
11 Reinforcement Learning

11.1 Learning from reward and the credit assignment
problem

11.1.1 The reinforcement learning problem

In supervised learning we assumed that a teacher supplies detailed information on the
desired response of a learner. This was particularly suited to object recognition where
we had a large number of labeled examples. However, there are different learning
circumstances which seem to be much more common when agents have to learn from
acting in the environment. With agent we refer here to a system that acts in the world,
like a robot or a human. An example of a learning tasks for an agent is to learn to play
tennis. Such learning comprises trying out moves and getting rewarded by points the
agent score rather than a teacher who specifies every muscle movement we need to
follow or an engineer who designs every sequence of motor activations. It is indeed
common in such situations that the agent only get some simple feedback after long
periods of actions in form of reward or punishment without even detailing which of
the actions has contributed to the outcome. In this type of learning scenario is called
reinforcement learning (RL).

RL faces several challenges. One is called the credit assignment problem. This
includes which action (spatial credit assignment) and at which time (temporal credit
assignment) of the system should be given credit for the achievement of reward.
Another important aspect that is new in contrast to supervised learning is that the
agent must search for solutions by trying different actions. The agent must therefore
generally play an active role in exploring options. And what if we we find a solution
that give us some reward? We could then ask if this is a good solution or if the agent
should search for a better solution and forgo some of the known rewards? This problem
is commonly stated as exploration versus exploitation trade-off.

Learning with reward signals has been studied by psychologists for many years
under the term conditioning. An example of classical conditioning in animal learning
is shown in Fig. 11.1.1. In the illustrated experiment, we place a rodent in a T-maze
and supply food of different sizes when the rodent goes to the end of each horizontal
arm of the T-maze. The rodent might wander around. Let us assume that it found
the smaller food reward at the end of the left arm of the T-maze. It is then likely
that the rodent will turn left in subsequent trials to receive food reward. Thus the
animal learned that the action of taking a left turn and going to the end of the arm is
associated with food reward. Of course, in this case the rodent could also reveive larger
reward when exploring the right arm of the maze. Similar settings can be applied to
robots, for example robots that must learn to find a charging station. Even our original
object recognition problems of naming the correct class to which an object belongs
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can be formulated in terms of reinforcement. Psychologist also distinguish between
instrumental conditioning, in which an action and hence a decision has to be made
in order to find positive reward. In contrast, in classical conditioning does not require
an action, and such settings are ideal to illuminate the temporal order in which reward
associations are made.

A) Instrumental conditioning in T-maze                  B) Classical Conditioning

Fig. 11.1 Example of instrumental and classical conditioning. A) A rodent has to learn to transverse
the maze and make a decision at the junction in which direction to go. Such as decision problem,
which necessitates the action of an actor, is called instrumental conditioning in the animal learning
literature. B) A slightly simpler setting is that of classical conditioning which does not require an
action and thus concentrates on learning the reward associations. An typical example is when a
subject is required to associate the ringing of a bell with reward.

11.1.2 Formalization of the problem setting: The Markov Decision
Process

To discuss RL in more depth we need to formalize the reinforcement setting a bit
more. We consider an agent that in each time interval t is in a specific state s

t

. A
state describes thereby the environment such as a location at which the agent could
be. Furthermore, we assume that the agent can take an action a

t

from each state.
This action specifies a transition to a new state, and this transition is specified by the
transition function ⌧ as

Transition function: s
t+1

= ⌧(s
t

, a
t

). (11.1)

We restrict the discussion here to the common assumption that the transition function
only depend on the previous state and the intended action from the corresponding state.
This is called the Markov condition, and the corresponding decision process is called
a Markov Decision Process (MDP). In contrast, a non-Markovian condition would
be the case in which the next state depends on a series of previous states and actions,
and our agent would then need a memory to make optimal decisions. The situation
described by the Markov condition is quite natural as many decisions processes only
depend on the current state, and we could even define a state as having all necessary
conditions to make the decision. a MDP is therefore a good scenario to solve. We
also assume that the agent knows in which state it is in. This is often a problematic
assumptions with limited sensors such as human perception or in robotics. However,
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the MDP problem can also be generalized to situation of a partially observable Markov
decision process, usually called an POMDP.

Next, we assume that the environment or a teacher provides reward according to a
reward function ⇢,

Reward function: r
t+1

= ⇢(s
t

, a
t

). (11.2)

This reward functions returns the value of reward when the agent is in state s
t

and
takes intended action a

t

. In the deterministic case this is of course the reward at the
next state s

t+1

= ⌧(s
t

, a
t

).
Finally, an important function in reinforcement learning is the control policy that

specifies which action a to take from each state,

Policy: a
t

= ⇡(s
t

). (11.3)

In the context of a mobile agent, the action a
t

is commonly provided by a motor
command that specifies the action that the agent should take at time t, the time when
the agent is in state s

t

. For example, a muscle that should move the arm should be
activated with a certain nerve pulse, or a robot that should turn is activated by a certain
motor that should run for a certain time with a certain speed.
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Fig. 11.2 Example experiment with the simplified T-maze where we concentrate on the more inter-
esting horizontal portion of the maze (linear maze). The right hand side shows the corresponding
transition matrix for the optimal policy.

To illustrate the different reinforcement schemes discussed in this chapter, we will
apply these to the example of the T-maze outlined in the introduction. To keep the
programs minimal and clean, we concentrate on the upper linear part for the maze as
illustrated in Fig. 11.2. States s of the maze ae labeled as 0 to 4. A reward of value 1
is provided in state 0 and a reward of 2 is provided in state 4. The discrete Q-function
has 10 values corresponding to each possible action in each state. In states 1,2, and 3
these are the actions of move left or move right. The states with the reward, states 0
and 4, are terminal states and the agent would stay in these states. We coded this with
two stay actions to keep some consistency in the representation.

We provide here several python functions for later use. First there is the transition
function ⌧(s, a) and the reward function ⇢(s, a). Next we provide a function to calculate
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the policy from a value function. This will be discussed further below. Finally, we
provide a helper function idx(a) to transforms the action representation u 2 {�1, 1}
to the corresponding indices idx 2 {0, 1}:

## R e i n f o r c e m e n t l e a r n i n g i n a maze

import numpy as np
import m a t p l o t l i b . p y p l o t a s p l t

def t a u ( s , a ) :
i f s ==0 or s ==4: re turn ( s )
e l s e : re turn ( s+a )

def rho ( s , a ) :
re turn ( s ==1 and a ==�1)+2⇤( s ==3 and a ==1)

def c a l c p o l i c y (Q ) :
p o l i c y =np . z e r o s ( 5 )
f o r s in range ( 0 , 5 ) :

a c t i o n i d x =np . argmax (Q[ s , : ] )
p o l i c y [ s ]=2⇤ a c t i o n i d x �1
p o l i c y [ 0 ] = p o l i c y [ 4 ] = 0
re turn p o l i c y . a s t y p e ( i n t )

def i d x ( a ) :
re turn ( i n t ( ( a + 1 ) / 2 ) )

gamma = 0 . 5 ;

11.1.3 Return and Value functions

The goal of the agent is to maximize the total expected reward in the future from
every initial state. This quantity is called return in economics. Of course, if we assume
that this goes on forever than this return should be infinite, and we have hence to be a
bit more careful. One common choice is to define the return as the average reward in a
finite time interval, also called the finite horizon case. Another common form to keep
the return finite is to use a discounted return in which an agent values immediate
reward more than reward far in the future. To capture this we define a discount factor
0 < � < 1. In the example program we will use a value of gamma = 0.5,

## d i s c o u n t f a c t o r

gamma = 0 . 5 ;

although values much closer to one such as � = 0.99 are common. For this case we
now define a state-action value function which gives us a numerical value of the
return (all future discounted reward) when the agent is in state s and takes action a and
then follows the policy for the following actions,

Value function (state-action): Q⇡

(s, a) = ⇢(s, a) +

1X

t=1

�t⇢(s
t

,⇡(s
t

)) (11.4)

In other words, this functions tells us how good is action a in state s, and the knowledge
of this value function should hence guide the actions of an agent. The aim of value-
based reinforcement learning is to estimate this function.
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Sometimes we are only interested in the value function when we follow the policy
even for the first step in the action sequence from state s. This value function does
then not depend explicitly on the action, only indirectly of course on the policy, and is
defined as The total discounted return from state s = s

0

following policy ⇡ is,

Value function (state): V ⇡

(s) = Q⇡

(s,⇡(s)) (11.5)

The goal of RL is to find the policy which maximized the return. If the agents
knows the

Optimal Value function: V ⇤
(s) = max

a

Q⇤
(s, a), (11.6)

then the optimal policy is simply given by taking the action that leads to the biggest
expected return, namely

Optimal policy: ⇡⇤
(s) = argmax

a

Q⇤
(s, a). (11.7)

This function is implemented above with the python code for calc policy.
The optimal value function and the optimal policy are closely related. We will

discuss in the following several methods to calculate or estimate the value function
from which the policy can be derived. These methods can be put under the heading
of value-search. Corresponding agents, or part of the corresponding RL algorithms,
are commonly called a critic. However, there are also methods to learn the policy
directly. Such methods are called policy-search is the corresponding agents are called
an actor. At the end we will argue that combining these approaches in an actor-critic
scheme has attractive creatures, and such schemes are increasingly used in practical
applications.

11.2 Model-based Reinforcement Learning

In this section we assume that the agent has a model of the environment and its
behaviour by knowing the reward function ⇢(s, a) and the transfer functions ⌧(s, a).
The knowledge of these functions, or a model thereof, is required for model-based
RL, which is also called dynamic programming.

11.2.1 The basic Bellman equation

The key to learning the value functions is the realization that the right hand side of
eq.?? can be written in terms of the Q-function itself, namely

Q⇡

(s, a) = ⇢(s, a) + �

1X

t=1

�t�1⇢(s
t

,⇡(s
t

))

= ⇢(s, a) + �

"
⇢(⌧(s, a),⇡(⌧(s, a))) + �

1X

t=2

�t�2⇢(s
t

,⇡(s
t

))

#
.

The term in the square bracket is equal to the value function of the state that is reached
after the transition ⌧(s, a)
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Q⇡

(⌧(s, a),⇡(⌧(s, a))) = V ⇡

(⌧(s, a)). (11.8)

The Q-function and the V -function are here equivalent since we are following the
policy in these steps. Using this fact in the equation above we get the

⇡ Bellman equation: Q⇡

(s, a) = ⇢(s, a) + �Q⇡

(⌧(s, a),⇡(⌧(s, a))). (11.9)

If we combine this with known dynamic equations in the continuous time domain, then
this becomes the Hamilton-Jacobi-Bellman equation. often encountered in engineering.

As stated above, we assume here the reward function ⇢(s, a) and the transition
functions ⌧(s, a) are known. At this point the agent follows a specified policy ⇡(s).
Let us further assume that we have n

s

states and n
a

possible actions in each state. We
have thus n

s

⇥ n
a

unknown quantities Q⇡

(s, a) which are governed by the Bellman
equation above. More precisely, the Bellman equations 11.9 are n

s

⇥n
a

coupled linear
equations of the unknowns Q⇡

(s, a). It is then convenient to write this equation system
with vectors

Q

⇡

= R+ �T⇡

Q

⇡ (11.10)

Where T⇡ is an appropriate transition matrix which depends on the policy. This
equation can also be written as

R = (11� �T⇡

)Q

⇡, (11.11)

where 11 is the identity matrix. This equation has the solution

Q

⇡

= (11� �T⇡

)

�1

R (11.12)

if the inverse exists. In other words, as long as the agent knows the reward function and
the transition function, it can calculate the value function for a specific policy without
even taking a single step. This is an example of a deliberative system where the agent
can use the models of reward and the environment to calculate optimal decisions;
hence the specification of model-based RL.

To demonstrate how to solve the Bellman equation with linear algebra tools, we
need to define the corresponding vectors and matrices as used in eq.11.12. We order
therefore the quantities such as ⇢ and Q with ten indices. The first one correspond to
(s = 0, u = �1), the second to (s = 0, u = 1), the third to (s = 1, u = �1), etc. The
reward vector can thus be coded as:

p r i n t ( ’��> A n a l y t i c s o l u t i o n f o r o p t i m a l p o l i c y ’ )

# D e f i n i n g reward v e c t o r R

i =0 ; R=np . z e r o s ( 1 0 )
f o r s in range ( 0 , 5 ) :

f o r a in range ( �1 , 2 , 2 ) :
R[ i ]= rho ( s , a )
i += 1

The transition matrix depends on the policy, so we need to choose one. We chose the
one specified on the left in Fig. 11.2 where the agent would move to the left in state
s = 2 and to the right in states s = 3 and s = 4. This happens to be the optimal
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solution as we will show later so that this will also give us a solution for the optimal
value function. We use this policy to construct the transition matrix by hand as shown
on the right in Fig. 11.2. For example, if we are in state s = 4 and move to the left,
a = �1, corresponding to the from-index=7, then we end up in state s = 3, from
which the policy say go right, a = 1. This correspond to the to-index=6. Thus, the
transition matrix should have an entry T (7, 6) = 1. Going through all the cases results
in

# D e f i n i n g t r a n s i t i o n m a t r i x

T=np . z e r o s ( [ 1 0 , 1 0 ] ) ;
T [ 0 , 0 ] = 1 ; T [ 1 , 1 ] = 1 ; T [ 2 , 0 ] = 1 ; T [ 3 , 5 ] = 1 ; T [ 4 , 2 ] = 1
T [ 5 , 7 ] = 1 ; T [ 6 , 5 ] = 1 ; T [ 7 , 9 ] = 1 ; T [ 8 , 7 ] = 1 ; T [ 9 , 9 ] = 1

With this we can solve this linear matrix equations with the inv() function in the
linear algebra package of numpy,

# C a l c u l a t e Q�f u n c t i o n

Q=np . l i n a l g . i n v ( np . eye (10)�gamma⇤T ) @ np . t r a n s p o s e (R)
Q=np . t r a n s p o s e ( np . r e s h a p e (Q, [ 5 , 2 ] ) )

We reshaped the resulting Q-function so that the first row shows the values for left
movements in each state and the second row shows the values for a right movement in
each state. From this we can calculate which movement to take in each state, namely
just the action corresponding to the maximum value in each column and print the
results,

p o l i c y = c a l c p o l i c y (Q)
p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )

which gives

��> A n a l y t i c s o l u t i o n f o r o p t i m a l p o l i c y
Q v a l u e s :
[ [ 0 . 1 . 0 . 5 0 . 5 1 . ]
[ 0 . 0 . 5 1 . 2 . 0 . ] ]
p o l i c y :
[ 0 �1 1 1 0]

That is ignoring the end states it is moving left in state 1 as this would lead to an
immediate reward of 1 and moving right in the other states as this would result in a
larger reward even when taking the discounting for more steps into account. Of course,
at this point our argument is circular as we have started already with the assumption that
we use the optimal policy as specified in the transition matrix to start with. We will soon
see how to start with an arbitrary policy an improve this to find the optimal strategy.
Also note that the transition matrix was perfect in the sense that the intended move
always leads to the intended end state. We will later see that a probabilistic extension
of this transition matrix is quite useful in describing more realistic situations.

In the code we save the optimal Q-values for the optimal policy

Qana=Q
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so that we can later plot the difference of other solution methods.
The Bellman equations are a set of n coupled linear equations for n unknown Q

values, and we have solved these here with linear algebra function to find an inverse of
a matrix. This can be implemented with some algorithms such as Gauss elimination.
Alternatively we can solve the Bellman equation with the following iterative procedure.
We starts with a guess of theQ-function, let’s call thisQ⇡

i

, and improve it by calculating
the right hand side of the Bellman equation,

Dynamic Programming: Q⇡

i+1

(s, a) ⇢(s, a) + �Q⇡

i

(⌧(s, a),⇡(⌧(s, a))).
(11.13)

The fixed-point of this equation, that is, the values that does not change with these
iterations, are the desired values of Q⇡ . Another way of thinking about this algorithm
is that the Bellman equality is only true for the correct Q⇡ values. For our guess, the
difference between the left- and right-hand side is not zero, but we are minimizing this
with the iterative procedure above. The corresponding code is

p r i n t ( ’\n��> Dynamic Programing ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
f o r i t e r in range ( 3 ) :

f o r s in range ( 0 , 5 ) :
f o r a in range ( �1 , 2 , 2 ) :

a c t = np . i n t ( p o l i c y [ t a u ( s , a ) ] )
Q[ s , i d x ( a ) ] = rho ( s , a )+gamma⇤Q[ t a u ( s , a ) , i d x ( a c t ) ]

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )

This is a much more common implementation and it does not require the explicit
coding of the transition matrix. Iterative approaches will be used in all further methods
discussed below. Note that we have only used three iterations to converge on the right
solution. While we set here the number of iterations by hand, in practice we iterate
until the changes in the values are sufficiently small.

11.2.2 Policy Iteration

The goal of RL is of course to find the policy which maximized the return. So far
we have only discussed a method to calculate the value for a given policy. However,
we can start with an arbitrary policy and can use the corresponding value function to
improve the policy by defining a new policy which is given by taken the actions from
each state that gives us the best next return value,

Policy iteration: ⇡(s) argmax

a

Q

⇡

(s, a). (11.14)

For the new policy we can then calculate the corresponding Q-function and then use
this Q-function to improve the policy again. Iterating over the policy gives us the

Optimal policy: ⇡⇤
(s). (11.15)



| 121Model-based Reinforcement Learning

The corresponding value function is Q⇤. In the maze example we can see that the
maximum in each column of the Q-matrix is the policy we started with. This is hence
the optimal policy as we stated before.

The corresponding code for our maze example is

p r i n t ( ’\n��> P o l i c y i t e r a t i o n ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
p o l i c y = c a l c p o l i c y (Q)
f o r i t e r in range ( 3 ) :

f o r s in range ( 0 , 5 ) :
f o r a in range ( �1 , 2 , 2 ) :

a c t = np . i n t ( p o l i c y [ t a u ( s , a ) ] )
Q[ s , i d x ( a ) ] = rho ( s , a )+gamma⇤Q[ t a u ( s , a ) , i d x ( a c t ) ]

p o l i c y = c a l c p o l i c y (Q)

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )

Note that in this example we iterated again only three times over the policies. In
principle we could and should iterate several times for each policy in order to converge
to a stable estimate for this Q⇡ . However, the improvements will anyhow lead very
quickly to a stable state, at least in this simple example.

11.2.3 Bellman function for optimal policy and value iteration

Since we are foremost interested in the optimal policy, we could try to solve the
Bellman equation right away for the optimal policy,

Q⇤
(s, a) = ⇢(s, a) + �Q⇤

(⌧(s, a),⇡⇤
(⌧(s, a))). (11.16)

The problem is that this equation does now depend on the unknown ⇡⇤. However, we
can check in each state all the actions and take the one which gives us the best return.
This should be equivalent to the equation above in the optimal case. Hence we propose
the

Optimal Bellman equation: Q⇤
(s, a) = ⇢(s, a)+ �max

a

0
Q⇤

(⌧(s, a), a0). (11.17)

We can solve this with dynamic programming when the transfer function and the
reward functions are known,

Q-iteration: Q⇤
(s, a) ⇢(s, a) + �max

a

0
Q⇤

(⌧(s, a), a0). (11.18)

The corresponding code for our maze example is

p r i n t ( ’\n��> Q� i t e r a t i o n ’ )

Q new=np . z e r o s ( [ 5 , 2 ] )
Q=np . z e r o s ( [ 5 , 2 ] )
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p o l i c y = np . z e r o s ( 5 )
f o r i t e r in range ( 2 ) :

f o r s in range ( 0 , 5 ) :
f o r a in range ( �1 , 2 , 2 ) :

maxValue = np . maximum (Q[ t a u ( s , a ) , 0 ] ,Q[ t a u ( s , a ) , 1 ] )
Q new [ s , i d x ( a ) ] = rho ( s , a )+gamma⇤maxValue

Q=np . copy ( Q new ) ;

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )

In this example we again used 3 iterations which are sufficient to reach the correct
values. In practice we would terminate the program if the changes are sufficiently
small.

11.3 Model-free Reinforcement Learning

11.3.1 Temporal Difference Method for Value Iteration

Above we assumed a model of the environment by an explicit knowledge of the
functions ⌧(s, a) and ⇢(s, a). We could use modelling techniques and some sampling
strategies to learn these functions explicitly and then use model-based RL as described
above to find the optimal policy. Instead we will here combine here the sampling by
exploring the environment directly with reinforcement learning.

We will start again with a version for a specific policy by choosing a policy
and estimate the Q-function for this policy. As in dynamic programming we want to
minimize the difference between the left- and right-hand side of the Bellman equation.
But we can not calculate the right hand side since we do not know the transition
function and the reward function. However, we can just take a step according to our
policy u = ⇡(s) and observe a reward r

i+1

and the next state s
i+1

. Now, since this is
only one sample we should take this only with a small learning rate ↵ into account to
update the value function

SARSA: Q
i+1

(s
i

, a
i

) = Q
i

(s
i

, a
i

) + ↵ [(r
i+1

+ �Q
i

(s
i+1

, a
i+1

)�Q
i

(s
i

, a
i

)] .
(11.19)

The term in the square brackets on the right hand-side is called the temporal difference.
Note that we are following here the policy, and the methods is therefore often labeled
as on-policy. The next step is to use the estimate of the Q-function to improve policy.
However, since we are anyhow mainly interested in the optimal policy we should
improve the policy by taking the the steps that maximizes the payoff. However, one
problem in this scheme is that we have to estimate the Q values by sampling so that
we have to make sure to trade off exploitation with exploration. A common way to
choose the policy in this scheme is the

✏-greedy policy: p
⇣
argmax

a

Q(s, a)
⌘
= 1� ✏. (11.20)

So, we are really evaluating the optimal policy that requires to make the exploration
zero at the end, ✏! 0.
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The corresponding code for the SARSA is

p r i n t ( ’\n��> SARSA ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
e r r o r = [ ]
a l p h a =1;
f o r t r i a l in range ( 5 0 0 ) :

p o l i c y = c a l c p o l i c y (Q)
s =2
f o r t in range ( 0 , 5 ) :

a= p o l i c y [ s ]
i f np . random . r and ( ) <0 . 1 : a=�a # e p s i l o n gr ee d y

a2= i d x ( p o l i c y [ t a u ( s , a ) ] )
Q[ s , i d x ( a )]=(1� a l p h a )⇤Q[ s , i d x ( a ) ] + a l p h a ⇤ ( rho ( s , a )+gamma⇤Q[ t a u ( s , a ) , a2 ] )
s= t a u ( s , a )

e r r o r . append ( np . sum ( np . sum ( np . abs ( np . s u b t r a c t (Q, Qana ) ) ) ) )

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )
p l t . f i g u r e ( ) ; p l t . p l o t ( e r r o r ) ; p l t . show ( )

Note that we have set here the learning rate ↵ = 1 for this example, which makes
the update rule look similar to dynamic programming

Q
i+1

(s
i

, a
i

) = (r
i+1

+ �Q
i

(s
i+1

, a
i+1

). (11.21)

However, there is a major difference. In dynamic programming we iterate over all
possible states with the knowledge of the transition function and the reward function.
Thus an agent does not really has to explore the environment and can just "sit there" and
calculate what the optimal action is. This is the benefit of model-based reinforcement
learning. In contrast, here we discuss the case where we do not know the transition
function and the reward function and hence have to explore the environment by acting
in it. As there is usually associated with a physical movement, this takes times and
hence limits the exploration we can do. Hence it is common that an agent can not
explore all possible states. Also, a learning rate of ↵ = 1 is not always advisable since
a more common setting is that reward itself is probabilistic. A smaller value of ↵ then
represents a form of taking a sliding average and hence estimating the expected value
of the reward.

It is illustrative to go through the SARSA algorithm by hand for our linear-maze
example. An example is shown in Fig. ??.In this example we changed the situation
to a linear maze in which the state always starts at the leftmost state and a reward of
r = 1 is received in the rightmost state. The policy is to always go right, which is also
the optimal policy in this situation. At the first time step of the first episode we are
in the leftmost state and evaluate the value of going right. In the corresponding state
to the right there is no reward given, and the value function is also zero. So the value
function of this state-action is zero. The same is true for every step until we are in the
state before the reward state. At this point the value is updated to the reward of the next
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π(x):

r(x):  0            0           0            0            1
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Fig. 11.3 Example of the "back-propagation" of the reward (not to be confused with the back
propagation algorithm in supervised learning). In this example, an episode always starts in the
leftmost state and the policy is to always go right. A reward is received in the rightmost state.

state. In the second episode the value of the first and second state remains zero, but
the third state is updated to � ⇤ 1 since the value of the next state following the policy
is given by one, and we discount this by �. Going though more episodes it can be
seen that the value "back-propagates" by one step in each episode. Note that this back
propagation of the value is not to be confused with the back propagation algorithm in
supervised learning. Also, notice that the values for the Q-function for going left are
not updated as we only followed optimal policy deterministically. Some exploration
steps will eventually update these values, although it might take a long time until these
values propagate through the system.

Finally, a more common version of a temporal difference learning is to use an
alternative way to estimate the value function using an off-policy approach for the
estimation step from each visited state. That is we check all possible actions from the
state that we evaluate state and update the value function with the maximal expected
return,

Q-learning: Q
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(11.22)
We still have to explore the environment which is again usually following the optimal
estimated policy with some allowance for exploration such as ✏-greedy or a softmax
exploration strategy.

The corresponding code for the Q learning is

p r i n t ( ’\n��> Q�L e a r n i n g : ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
a l p h a =1
e r r o r = [ ]
f o r t r i a l in range ( 5 0 0 ) :

s =2
f o r t in range ( 0 , 5 ) :

a c t i o n i d x =np . argmax (Q[ s , : ] )
a =2⇤ a c t i o n i d x �1
i f np . random . r and ( ) <0 . 1 : a=�a # e p s i l o n gr ee d y
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Q[ s , i d x ( a )]=(1� a l p h a )⇤Q[ s , i d x ( a ) ] + a l p h a ⇤ ( rho ( s , a )+gamma⇤np . maximum (Q[ t a u ( s , a ) , 0 ] ,Q[ t a u ( s , a ) , 1 ] ) )
Q[ 0 ] = 0 ;Q[ 4 ] = 0
s= t a u ( s , a )

e r r o r . append ( np . sum ( np . sum ( np . abs ( np . s u b t r a c t (Q, Qana ) ) ) ) )

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )
p l t . p l o t ( e r r o r , ’ r ’ ) ; p l t . show ( )

11.3.2 TD(�)

The example of the linear maze in the previous section has shown that the expectation of
reward propagates backwards in each episode which hence requires multiple repetition
of the episodes in order to evaluate the value function. The reason for this is that we
only give credit for making a step to a valuable state to the previous step and hence
only update the corresponding value function. A different approach is to keep track of
which states have led to the reward and assign the credit to each step that was visited.
However, because we discount the reward proportional to the time it takes to get to the
rewarded state, we need to also take this into account.

π(x):

r(x):  0            0           0            0            1

Q(x,u): e=0
0 00

e=1
0

0 000

1/4 11/21/8

0 000
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0
00

0
00

0
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0
01/2

e=0e=0

e=1e=γ e=0e=0

e=γe=γ e=0e=1

e=γe=γ e=1e=γ

2

3 2

Fig. 11.4 Example of the "back-propagation" of the reward with an eligibility trace e. In this
example, an episode always starts in the leftmost state and the policy is to always go right. A
reward is received in the rightmost state.

To realize this we introduce an eligibility trace that we call e(s). At the beginning,
this eligibility trace is set to zero for all the states. The for each visited state we set this
eligibility state to one for this current state, and we discount the eligibility for all the
other states by �. This is demonstrated in Fig. 11.4. In the figure we reused the place for
the Q(s,�1) to indicate the eligibility trace at every time step. Note how the eligibility
trace is building up during one episode until reaching this the rewarded state, at which
time the values of all the states are updated in the right proportion. This algorithm
does therefore only need one optimal episode to find the correct value function, at
least in this case with a learning rate of ↵ = 1. This algorithm is implemented for the
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Q-learning version of temporal difference learning in the code below:

p r i n t ( ’\n��> TD( lambda ) f o r Q�L e a r n i n g : ’ )

Q=np . z e r o s ( [ 5 , 2 ] )
a l p h a =1
lam =0.1
e r r o r = [ ]

f o r t r i a l in range ( 1 0 0 ) :
s =2 ; e l i g i b i l i t y =np . z e r o s ( 5 )
f o r t in range ( 0 , 5 ) :

i f s ==0 or s ==4: break
e l i g i b i l i t y ⇤=gamma⇤ lam
e l i g i b i l i t y [ s ]=1
a c t i o n i d x =np . argmax (Q[ s , : ] )
a =2⇤ a c t i o n i d x �1
i f np . random . r and ( ) <0 . 1 : a=�a # e p s i l o n gr ee d y

f o r x in range ( 1 , 4 ) :
Q[ x , i d x ( a ) ] =Q[ x , i d x ( a ) ] + a l p h a ⇤ ( rho ( x , a )+gamma⇤np . maximum (Q[ t a u ( x , a ) , 0 ] ,Q[ t a u ( x , a ) ,1 ] ) �Q[ x , i d x ( a ) ] ) ⇤ e l i g i b i l i t y [ x ]

s= t a u ( s , a )
e r r o r . append ( np . sum ( np . sum ( np . abs ( np . s u b t r a c t (Q, Qana ) ) ) ) )

p r i n t ( ’Q v a l u e s : \n ’ , np . t r a n s p o s e (Q) )
p r i n t ( ’ p o l i c y : \n ’ , np . t r a n s p o s e ( p o l i c y ) )
p l t . p l o t ( e r r o r , ’ r ’ ) ; p l t . show ( )

While this algorithms does cut down the number of episodes to learn the value
function, it does so on the expense of keeping memories of visited states and their
respective times. A compromise is to allow some decaying memory in the algorithm.
This can be implemented simply by a factor � ind replacing the update of the eligibility
trace from

e l i g i b i l i t y ⇤=gamma

to

e l i g i b i l i t y ⇤=gamma⇤ lambda

With a term � < 1, this corresponds to an exponential decay of the eligibility trace and
hence the necessary memory. We will see later that this can be implemented efficiently
in neural networks,


