computer simulations, but also
with the help of robots. Computer simulations are a great way to experiment with many
of the ideas, but robotics implementations in the physical world have the advantage
to show more clearly the challenges in real applications. Our emphasis in this book is
to use general machine learning techniques to solve robotic tasks even though more
direct engineering solutions might be possible. While this is not always the way robots
are controlled today, machine learning methods are becoming increasingly important
in robotics.

The dream of having machines that can act more autonomously for human benefits
is quite old. The word ‘robot’ is credited to the Czech writer Karel Čapek (1921) and
to Isaac Asimov (1941), and the first industrial robot is considered to be the Unimate
(1961). Robots are now invaluable in manufacturing. However, robotics is also still
an increasingly active research area. In particular, there is also much research to make
robots more autonomous and robust to be able to work in hostile and increasingly
uncertain environments. Robotics has many subdisciplines, including mechanical and
electrical engineering, computer or machine vision. Even behavioral studies have
become prominent in this field. A good definition of robotics as given by Thrun,
Burgard, and Fox1 is:

"Robotics is the science of perceiving and manipulating the physical world
through computer-controlled devices"

That is, we use the word robot or agent to describe a system which interacts
actively with the environment. An agent can be implemented in software or hardware,
and the ‘brain’ of an agent is a controller in a classical engineering context. The
essential part in the above definition of a robot is that it must act in the physical world.
For this it needs sensors to sense the state of the world and actuators that can be used
to change the state of the environment. Mobile robots are a good example of this and
we will be using two prototype robots for most of our examples in this course, a simple
robot arm with a web cam, and a wheeled vehicle with an ultrasonic distance sensor.
In contrast to these robotic systems, a vision system alone that uses a digital camera
to recognize objects is not a robot in our definition as it is not able to manipulate the
environment. While one could say that the physical world is manipulated by displaying
the image on a screen, we really want to consider the case where a robot arm moves
objects or at least points to them, or where a mobile robot is navigated through a maze.

1Sebastian Thrun, Wolfram Burgard, and Dieter Fox, Probabilistic Robotics ,MIT press 2006.

| 9Classical Robotics

Software agents such as crawlers surfing the net are on the borderline. They need
sensors, such as the ability to read content of web pages, and act in the physical world
as they have to visit web pages physically located at different servers. If they gather
information and use this to actively influence the physical world then this could also
be considered a robot in the strict sense used here.

Robots are intended to make useful actions to achieve some goals, so robotics is all
about finding and safely executing those appropriate actions. This area is generally the
subject of control theory. A functioning robotics system typically needs controllers
on many different levels, controlling the low level functions such as the proper rotation
of motors, as well as ensuring that high level tasks are accomplished. A main question
in designing a robotics system is often how to combine the different levels of control. A
very successful approach has been the subsumption architecture, which is illustrated
in Figure 1.4. Such systems are typically build bottom-up in that more complex
functions use lower-level functions to achieve more complex tasks. The higher level
modules can chose to use the lower level function or can inhibit them if necessary.

Identify Object

Monitor Changes

Explore

Wander

Avoid ObjectsSensory Input Actuator Output

Fig. 1.4 An example of an subsumption architecture. From Maja J. Matari c, The Robotics
Primer, MIT Press 2007

More generally, it is useful to think of two opposing approaches to robotic con-
trol, the deliberative approach and the reactive approach, though a combination
is commonly useful in practice. In the deliberative approach we gather all available
information and plan action carefully based on all available actions. Such a planning
process usually takes time and is based on searching through all available alternatives.
The advantage of such systems is that they usually provide superior actions, but the
search for such actions can be time consuming and might thus not be applicable to all
applications. Also, deliberative systems require a large amount of knowledge about the
environment that might not be available in certain applications. In contrast, reactive
systems have a more direct approach of translating sensory information in actions.
For example, a typical obstacle-avoiding mobile robot turns when a proximity sensor
senses some objects in its path. To generate more complex behavior, such reactive
systems need to combining lower level control systems with higher level functions that
implement specific strategies.

Robots act in the physical world through actuators based on sensory information.
Actuators are mainly motors to move the robot around (locomotion) or to move limbs to

Background10 |

Servo motor

Ultrasonic sensor

Light sensor
MicrophoneTouch sensor

Fig. 1.5 The actuator and sensors of the basic Lego Mindstorm NXT robotics set.

grasp objects (manipulation). Motors for continuous rotations are typically DC (direct
current) motors, but in robotics we often need to move a limb to a specific position
(location and orientation). Motors that can turn to a specific position are called servo
motors. Such motors are based on gears and position sensors together with some
electronics to control the desired rotation angle. The motor of the LEGO NXT robotics
kit is shown in Figure 1.5. This actuator is a stepping motor that can be told to run for a
specific duration, a specific number or angle of rotation, and with various powers that
influence the rotation speed.

Sensors come in many varieties. Table 1.2 gives some examples of what kind of
sensing technology is often used to sense (measure) certain physical properties. The
basic Lego actuator and sensors used in this course are shown in Figure 1.5. The motor
itself can be used as a rotation sensor as it provides feedback when it is externally
rotated. The ultrasonic sensor sends out an high-frequency tone whose reflection is
then sensed by its integrated microphone to estimate distances to surfaces. The light
sensor can detect light with different wavelengths and can hence be used to detect
colours and to some extend also short distances. The basic toolkit also includes a touch
sensor and a microphone. We will also use a web camera for basic vision as outlined
in the chapter on computer vision. Finally, for special projects we can use additional
sensors such as the Kinect sensors from Microsoft, or special Lego sensors such as a
GPS, an accelerometer, a giro, or a compass sensor (see Figure 1.6).

1.3 Vector and matrix notations

The remainder of the introductory chapter is dedicated to remind ourselves about
some useful mathematical notations and to introduce our programming environment.
Since vector and matrix notations are so useful for our discussions, we will start by
review their basic concept. Basically, matrices are a shorthand notation to simplify
the representation of linear equation systems. We would have indeed lengthy looking
formulas without this shorthand notation, and formulas written in this notation can

| 11Vector and matrix notations

Table 1.2 Some sensors and the information they measure. From From Maja J. Matari c, The
Robotocs Primer, MIT Press 2007

Physical Property Sensing Technology
Contact bump, switch
Distance ultrasound, radar, infra red
Light level photocells, cameras
Sound levels microphones
Strain strain gauges
Rotation encoders, potentiometers
Acceleration accelerometers, gyroscopes
Magnetism compass
Smell chemical sensors
Temperature thermal, infra red
Inclination inclinometers, gyroscopes
Pressure pressure gauge
Altitude altimeter

Fig. 1.6 Some additional sensors that we could use such as the Microsft Kinect and a GPS for
the Lego NXT.

easily be entered into Matlab as shown below. In terms of computer science, they
represent our basic data types. We consider three basic data types:

1. Scalar:

a for example 41 (1.7)

2. Vector:

a or component-wise

0

@
a
1

a
2

a
3

1

A for example

0

@
41

7

13

1

A (1.8)

Background12 |

3. Matrix:

a or component-wise

0

@
a
11

a
12

a
21

a
22

a
31

a
32

1

A for example

0

@
41 12

7 45

13 9

1

A (1.9)

We used bold-typed characters to indicate both a vector and a matrix because the
difference is usually apparent from the circumstances. A matrix is just a collection of
scalars or vectors. We talk about an n⇥m matrix where n is the number of rows and
m is the number of columns. A scalar is thus a 1 ⇥ 1 matrix, and a vector of length
n can be considered an n ⇥ 1 matrix. A similar collection of data is called array in
computer science. However, a matrix is different because we also define operations on
these data collections. The rules of calculating with matrices can be applied to scalars
and vectors.

We define how to add and multiply two matrices so that we can use them in
algebraic equations. The sum of two matrices is defined as the sum of the individual
components

(a+ b)
ij

= a
ij

+ b
ij

. (1.10)

For example, a and b are 3⇥ 2 matrices, then

a+ b =

0

@
a
11

+ b
11

a
12

+ b
12

a
21

+ b
21

a
22

+ b
22

a
31

+ b
31

a
32

+ b
32

1

A (1.11)

Matrix multiplication is defined as

(a ⇤ b)
ij

=

X

k

a
ik

b
kj

. (1.12)

The matrix multiplication is hence only defined as multiplication matrices a and b
where the number of columns of the matrix a is equal to the number of rows of matrix
b. For example, for two square matrices with two rows and two columns, their product
is given by

a ⇤ b =

✓
a
11

b
11

+ a
12

b
21

a
11

b
12

+ a
12

b
22

a
21

b
11

+ a
22

b
21

a
21

b
12

+ a
22

b
22

◆
(1.13)

A handy rule for matrix multiplications is illustrated in Fig. 1.7. Each component in the
resulting matrix is calculated from the sum of two multiplicative terms. The rule for
multiplying two matrices is tedious but straightforward and can easily be implemented
in a computer.

Another useful definition is the transpose of a matrix. This operation is indicated
usually by a superscript t or a prime (0). Taking the transpose of a matrix means that
the matrix is rotated 90 degrees; the first row becomes the first column, the second row
becomes the second column, etc. For example, the transpose of the example in 1.9 is

a0 =

✓
41 7 13

12 45 9

◆
(1.14)

The transpose of a vector transforms a column vector into a row vector and vice versa.

| 13Scientific computing with Matlab

a 11

a 22a 21

a 12 b11

b22b21

b12 =
a 11 b11 a 12 b21+ a 11 b12 a 12 b22+

a 21 b11 a 21 b21+ a 21 b12 a 22 b22+

Fig. 1.7 Illustration of a matrix multiplication. Each element in the resulting matrix consists of
terms that are taken from the corresponding row of the first matrix and column of the second
matrix. Thus in the example we calculate the highlighted element from the components of the
first row of the first matrix and the second column of the the second matrix. From these rows and
columns we add all the terms that consist of the element-wise multiplication of the terms.

As already mentioned, matrices were invented to simplify the notations for systems
of coupled algebraic equations. Consider, for example, the system of three equations

41x
1

+ 12x
2

= 17 (1.15)
7x

1

+ 45x
2

= �83 (1.16)
13x

1

+ 9x
2

= �5. (1.17)

This can be written as
ax = b (1.18)

with the matrix a as in the example of 1.9, the vector x = (x
1

x
2

)

0, and the vector
b = (17 � 83 � 5)

0.
The solution of this linear equation system is equivalent to finding the inverse of

matrix a which we write as a�1. The inverse of the matrix is defined by

a�1a = 11, (1.19)

where the matrix 11 is the unit matrix that has element of one on the diagonal and zeros
otherwise. Multiplying equation 1.18 from left with a�1 is hence

x = a�1b (1.20)

There are many programs that solve linear equations systems. The programming
environment that we will discuss next, called Matlab, has its roots in linear algebra and
is in particular powerful in representing matrices. Matlab actually stands for Matrix
Laboratory, and this environment is also the dominating tool in the machine learning
community.

1.4 Scientific computing with Matlab
While some of the material presented here is theoretical in nature, it is fun and
educational to get it to work in either a simulated environment or with the help
of physical robots. The brain of our devices will be little programs that control a
Lego robot or analyses data given to them. We will use the Matlab2 programming

2Matlab is a registered trademark of The MathWorks, Inc.

Background14 |

environment for this work. This high level language has a lot of support for the kind of
things we want to do, such as basic signal processing, computer vision support, Lego
NXT communication, and implementation of machine learning algorithms. There are
other high level scientific programming languages with similar support such as Python
or R. Some of the experiments can certainly be replicated in such systems and the
Matlab scripts in this tutorial can be seen as high level description language. There
are some limitations that made us decide against these programming environments.
In particular, Python has limited support for new machine learning algorithms since
many machine learning researchers publish their algorithms in Matlab. In particular,
we could not find sufficient support for Bayesian networks. R is also less common in the
machine learning community. While Matlab is an expensive commercial product, many
academic institutions have research licenses, student versions are quite affordable, and
there is a free interpreter that can run Matlab programs called Octave. We will be using
a MS Windows environment mainly because the tools which support the Matlab-Lego
NXT communications, in particular the USB communication, has still restrictions in a
Mac environment. Linux environments should mostly work but has not been considered
in detail.

In this section we briefly introduce programming in Matlab with a focus on the
basic elements to get started. We assume thereby little programming experience, al-
though experienced programmers in other programming languages might want to scan
through this chapter to see some differences, particularly with matrix notations that
are central in Matlab. Matlab is an interactive programming environment for scientific
computing. This environment is very convenient for us for several reasons, including its
interpreted execution mode, which allows fast and interactive program development,
advanced graphic routines, which allow easy and versatile visualization of results, a
large collection of predefined routines and algorithms, which makes it unnecessary
to implement known algorithms from scratch, and the use of matrix notations, which
allows a compact and efficient implementation of mathematical equations and machine
learning algorithms. Matlab stands for matrix laboratory, which emphasizes the fact
that most operations are array or matrix oriented. Similar programming environments
are provided by the open source systems called Scilab and Octave. The Octave sys-
tem seems to emphasize syntactic compatibility with Matlab, while Scilab is a fully
fledged alternative to Matlab with similar interactive tools but some different syntax
and function names. The distribution includes a converter for Matlab programs, but
we are uncertain how the integration with the Lego system would work.

1.4.1 The Matlab programming environment

Matlab is a programming environment and collection of tools to write programs,
execute them, and visualize results. Matlab has to be installed on your computer to
run the programs mentioned in the manuscript. It is commercially available for many
computer systems, including Windows, Mac, and UNIX systems. The Matlab web
page includes a set of excellent tutorial videos, also accessible from the demos link on
the Matlab desktop, which are highly recommended to learn Matlab.

As already mentioned, there are several reasons why Matlab is easy to use and
appropriate for our programming need. Matlab is an interpreted language, which
means that commands can be executed directly by an interpreter program. This makes

| 15Scientific computing with Matlab

the time-consuming compilation steps of other programming languages redundant and
allows a more interactive working mode. A disadvantage of this operational mode is
that the programs could be less efficient compared to compiled programs. However,
there are two possible solution to this problem in case efficiency become a concern.
The first is that the implementations of many Matlab functions is very efficient and are
themselves pre-compiled. Matlab functions, specifically when used on whole matrices,
can therefore outperform less well-designed compiled code. For example, it is strongly
recommend to use matrix notations wherever possible instead of explicit component-
wise operations. A second possible solutions to increase the performance is to use the
Matlab compiler to either produce compiled Matlab code in .mex files or to translate
Matlab programs into compilable language such as C.

The ability of Matlab to support matrices is very valuable for our purpose as it
makes the code very compact and comparable to the mathematical notations used in
the manuscript. Furthermore, Matlab has very powerful visualization routines, and
the new versions of Matlab include tools for documentation and publishing of codes
and results. In addition, Matlab includes implementations of many mathematical and
scientific methods on which we can base our programs. For example, Matlab includes
many functions and algorithms for linear algebra and to solve systems of differential
equations. Specialized collections of functions and algorithms, called a ‘toolbox’ in
Matlab, can be purchased in addition to the basic Matlab package or imported from third
parties, including many freely available programs and tools published by researchers.
For example, the Matlab Neural Network Toolbox incorporates functions for build-
ing and analyzing standard neural networks. This toolbox covers many algorithms
particularly suitable for connectionist modelling and neural network applications. A
similar toolbox, called NETLAB, is freely available and contains many advanced ma-
chine learning methods. We will use some toolboxes later in this course, including the
LIBSVM toolbox and the Matlab NXT toolbox to program the Lego robots.

1.4.1.1 Starting a Matlab session
Starting Matlab opens the Matlab desktop as shown in Fig. 1.8 for Matlab version
8. The Matlab desktop is comprised of several windows which can be customized or
undocked to move them into a separate window. A list of these tools are available
under the desktop menu, and includes tools such as the command window, editor,
workspace, etc. We will use some of these tools later, but for now we only need the
Matlab command window. We can thus close the other windows if they are open,
such as the launch pad or the current directory window; we can always get them
back from the desktop menu. Alternatively, we can undock the command window
by clicking the arrow button on the command window bar. An undocked command
window is illustrated on the left in Fig. 1.9. Older versions of Matlab start directly with
a command window. The command window, or the interpreter behind it, interprets
and executes command. It is therefore the platform for interactive programming and
to access other Matlab functionalities with line commands.

1.4.1.2 Basic variables in Matlab
The Matlab programming environment is interactive in that all commands can be typed
into the command window after the command prompt (see Fig. 1.9). The commands
are interpreted directly, and the results are displayed in the command window. For

Background16 |

Fig. 1.8 The Matlab desktop window of Matlab Version 8.

Fig. 1.9 A Matlab command window (left) and a Matlab figure window (right) displaying the results
of the function plot sin developed in the text.

example, a variable is created and assigned a value with the = operator, such as

>> a=3

a =

| 17Scientific computing with Matlab

3

Ending a command with semicolon (;) suppresses the printing of the result on screen.
It is therefore generally included in our programs unless we want to view some
intermediate results. All text after a percentage sign (%) is not interpreted and thus
treated as comment. For example, the command

>> b=’Hello World!’; % delete the semicolon to echo Hello World!

creates a new string variable b with a value Hello World, and we included an instruc-
tion how to print this value on the command window. This example also demonstrates
that the type of a variable, such as being an integer, a real number, or a string, is
determined by the values assigned to the elements. This is called dynamic typing.
Thus, variables do not have to be declared as holding specific values as in some other
programming languages. While dynamic typing is convenient, a disadvantage is that
a mistyped variable name can not be detected by the compiler. Inspecting the list of
created variables is thus a useful step for debugging.

All the variables that are created by a program are kept in a buffer called workspace.
These variable can be viewed with the command whos or displayed in the workspace
window of the Matlab desktop. For example, after declaring the variables above, the
whos command results in the responds

>> whos
Name Size Bytes Class Attributes

a 1x1 8 double
b 1x12 24 char

It displays the name, the size, and the type (class) of the variable. The size is often
useful to check the orientation of matrices as we will see below. The variables in the
workspace can be used as long as Matlab is running and as long as it is not cleared with
the command clear. The workspace can be saved with the command save filename,
which creates a file filename.mat with internal Matlab format. The saved workspace
can be reloaded into Matlab with the command load filename. The load command
can also be used to import data in ASCII format. The workspace is very convenient
as we can run a program within a Matlab session and then work interactively with the
results, for example, to plot some of the generated data.

Variables in Matlab are generally matrices or data arrays. While a matrix and an
array are both two-dimensional data representations, the difference is that matrices are
defined with specific operations that can be applied to them, which we will review
below. Matrices include scalars (1 ⇥ 1 matrix) and vectors (1 ⇥N matrix) as special
cases. Values can be assigned to matrix elements in several ways. The most basic one is
using square brackets and separating rows by a semicolon within the square brackets,
for example (see Fig. 1.9),

>> a=[1 2 3; 4 5 6; 7 8 9]

a =

1 2 3
4 5 6

Background18 |

7 8 9

One can access individual matrix elements with indices in round brackets, where the
common mathematical convention is followed in that the first index specifies the row
from the top, and the second index specifies the column from the left. For example, the
element a(3,2) has the value 8. A range of indices can be selected with the column
(:) notation, such as a sub-matrix

>> a(1:2,2:3)

ans =

2 3
5 6

The defaults of the start and end indices are the first and last index, so that omitting
them is also possible. Thus, the 3rd column vector of the matrix above can be generated
by
>> a(:,3)

ans =

3
6
9

A vector of elements with consecutive values can be assigned by column operators
like start:step:end, for example
>> v=0:1.5:7

v =

0 1.5000 3.0000 4.5000 6.0000

There are several other ways to create matrices in Matlab such as an array editor, and
data in ASCII files can be assigned to matrices when loaded into Matlab. Also, Matlab
functions often return matrices which can be used to assign values to matrix elements.
For example, a uniformly distributed random 3 ⇥ 3 matrix can be generated with the
command
>> b=rand(3)

b =

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

The multiplication of two matrices, following the matrix multiplication rules reviewed
further below in section 1.3, can be done in Matlab by typing
>> c=a*b

| 19Scientific computing with Matlab

c =

3.2329 4.5549 2.9577
8.5973 10.9730 6.8468
13.9616 17.3911 10.7360

This is equivalent to

c=zeros(3);
for i=1:3

for j=1:3
for k=1:3

c(i,j)=c(i,j)+a(i,k)*b(k,j);
end

end
end

which is the common way of writing matrix multiplications in other programming
languages. Formulating operations on whole matrices, rather than on the individual
components separately, is not only more convenient and clear, but can enhance program
performance considerably. Whenever possible, operations on whole matrices should be
used. This is likely to be the major change in your programming style when converting
from another programming language to Matlab. The performance disadvantage of an
interpreted language is often negligible when using operations on whole matrices.

The transpose operation of a matrix changes columns to rows. Thus, a row vector
such as v can be changed to a column vector with the Matlab transpose operator (’),

>> v’

ans =

0
2
4

which can then be used in a matrix-vector multiplication like

>> a*v’

ans =

16
34
52

The inconsistent operation a*v does produce an error,

>> a*v
??? Error using ==> mtimes
Inner matrix dimensions must agree.

Background20 |
Table 1.3 Basic programming contracts in Matlab.

Programming Command Syntax
construct
Assignment = a=b
Arithmetic add a+b
operations multiplication a*b (matrix), a.*b (element-wise)

division a/b (matrix), a./b (element-wise)
power a^b (matrix), a.^b (element-wise)

Relational equal a==b
operators not equal a⇠=b

less than a<b
Logical AND a & b
operators OR akb
Loop for for index=start:increment:end

statement
end

while while expression
statement

end
Conditional if statement if logical expressions
command statement

elseif logical expressions
statement

else
statement

end
Function function [x,y,...]=name(a,b,...)

Component-wise operations in matrix multiplications (*), divisions (/) and potentia-
tion ^ are indicated with a dot modifier such as

>> v.^2

ans =

0 4 16

The most common operators and basic programming constructs in Matlab are similar
to those in other programming languages and are listed in Table 1.3.

1.4.1.3 Control flow and conditional operations
Besides the assignments of values to variables, and the availability of basic data
structures such as arrays, a programming language needs a few basic operations for
building loops and for controlling the flow of a program with conditional statements
(see Table 1.3). For example, the for loop can be used to create the elements of the
vector v above, such as

>> for i=1:3; v(i)=2*(i-1); end

| 21Scientific computing with Matlab

>> v

v =

0 2 4

Table 1.3 lists, in addition, the syntax of a while loop. An example of a conditional
statement within a loop is
>> for i=1:10; if i>4 & i<=7; v2(i)=1; end; end
>> v2

v2 =

0 0 0 0 1 1 1

In this loop, the statement v2(i)=1 is only executed when the loop index is larger
than 4 and less or equal to 7. Thus, when i=5, the array v2 with 5 elements is created,
and since only the elements v2(5) is set to 1, the previous elements are set to 0 by
default. The loop adds then the two element v2(6) and v2(7). Such a vector can also
be created by assigning the values 1 to a specified range of indices,
>> v3(4:7)=1

v3 =

0 0 0 1 1 1 1

A 1⇥7 array is thereby created with elements set to 0, and only the specified elements
are overwritten with the new value 1. Another method to write compact loops in Matlab
is to use vectors as index specifiers. For example, another way to create a vector with
values such as v2 or v3 is
>> i=1:10

i =

1 2 3 4 5 6 7 8 9 10

>> v4(i>4 & i<=7)=1

v4 =

0 0 0 0 1 1 1

1.4.1.4 Creating Matlab programs and functions
If we want to repeat a series of commands, it is convenient to write this list of
commands into an ASCII file with extension ‘.m’. Any ASCII editor (for example;
WordPad, Emacs, etc.) can be used, but not a word processor like Word since this adds
hidden characters for formatting purposes into the text that can not be interpreted by
the Matlab compiler. The Matlab package contains an editor that has the advantage of

Background22 |

colouring the content of Matlab programs for better readability and also provides direct
links to other Matlab tools. The list of commands in the ASCII file (e.g. prog1.m)
is called a script in Matlab and makes up a Matlab program. This program can be
executed with a run button in the Matlab editor or by calling the name of the file
within the command window (for example, by typing prog1). We assumed here that
the program file is in the current directory of the Matlab session or in one of the search
paths that can be specified in Matlab. The Matlab desktop includes a ‘current directory’
window (see desktop menu). Some older Matlab versions have instead a ‘path browser’.
Alternatively, one can specify absolute path when calling a program, or change the
current directories with UNIX-style commands such as cd in the command window
(see Fig. 1.10).

Run program

Fig. 1.10 Two editor windows and a command window.

Functions are another way to encapsulate code. They have the additional advantage
that they can be pre-compiled with the Matlab CompilerTM available from MathWorks,
Inc. Functions are kept in files with extension ‘.m’ which start with the command line
like

function y=f(a,b)

where the variables a and b are passed to the function and y contains the values returned
by the function. The return values can be assigned to a variable in the calling Matlab
script and added to the workspace. All other internal variables of the functions are
local to the function and will not appear in the workspace of the calling script. As an
example, consider a function that is given two numbers and should return the larger of
the two values. This can be encapsulated into a function like

| 23Scientific computing with Matlab

function larger=returnMax(a,b)
larger = b;
if a>b; larger=a; end
return

This function must be saved into a file with name returnMax. This function can then
be called from another program in the same directory, or from another directory when
the path to the function is added to the search path in Matlab. As an example, we could
call
>> returnMax(4,3)

ans =

4

Matlab has a rich collection of predefined functions implementing many algo-
rithms, mathematical constructs, and advanced graphic handling, as well as general
information and help functions. You can always search for some keywords using the
useful command lookfor followed by the keyword (search term). This command
lists all the names of the functions that include the keywords in a short description
in the function file within the first comment lines after the function declaration in
the function file. The command help, followed by the function name, displays the
first block of comment lines in a function file. This description of functions is usually
sufficient to know how to use a function. A list of some frequently used functions is
listed in Table 1.4.1.4.

1.4.1.5 Graphics
Matlab is a great tool for producing scientific graphics. We want to illustrate this by
writing our first program in Matlab: calculating and plotting the sine function. The
program is

x=0:0.1:2*pi;
y=sin(x);
plot(x,y)

The first line assigns elements to a vector x starting with x(1) = 0 and incrementing
the value of each further component by 0.1 until the value 2⇡ is reached (the variable
pi has the appropriate value in Matlab). The last element is x(63) = 6.2. The second
line calls the Matlab function sin with the vector x and assigns the results to a vector
y. The third line calls a Matlab plotting routine. You can type these lines into an ASCII
file that you can name plot sin.m. The code can be executed by typing plot sin
as illustrated in the command window in Fig. 1.9, provided that the Matlab session
points to the folder in which you placed the code. The execution of this program starts
a figure window with the plot of the sine function as illustrated on the right in Fig. 1.9.

The appearance of a plot can easily be changed by changing its attributes. There are
several functions that help in performing this task, for example, the function axis that
can be used to set the limits of the axis. New versions of Matlab provide window-based
interfaces to the attributes of the plot. However, there are also two basic commands,
get and set, that we find useful. The command get(gca) returns a list with the axis

Background24 |

Name Brief description
abs absolute function
axis sets axis limits
bar produces bar plot
ceil round to larger integer
colormap colour matrix for surface plots
cos cosine function
diag diagonal elements of a matrix
disp display in command window
errorbar plot with error bars
exp exponential function
fft fast Fourier transform
find index of non-zero elements
floor round to smaller integer
hist produces histogram
int2str converts integer to string
isempty true if array is empty
length length of a vector
log logarithmic function
lsqcurevfit least mean square curve

fitting (statistics toolbox)
max maximum value and index
mix minimum value and index
mean calculates mean
meshgrid creates matrix to plot grid

Name Brief description
mod modulus function
num2str converts number to string
ode45 ordinary differential equation solver
ones produces matrix with unit elements
plot plot lines graphs
plot3 plot 3-dimensional graphs
prod product of elements
rand uniformly distributed random variable
randn normally distributed random variable
randperm random permutations
reshape reshaping a matrix
set sets values of parameters in structure
sign sign function
sin sine function
sqrt square root function
std calculates standard deviation
subplot figure with multiple subfigures
sum sum of elements
surf surface plot
title writes title on plot
view set viewing angle of 3D plot
xlabel label on x-axis of a plot
ylabel label on y-axis of a plot
zeros creates matrix of zero elements

Table 1.4 Matlab functions used in this course. The Matlab command help cmd, where cmd is
any of the functions listed here, provides more detailed explanations.

properties currently in effect. This command is useful for finding out what properties
exist. The variable gca (get current axis) is the axis handle, which is a variable that
points to a memory location where all the attribute variables are kept. The attributes
of the axis can be changed with the set command. For example, if we want to change
the size of the labels we can type set(gca,’fontsize’,18). There is also a handle
for the current figure gcf that can be used to get and set other attributes of the figure.
Matlab provides many routines to produce various special forms of plots including
plots with error-bars, histograms, three-dimensional graphics, and multi-plot figures.

1.4.2 Some programming exercises and examples
The following exercises are intended to practice programming yourself. It is thus
important to try to solve these exercises before looking at the solution given below.
Note that there are usually many different ways to program a specific task, so don’t
worry if your answer looks different as long as it captures the main task. Observing
others programs is a good way to learn tricks, but you also need to learn how to write
programs on your own.

Writing programs is easy for some people and more difficult for others. It is
important to realize that a program strictly (!) follows rules. Matlab will respond with

| 25Scientific computing with Matlab

a red error message if it discovers syntactic rules. These error messages are your friend.
Read then as they usually tell you quite well what the specific problem is. More difficult
are runtime errors in which there might be logical errors in our algorithm. These are
much harder to find. In general, to debug a program it is a good idea to follow each
line of the program and to predict what your expected outcome of this operation is.
Then write out what the program produces and see if it matches. If not then there is a
problem.

As you have seen, a programming language has only a handful of commands and
maybe a large list of predefined functions, but most of programming is exercising your
analytic mind for solving a problem. Key is thereby to divide the problem into small
manageable tasks. Another key to learning programming is to understand what caused
the bugs in your code. Simply changing random statements until ‘it works’ is a bad
approach. Find out what exactly happened and you can be sure that you really solved
the problem and not just masqueraded it.

Random Walk
The first example is a program that should plot a random walk. In a random walk,
an agent has an initial position at time t = 0 and travels a certain distance in each
time step �t. The distance is thereby given by a Gaussian distributed random number,
which can be produced in Matlab by the function randn(). Plot the path of the agent
over 100 time steps and plot s second figure that shows a histogram of the velocities
during this path. Note that you can create a new figure window with the command
figure, and that you can create a histogram with the Matlab function hist(). If you
type help hist you will get more information on how to use this function.

Inverting String
Write a program that prompts a user to insert a string. After entering the string, the
program should then respond by printing the string in reverse order.

Function
Write a program with a function that takes two arrays, a and b, and calculates the
matrix a ⇤ b02 + b.

Sorting
Write a program that prompts the user to enter words until the esc key is pressed and
then takes this list and prints it in a sorted order.

Possible solutions

Below are some sample solutions for the first two examples. As mentioned before,
don’t worry if your solutions used a different methods. However, it is useful to make
sure that the following solutions make sense to you and that you understand how they
work.

The random walk can be plotted with
x=10;
for t=1:100

x(t+1)=x(t)+randn;

Background26 |

end
plot(x)

To plot the histogram of the individual changes we need first to calculate the changes
and gather them into a new array (vector). A general trick is to make an empty array,
v=[] and then make a new array in the loop from the previous version and the element
to be added.
v=[];
for t=1:100

v=[v,x(t+1)-x(t)];
end
figure;
hist(v)

Inverting the string can be done with specifying the elements of the string array.
yourString=input(’Please input a string followed by enter ’,’s’)
reverseString=yourString(size(yourString,2):-1:1)

This could also be programmed with an explicit loop like
reverseString=[];
for i=size(yourString,2):-1:1

reverseString=[reverseString, yourString(i)];
end

However, it is recommended to avoid explicit loops as much as possible since implicit
looping is often much more efficient.

