
1 The Programming Environment
-Becoming Familiar with programming

In this tutorial you will familiarize yourself with the Aseba Studio programming environment and
build some small programs without using the Thymio II robot. These programs are designed to
facilitate experimentation with the robot in the course.

At the end of each lab section, your team must hand in a complete lab report to
the TA. Your team has 110 minutes in each lab section to complete the tutorial and
answer the questions. Budget your time wisely.

1.1 Exploring the Aseba Studio Programming Environment

1. Log in into the computer.

2. Run the “hammer.jar” file. You might download it from the course website.

3. Run the “Aseba Studio for Thymio II” from “Applications” folder (Mac OS X) or the
“Start” menu (Windows). You may see the dialog such as the one in Figure 1. In this case
click OK. You will then see the connection dialog box such as the one in Figure 2.

Figure 1: The Thymio-II is not connected. Figure 2: Select Network (TCP).

4. Check the Network (TCP) option in the connection dialog box (Figure 2).

5. Enter the host as localhost and be sure the port is set to 33333.

6. Click on Connect. The software will take a few seconds to load; you will then see the
application window.

7. You should become familiar with the layout of this development environment. Click on
the link: https://www.thymio.org/en:asebastudio to find documentation for Aseba text
programming environment and read it carefully.

8. After getting familiar with the development environment, find the links for Description of
the Aseba language and Description of the native functions standard library and
read them to get familliar with the the Aseba language syntax and functions.

Robotics Tutorial 1 1

https://www.thymio.org/en:asebastudio

9. Questions for Section 1.1:

(a) Identify the location and purpose of the following items in the Aseba text programming
environment: (i) Code area, (ii) Debugger area, (iii) Data inspection area, (iv) Local
events and native functions, (v) math native functions, (vi) leds native functions, (vii)
sound native functions, (viii) Constants definition, and (ix) “auto” check box.

(b) What happens when you click on the “Load” button? What about the “Run” button?

(c) Why do we need to add comments in a program? How will you add a comment in the
Aseba text programming environment?

(d) Describe the difference between “Variables” and “Constants” and explain how each
of them is declared in the Aseba environment?

(e) Why do we need to use “Arrays” in programming? How do you define an array with
name “a1” with 7 elements in the Aseba text programming environment?

(f) What are “Expressions” and “assignments”? Name the operators which are only
available from within “if”, “when”, and “while” structures and explain why do we
need them?

(g) Why do we need to use “conditional statements” in programming? What is the
difference between the two conditional statements in the Aseba text programming and
how do you use them?

Robotics Tutorial 1 2

(h) Why do we need to use “loops” in programming? What is the difference between the
the “while” and “for” loops in the Aseba text programming and how do you use them?

(i) Why do we need to use “subroutines” in programming? How do you define and call
them in the Aseba text programming environment?

(j) What are “events” and how can you use them in the Aseba programming? Explain
what will happen if you add an “infinite loop” in the block of code related to the
event?

(k) Describe the differences between “subroutines” and “events”? What is “return
statement” and why do we need to use it in the Aseba text programming?

(l) Why do we need to use “Native functions standard library” in the Aseba program-
ming, and how do you call them? What will happen when you hover the mouse over
different math functions in the native function box?

(m) Briefly explain these native math functions: “stat, mul, div, muldiv, fill, rand

and copy”.

1.2 Simple Programs

We are now ready to write our first program. In this case, we will do something simple without
using the robot.

1. Start a new program.

2. Create two constants: M with a value of 40, and N with a value of 10.

3. Define two variables a and b.

4. Build a simple program to multiply M by N and save the result into variable a and also divide
M by N and save the result into variable b.

5. Save your program under the name “simpleMath.aesl” by clicking on the “Save” option of
the “File” menu.

6. Click on the “Load” button in the top left corner and then run the program by clicking on
the “Run” button.

7. Check the “auto” box above the Variable List, which causes an automatic update of the
variables.

8. Scroll down the Variable List to find the results of the program (a and b).

9. Questions for Section 1.2:

(a) Change the M and N constants into 500 and 90 and check the results. Then use a
calculator and check the results again. Why there are differences?

(b) What is the range of the values that you can set as a constant or as a variable? Briefly
justify your answer.

Robotics Tutorial 1 3

1.3 Fahrenheit to Celsius Converter Program

Your next task is to learn more about the expressions and assignments. You will build a program
to convert Fahrenheit to Celsius using the Aseba programming language.

How to convert Fahrenheit to Celsius: The temperature in degrees Celsius (C) is equal
to the temperature in degrees Fahrenheit (F) minus 32, times 5/9: C = (F − 32) × 5/9

1. Start a new program.

2. Create a constants F for Fahrenheit input that you want to convert it into Celsius. Set to a
value like 350.

3. Define a variables c to save the converted value in Celsius.

4. Build a simple program to convert Fahrenheit to Celsius using the formula.

5. Save your program under the name “F2C Convertor.aesl” by clicking on the “Save” option
of the “File” menu.

6. Click on the “Load” button and then run the program by clicking on the “Run” button.

7. Scroll down the Variable List to find the result of the program (c).

8. Try different numbers for the constant F and check the results.

9. Questions for Section 1.3:

(a) Why the conversion is not accurate (100 ◦F is equal to 37.78 ◦C)?

1.4 Inches to Centimeters Convertor Program

Your last task is to learn about the loops, arrays, and native functions. You should build a program
to convert Inches to centimeters using the Aseba programming language (1 inch = 2.54 cm).

1. Start a new program.

2. Define an array named “inches” with values of 100, 200, 300, 400, 500, 600, 700, 800, 900,
and 1000.

3. Build a simple program using the “while” or “for” loops to multiply the “inches” array by
2.54 and store it into the “centimeters” array. Hint: As Aseba does not support decimal
numbers (see the first question of the secound section), you should first perform a multipli-
cation by 254 and then a division by 100 (254/100=2.54).

4. Save your program under the name “UnitConvertor.aesl”.

5. Click on the “Load” button and then run the program by clicking on the “Run” button.

6. Scroll down the Variable List and expand the “centimeters”. A 10-element array, centimeters,
is displayed. The elements store the values calculated by your program.

7. Questions for Section 1.4:

Robotics Tutorial 1 4

(a) Why there is the problem when you use simple multiplication and division?

(b) Why do you need to use a native function “math.muldiv” to compute multiplication-
division? Hint: Rebuild the program using the “math.muldiv” function and check the
results again.

(c) What is the maximum value for “inches” array that your program can convert into
centimeter? Briefly justify your answer.

1.5 Answer these questions individually.

1. Write a program in the Aseba environment to convert Celsius to Fahrenheit.

2. Write a program in the Aseba environment to convert Centimeters to Inches.

Ask your TA to check if your programs work.

1.6 Take home questions.

Based on what you have learned in this tutorial, write a program in the Aseba environment for
each of the following problems and submit each by next lab section.

1. Create a list named “list1” with 10 random values using the “rand” function. Then change
the negative values of the “list1” which are less than the average to the maximum value of
the list. Save your program under the name “program1.aesl”

2. Write a function for “program1” to convert the “list1” in reverse order and store it as
“listR”.

Robotics Tutorial 1 5

2 The Programming Environment and the Thymio II Robot
-Becoming Familiar with the System

In this tutorial you will familiarize yourself with the Aseba Studio programming environment and
build some small programs for the Thymio II robot. These programs are designed to facilitate
experimentation with and calibration of the sensors and actuators used by the robot. Recall that
one of the challenges in robotics is to define and specify a set of assumptions about the environment
in which your robot operates. These assumptions must include the capabilities and tolerances of
the robot’s sensors and actuators. For example, it would be difficult to program a robot to pick up
an egg without knowing how much force is exerted by the actuators—too little, and the egg will
fall; too much, and the egg will be crushed.

2.1 Aseba Studio Programming Environment

1. Log in into the computer.

2. Plug in the Thymio II robot and turn it on by holding down the center button until the robot
turns on. If a dialog, such as the one below, appears, just click “Cancel”.

(a) Just click “Cancel”.

(b) Just click “OK”. (c) Just click “Cancel”.

3. Run the “Aseba Studio for Thymio II” from “Applications” folder (Mac OS X) or the
“Start” menu (Windows). If the robot was not plugged in, you will get warning about not
being able to connect to the robot. In this case, click on “OK”. A second dialog will appear.
Click on “Cancel” to close the application, plug in the robot and reload the application. The
software will take a few seconds to load; you will then see the application window.

Robotics Tutorial 2 6

4. You should become familiar with the layout of this development environment. The center area
contains the Code Area, where you will add code to control your robot. The left list-box lists
all the variables: both system and programmer-defined—variable names and variable values
are displayed in this box. By default the values are not automatically updated. However, in
most instances automatic update is preferred.

5. Check the “auto” box above the Variable List, which causes automatic update of the variables.

6. Scroll down the Variable List and expand the “prox.horizontal”. A 7-element array,
prox .horizontal , is displayed. The elements store the values measured by the proximity sen-
sors on the front (5) and back (2) of the robot. Place your hand in front of each of the
proximity (prox) sensors and observe how the values change.

7. Questions for Section 2.1:

(a) By placing your finger in front of each of the seven proximity sensors, identify the
corresponding number of the sensor. I.e., the sensor numbers should range between 0
and 6. Draw a small diagram indicating the sensor numbers.

(b) What value indicates that something is in close proximity to the sensor? What value
indicates that there is nothing in the proximity of the sensor?

(c) Are there other proximity sensors on the robot? If so, where are they?

Additional documentation can be found at: https://www.thymio.org/en:asebastudio

Robotics Tutorial 2 7

https://www.thymio.org/en:asebastudio

2.2 Moving in a Square

We are now ready to write our first program. In this case, we will do something simple like moving
the robot in a square (approximately). A program comprises three parts:

Variable Declarations comprising a list of programmer defined variables, one per line. Each dec-
laration begins with a var keyword followed by the variable name and an optional initializer,
e.g., var answer = 42. There are no programmer defined variables in this example.

Initialization Code comprises the part of a program that is executed when the program starts
running. This code initializes variables to initial values and prepares the program for execu-
tion. In the example below, the first three lines represent initialization code.

Event Handlers and Subroutines comprise code for all the event handlers and programmer-
defined subroutines. Each event handler begins with the keyword onevent and each subroutine
begins with the keyword sub. In this example, there are three event handlers.

As a general rule, variable declarations must come first, followed by initialization code, and lastly,
event handlers and subroutines.

1. Start a new program and enter the program in Figure 3 into the Code Area.

motor.left.target = 0 # reset motors amd timers

motor.right.target = 0

timer.period[0] = 0

onevent button.forward # on forward button start

motor.left.target = SPEED # motor and timer

motor.right.target = SPEED

timer.period[0] = FWD_PERIOD

onevent button.backward # on reverse button turn

motor.left.target = 0 # off motors and timer

motor.right.target = 0

timer.period[0] = 0

onevent timer0 # on timer event switch

motor.left.target = -motor.left.target # between turn and fwd

if motor.left.target < 0 then # if we are turning

timer.period[0] = TURN_PERIOD # set turn time to 1sec

else # else

timer.period[0] = FWD_PERIOD # set turn time to 2 secs

end

Figure 3: The Square Program.

Robotics Tutorial 2 8

The # marks identify comments. A comment is ignored by the system, but is used by the
programmer to document what her program is doing in a high-level easy to understand way.
For example, the first statements of the program reset the motors and timer of the robot, the
next piece of code specifies what should happen when the Forward Button is pressed (the
motors are started as well as the timer), the third piece of code specifies what happens when
the Back button is pressed, and the last part specifies what happens when the timer goes off.

This program works in the following manner:

(a) To move in a square, we need to make the robot move forward for a short period of time,
say two seconds, and then make a 90 degree turn, then move forward another 2 seconds,
make another 90 degree turn, and so on.

(b) The first three lines are executed when the program starts running. These lines re-
set the motors and the timer to 0. The motor devices are controlled by setting the
motor .left .target and motor .right .target variables. The maximum value (speed) for the
motors is 500 (forward) and −500 (reverse). To turn motors off, the variables are set to
0. To go straight, run both the left and right motors at the same speed. To turn the
robot, run one of the motors forward and the other in reverse.

The robot has two timers, timer0 and timer1. To use the timers, set the variable
timer .period [0] and timer .period [1] to a period (in milliseconds) between 0 and 32767.
If the period is nonzero, the timers will generate events timer0 and timer1 every so
many milliseconds, as specified by the period. for example, if timer .period [0] is set to
1000., then timer0 will generate a timer0 event every second (1000 milliseconds).

By setting the motor and timer variables to 0, we ensure that the robot starts operation
in a known state. The remainder of the program comprises three event handlers, which
run when a corresponding event is generated.

(c) The button.forward event handler is executed whenever the Forward Button is
pressed. This event handler starts the robot’s motion. It runs both motors forward
at the same speed by setting motor .left .target and motor .right .target to the constant
SPEED . Lastly, the handler sets the period of timer0 to 2 seconds, by setting the
variable timer .period [0] to the constant FWD PERIOD .

(d) The button.reverse event handler is executed whenever the Reverse Button is
pressed. This event handler stops the robot’s motion. It turns off both motors and
timer0 by setting motor .left .target , motor .right .target , and timer .period [0] to 0.

(e) The timer0 event handler is executed whenever the period of the timer expires. The
handler toggles the motion of the from forward to turn and vice versa by reversing
the direction of one of the motors, and then toggling the period of timer0 between
FWD PERIOD and TURN PERIOD .

The program determines which period to use by comparing the speed of the afore men-
tioned motor. If the motor is rotating forward, then the robot is moving forward and
the corresponding period is used. If the motor is rotating in reverse, then the robot is
turning and the corresponding period is used.

2. Observe the message immediately below the Code Area, depicted in Figure 4. This indicates

Robotics Tutorial 2 9

Figure 4: There is an error in your program.

that there is a problem with your program. Whenever you add code, the system will auto-
matically check whether your program is correct and will notify you if it finds any errors by
displaying the first error it discovers. In this case, the error message is:

Error at Line: 6 Col: 24 : SPEED is not a defined variable

Take a look at that line. Notice that we try to assign SPEED to motor .left .target , but we
have never defined SPEED . In this case, we want to define a constant called SPEED . A
constant is a named value that does not change, i.e., it’s a value that remains constant.

3. Click on the + button in top right corner. A dialog will appear to enter the name and value
of the constant. Enter SPEED as the name and 200 as the value, as shown below. Then,

Figure 5: Declare a constant be entering the name and value.

click “OK”. Notice that the error message changes, because the first error has been fixed.

4. Fix the remaining two errors by adding the FWD PERIOD and TURN PERIOD constants.
The FWD PERIOD constant should be 2000, i.e., we want the robot to move forward for 2
seconds (2000 milliseconds). The TURN PERIOD constant should be set to 1000, i.e., the
right angle turn takes approximately 1 second (1000 milliseconds) to perform.

5. Notice that your program should now compile correctly, i.e., it has no obvious errors. At the
bottom, you should see the message like in Figure 6. We now load and run the program!

Figure 6: Your program is syntactically correct.

6. Save your program, by clicking on the “Save” option of the “File” menu. As in the previous
module, it is important to save your work on a regular basis. Call your program “Square”

Robotics Tutorial 2 10

and save it to your shared drive. The resulting file will be called “Square.aesl”. Be sure
each group member has a copy of it as well by saving it on their USB key. This will ensure
that everyone has copy of their work.

7. Load the program on to the robot by clicking on the “Load” button in the top left corner.

8. Run the program by clicking on the “Run” button. Note: the robot will not start moving
because it is waiting for the Forward Button to be pressed.

9. Unplug the USB cable from the robot. Even though the USB cable is long and light, it will
still affect the robot’s motion. Hence, in most cases, it is recommended that you unplug the
robot before hitting “Go”. A dialog box will appear stating that the connection has been lost
and that it is attempting to require the connection (Figure 7). Do NOT press “Cancel”.
If you do, you will need to exit the application and restart it in order to reconnect the robot.

Figure 7: Do NOT press “Cancel”.

Once the robot is reconnected, everything will return to as it was prior to the disconnect.
However, you will need to enable auto-update of the variables by clicking on the “auto”
check-box. This is an annoying feature of the program.

10. You can now run the robot in a square. Find an empty surface, place the robot on it and
press the Forward Button. The robot should start moving in a square. Note, that its turns
may be slightly off, i.e., as time progresses, the square starts shifting.

11. Press the Back button to stop the robot. You can make it move again by pressing the
Forward Button once more.

12. Stop the robot and reconnect it to the USB cable.

13. Ask your TA to check if your program work.

14. Questions for Section 2.2:

(a) Suppose we changed the SPEED constant to a different value, say 400. How would this
affect the behaviour of the robot?

(b) Given the change above, would we need to change any other constants so that the robot
continues to move in a square.

(c) As you may notice, a 1 second turn, at a speed of 200, does not create a perfect 90
degree turn. Try adjusting the TURN PERIOD constant to get as close as possible to
the optimum value for a 90 degree turn. What is this value?

Robotics Tutorial 2 11

Record your results in a log book—you will need them later.

Congratulations! You completed your first robot programming task.

2.3 The Ground Proximity Sensors: Staying within the Lines

Your next task is to learn about the ground proximity sensors that the robot has and how to use
them to build a program that stays within an area demarcated by a black line.

1. Start a new program.

2. Create two constants: SPEED with a value of 200, and EDGE with a value of 400.

3. Enter the program in Figure 8 in to the Code Area.

motor.left.target = 0 # reset motors (turn them off)

motor.right.target = 0

onevent button.forward # when forward button is pressed

motor.left.target = SPEED # start motors forward

motor.right.target = SPEED

onevent button.backward # when backward button is pressed

motor.left.target = 0 # stop the motors.

motor.right.target = 0

onevent prox

if motor.left.target == 0 then # if not moving no need to proceed

return

end

if we are moving forward

if motor.right.target > 0 and motor.left.target > 0 then

if prox.ground.delta[0] < EDGE then # if line is on the left

motor.right.target = -SPEED # turn right

elseif prox.ground.delta[1] < EDGE then # else if line on right

motor.left.target = -SPEED # turn left

end

else we are not moving forward, if no line

elseif prox.ground.delta[0] > EDGE and prox.ground.delta[1] > EDGE then

motor.left.target = SPEED # move forward

motor.right.target = SPEED

end

Figure 8: Boundary Avoidance Program.

This program works in the following manner:

Robotics Tutorial 2 12

(a) To avoid the edges, we need to turn away from an edge whenever the robot detects that
it is near one. The robot uses its two proximity ground sensors to detect the edge, which
is a thick black line. The sensors work by detecting a change in brightness of the light
from the surface at the front of the robot.

(b) The first three parts of the program are nearly identical to those of the preceding pro-
gram. The first two lines reset the motors to 0 (no motion). The button.forward and
button.backward event handlers start and stop the robot’s motors. The only difference
is that the timer is not used in this program and hence its period does not need to be
initialized.

(c) The program has a prox event handler that is executed every tenth of a second (10 times
per second). The event handler first checks whether the robot is moving; otherwise there
is no need to do anything. The handler then checks whether the robot is moving forward
or in reverse.

(d) If the robot is moving forward, the handler checks if either of the two proximity ground
sensors sense a dark line. That is, if prox .ground .delta[0] or prox .ground .delta[1] are
below EDGE it means that sufficiently little brightness is being sensed, which indicates
that one of the sensors is over a black line.

When one of the proximity ground sensors encounters a dark line, the program deter-
mines which way to turn. If only the right sensor encounters the line, the sensor robot
turns left. Otherwise, the robot turns right.

(e) Otherwise, if the robot was not moving forward, the handler checks whether neither of
the two sensors sense a black line. If this is the case, both motors are set for positive
speed to move the robot in the forward direction.

4. Save the program under the name “BoundaryAvoider”.

5. Load the program on your robot.

6. Create a small arena using black electrical tape provided by the lab facilitator.

7. Run the program and unplug the robot from the USB cable.

8. Place the robot into the arena and press the Forward Button.

9. Observe the robot’s behaviour. The robot should remain within the boundary of the arena,

10. Stop the robot and reattach the USB cable.

11. Ask your TA to check if your program work.

12. Questions for Section 2.3:

(a) Does the speed at which the robot travels matter? Try increasing the speed to maximum
(500) and see if it makes a difference.

(b) Suppose instead of the line being black, it was a lighter colour. What would you need
to adjust? Why?

Robotics Tutorial 2 13

2.4 The Horizontal Proximity Sensors: Staying within the Walls

Your last task is to learn about the horizontal proximity sensors that the robot has and how to
use them to build a program that avoids objects (walls) in front of the robot. You will also use
programmer-defined variables and a math function provided by the system.

1. Start a new program.

2. Create two constants: SPEED with a value of 200, and THRESHOLD with a value of 0.

3. Enter the program in Figure 9 in to the Code Area.

This program works in the following manner:

(a) To avoid objects, we need to turn away from an object whenever the robot detects that
it is near one. To detect nearby objects the robot can use its horizontal proximity
sensors. The robot has seven (7) horizontal proximity sensors: five in the front and two
in the rear. You can observe them in action by placing your hand or an object in front
of a sensor—the closer the object is the brighter the associated LED lights up.

The values measured by the sensors are stored in an array prox .horizontal [0 ...6]. The
first five elements [0 . . . 4] store values from the front sensors (left to right) and the last
two elements store the values from the rear sensors (left and right). The greater the
value, the closer an object is to the sensor.

(b) The first part of the program declares three programmer-defined variables. These are
used to store statistics for the values measured by the horizontal proximity sensors.

(c) The next three parts of the program are identical to those of the preceding program.
The first two lines reset the motors to 0 (no motion). The button.forward and
button.backward event handlers start and stop the robot’s motors.

(d) The program has a prox event handler that is executed every tenth of a second (10 times
per second). The event handler first checks whether the robot is moving; otherwise there
is no need to do anything.

(e) If the robot is moving, the prox event handler computes the maximum value reported
by the five horizontal proximity sensors (prox .horizontal [0 : 4]). This is accomplished
by calling the built in math.stat() function. The result is stored in variable max .

(f) The first when ... do statement checks whether there is an object in front of the robot
by comparing the value in max to the THRESHOLD . If the value is greater than
THRESHOLD , then there is an object in front of the robot.

(g) When an object is encountered, the program determines if it is on the left side or right
side of the robot, by comparing the values of the leftmost and rightmost sensors (the
larger value) indicates a closer object). If the object is on the left side, the robot starts
turning right, otherwise it starts turning left.

(h) The second when ... do statement returns the robot to its forward motion. When the
value in max is at or below THRESHOLD , this indicates that none of the horizontal
proximity sensors are reporting an object in front of it. In this case, both motors should
rotate forward.

4. Save the program under the name “ObjectAvoider”.

Robotics Tutorial 2 14

var min # min over all sensor readings

var max # max over all sensor readings

var mean # average over all sensor readings

motor.left.target = 0 # reset motors

motor.right.target = 0

onevent button.forward # when forward button is pressed

motor.left.target = SPEED # start moving forward

motor.right.target = SPEED

onevent button.backward # when backward button is pressed

motor.left.target = 0 # stop motors

motor.right.target = 0

onevent prox # check proximity sensors

if motor.right.target == 0 then # only if we are moving

return

end

compute min, max, and mean over the current sensor readings

call math.stat(prox.horizontal[0:4], min, max, mean)

if max > THRESHOLD then # if a sensor is above threshold

if we are moving forward

if motor.right.target > 0 and motor.left.target > 0 then

if object is closer on the left

if prox.horizontal[0] > prox.horizontal[4] then

motor.right.target = -SPEED # turn right

else # else

motor.left.target = -SPEED # turn left

end

end

else all sensors are below threshold, if we are also turning

elseif motor.right.target < 0 or motor.left.target < 0 then

motor.left.target = SPEED # move forward

motor.right.target = SPEED

end

Figure 9: Object Avoidance Program.

5. Load the program on your robot.

6. Create a small enclosure using Duplo based walls provided by the lab facilitator (3 × 2).

Robotics Tutorial 2 15

7. Run the program and unplug the robot from the USB cable.

8. Place the robot into the enclosure and press the Forward Button.

9. Observe the robot’s behaviour. The robot should avoid bumping into any of the walls.

10. Stop the robot and reattach the USB cable.

11. Ask your TA to check if your program work.

12. Questions for Section 2.4:

(a) What would happen if we had used the when ... do statement instead of the if ... then
statement? Would it make a difference? Why?

(b) Does the speed at which the robot travels matter? Try increasing the speed to maximum
(500) and see if it makes a difference.

(c) Suppose you wanted to make the robot move closer to an object before turning away.
What would you need to adjust? Why?

(d) Suppose you were to use this program to run your Roomba, a robot that sweeps your
floor while you are out. Would this program work well? Why or why not?

Robotics Tutorial 2 16

3 Robotics Simulation
-Using a Robot Simulator

In this tutorial you will learn how to use a robotics simulator. Simulation is an important aspect
of robotics because the robots themselves tend to be expensive, bulky, and not always available
when you are programming them. In fact, Aseba Studio requires that you have a Thymio-II robot
plugged in in order to work.

Thymio on Remote (Thor) is a simulator that we will use to in lieu of a physical Thymio-II
robot. Thor simulates a physical robot, but does not provide a way to manipulate it. You can pick
up, move, and press buttons on the physical robot, but not on a simulated robot, which exists only
as software. A program called a visualizer is used to manipulate the simulated robot.

A visualizer called Hammer allows the user to manipulate the simulated Thymio-II robot. Hammer
is a Java GUI application, which allows you to interact with the simulated robot, manipulate it,
press its buttons, tap it, and create an environment within which it operates. Without Hammer the
simulated robot behaves as if it was in a sensory deprivation tank.

To use the simulator and visualizer you need to perform several steps:

1. Install the software.

2. Run the Hammer visualizer.

3. Run the Thor simulator locally (optional).

4. Run and connect Aseba Studio to Hammer, which will automatically connect to Thor simulator.

Running Thor locally is more efficient and avoids slowdown when the server is heavily loaded.
However, you do have to spend a few minutes installing the Thor server locally. Using the remote
server avoids the need to install it locally, but may result in your simulation slowing down when
the server is heavily loaded. If you wish to install Thor locally, on your own computer, please see
Thor’s Hammer User Guide.

Note: Both the Hammer visualizer and the Thor simulator should already be installed
locally on the computers in the lab.

3.1 Getting Started

To use the Hammer visualizer and Thor simulator:

1. Download the Hammer visualizer from the course website and drag the Hammer.jar file to your
desktop. (if needed)

2. Run Hammer by double clicking on the Hammer.jar file. If you are on a Mac and are not
permitted to do this, then:

(a) Run the Terminal program in the Utilities folder in the Applications folder.

(b) Enter the command:

java -jar Desktop/Hammer.jar

Robotics Tutorial 3 17

http://www.cs.dal.ca/~abrodsky/other/thor_hammer.pdf

Figure 10: The visualizer’s user interface.

This should run the Hammer. You will see the user interface as depicted in Figure 10.

3. Ensure that the Server field in the top right hand corner of
the user interface is set to the default exa.cs.dal.ca. This is
the remote Thor simulator. If you wish to use the local Thor
simulator, please see Thor’s Hammer User Guide.

4. Run Aseba Studio or Studio for Thymio II. You may see the
dialog such as the one below. In this case click OK.

You will then see the connection dialog box on the right.

5. Check the Custom option of the connection dialog box. Set
connection to: tcp:localhost;33333 which is the default.

6. Click on Connect. The Aseba Studio IDE should appear and you can load, code, save, and
run programs as if connected to a physical Thymio-II.

7. Switch back to Hammer. You can now set up and modify the arena. All visual Thymio actions

Robotics Tutorial 3 18

http://www.cs.dal.ca/~abrodsky/other/thor_hammer.pdf

can be viewed in the Arena (the yellow panel). A description of the user interface and how
to edit the Arena can be found in the Thor’s Hammer User Guide.

Note: Be sure to save your work often. Send bug reports to abrodsky@cs.dal.ca.

3.2 Moving in a Square, Again

We are now ready to write our first program for the simulator. In this case, we will do something
simple like moving the robot in a square (approximately).

Hammer’s user interface is divided into four parts: the arena, the main menu, the toolbar, and
the control panels. The arena, containing the large yellow area, is where the majority of the activity
takes place. The arena contains the Thymio and the simulated environment, which is initially a
flat surface 1000mm×2000mm in size (approximately the size of one of the tables in the lab). The
size of the arena can be changed by using the Arena Panel on the right (See Thor’s Hammer User
Guide).

1. Start a new program and enter the program in Figure 11 into the Code Area.

motor.left.target = 0 # reset motors amd timers

motor.right.target = 0

timer.period[0] = 0

onevent button.forward # on forward button start

motor.left.target = SPEED # motor and timer

motor.right.target = SPEED

timer.period[0] = FWD_PERIOD

onevent button.backward # on reverse button turn

motor.left.target = 0 # off motors and timer

motor.right.target = 0

timer.period[0] = 0

onevent timer0 # on timer event switch

motor.left.target = -motor.left.target # between turn and fwd

if motor.left.target < 0 then # if we are turning

timer.period[0] = TURN_PERIOD # set turn time to 1sec

else # else

timer.period[0] = FWD_PERIOD # set turn time to 2 secs

end

Figure 11: The Square Program can be downloaded from the course website.

2. Add the three constants: SPEED should be set to 200; FWD PERIOD should be set to 2000,
and TURN PERIOD should be set to 1000 for now.

3. Review how this program works by looking at Section 2.2 in the previous tutorial.

Robotics Tutorial 3 19

http://www.cs.dal.ca/~abrodsky/other/thor_hammer.pdf
http://www.cs.dal.ca/~abrodsky/other/thor_hammer.pdf
http://www.cs.dal.ca/~abrodsky/other/thor_hammer.pdf

4. Save your program as “SquareSim”. Note, if you saved your “Square” program from the
previous tutorial, you can use that.

5. Load and run the program. Note: the robot will not start moving because it is waiting for
the Forward Button to be pressed.

6. You can now run the robot in a the simulator. Switch focus to Hammer visualizer.

7. Click on the up green arrow in the Interaction Panel on the the right. This corresponds to
the Forward button on the Thymio.

The robot should start moving forward, and after two seconds turn left. It will then move
forward again and stop when it hits the edge of the table. Notice that whenever the robot
hits the edge of the table it displays a sad face, indicating that it would have fallen off the
table had this been the real world.

8. Click on the down green arrow in the Interaction Panel. This corresponds to the Back
button on the Thymio. The robot should stop moving.

9. Reposition the Thymio in the center of the arena by clicking on and dragging the robot to
the center of the arena. Note: the robot’s coordinates and current direction are shown in the
Object Panel on the right.

10. Change the direction of the Thymio by dragging the red handle attached to the robot. Make
it point (approximately) upwards so that the direction is near 0. As you drag the red handle
you should see the Dir field in the Object Panel change.

11. Use the small up-down buttons on the Dir field to set the direction to 0. At thus point, the
Thymio should be at the center of the screen and pointing straight up.

12. Again, click on the Forward Button in the Interaction Panel on the the right. The Thymio
should start moving in a square without “falling off the table.” Notice that it’s turns are a
little greater than 90 degrees. I.e. it is turning for too long.

We can adjust the turn by adjust the time spent turning.

13. Stop the robot, using the Back button, and reset it’s direction to be up.

14. Switch to Aseba Studio and change TURN PERIOD to 900.

15. Load and Run the program.

16. Switch back to Hammer and click on the Forward button to start the Thymio moving again.

17. You can keep track how many degrees the Thymio is turning by looking at the Dir field in
the Object Panel. Notice that the robot is now turning too little.

18. Find the optimal value for TURN PERIOD so that the robot turns as close to 90 degrees as
possible. Note: you will need to go back and forth between Aseba Studio and Hammer as you
try different values. This is known as finding values experimentally.

19. Questions for Section 3.2:

Robotics Tutorial 3 20

(a) How would you change the size of the arena?

(b) What is the optimal setting for TURN PERIOD so that the robot turns as close to 90
degrees as possible?

(c) What happens as the robot continues to run for longer? I.e., what happens after the
robot performs 10 squares?

(d) Suppose we changed the SPEED constant to a different value, say 400. How would this
affect the behaviour of the robot? Try it!

3.3 The Ground Proximity Sensors, Once More

Your next task is to investigate the ground proximity sensors in the simulator. You will use a
program that stays within an area demarcated by a black line. One of the things you will need to
do is add a black line to the simulator’s arena (the yellow area).

Figure 12: A ring of black tape with Thymio in the middle.

1. Create a large black tape ring in the arena, similar to the one in Figure 12. To place some
black tape on the arena, click on the button in the toolbar that looks like two wavy lines.
You can then draw a path on the arena by placing vertices on the arena surface, which will be
connected by black line segments. Double-click to place the last vertex. The width of these
black lines is comparable to the width of electrical tape used in the last lab.

Try drawing some different paths. You can delete a path by selecting it and then hitting the
delete key, or the Delete action in the Edit menu.

Notice that when you are creating the path or have the path selected, the Object Panel on
the right shows the coordinates orientation, and colour of the object. You can rotate and
manipulate the path in the same way you manipulated the Thymio. You can drag the path,
rotate it, and drag the vertices around. Feel free to experiment with the paths.

Robotics Tutorial 3 21

2. Drag the Thymio robot into the center of the ring that you constructed.

3. Save the environment by selecting the Save action from the File menu. The recommended
file extension is .hmr. You can load the file using the Open action from the File menu.

4. Switch to Aseba Studio and start a new program.

5. If you saved the program “BoundaryAvoider” from last lab, you can load it instead of reen-
tering the code.

6. Create two constants: SPEED with a value of 200, and EDGE with a value of 400.

7. Enter the program in Figure 13 in to the Code Area.

motor.left.target = 0 # reset motors (turn them off)

motor.right.target = 0

onevent button.forward # when forward button is pressed

motor.left.target = SPEED # start motors forward

motor.right.target = SPEED

onevent button.backward # when backward button is pressed

motor.left.target = 0 # stop the motors.

motor.right.target = 0

onevent prox

if motor.left.target == 0 then # if not moving no need to proceed

return

end

if we are moving forward

if motor.right.target > 0 and motor.left.target > 0 then

if prox.ground.delta[0] < EDGE then # if line is on the left

motor.right.target = -SPEED # turn right

elseif prox.ground.delta[1] < EDGE then # else if line on right

motor.left.target = -SPEED # turn left

end

else we are not moving forward, if no line

elseif prox.ground.delta[0] > EDGE and prox.ground.delta[1] > EDGE then

motor.left.target = SPEED # move forward

motor.right.target = SPEED

end

Figure 13: Boundary Avoidance Program can be downloaded from the course website.

8. Review how this program works by looking at Section 2.3 in the previous tutorial.

Robotics Tutorial 3 22

9. Save the program under the name “BoundaryAvoider”.

10. Load and Run the program.

11. Switch back to Hammer.

12. Start the robot by pressing the Forward button.

13. Observe the robot’s behaviour. The robot should remain within the boundary of the arena.

14. Stop the robot by pressing the Back button.

15. Questions for Section 3.3:

(a) Does the speed at which the robot travels matter? Try increasing the speed to maximum
(500) and see if it makes a difference.

(b) Suppose instead of the line being black, it was a lighter colour. What would you need to
adjust? Try adjusting the colour of the path using the colour slider in the Object Panel.
Again, you will first need to disconnect Hammer from Thor, perform the colour change,
and then reconnect.

3.4 The Horizontal Proximity Sensors, Once More, with Feeling

Your last task is to investigate the horizontal proximity sensors in the simulated robot and build
environments with blocks that the robot has to avoid.

The blocks and black lines in the environment are based on real artifacts used in the lab. For
example, the default block size is that of 14 × 2 Duplo block. And, the default line width and
colour is that of standard electrical tape. For most purposes, the defaults should suffice. See Thor’s
Hammer User Guide for a fuller discussion.

1. Create an enclosure of blocks in the arena, similar to the one depicted in Figure 14. To place
a block in the arena, click on the button in the toolbar that looks like a block. You can then
drag it anywhere in the arena and drop it by clicking. When selected, you can drag the block
around and rotate it or resize it by using the handles. The dimension and orientation of the
block are displayed in the Object Panel on the right.

Try placing some blocks. You can copy a block by selecting it and using the standard hot-keys
for copy and paste, or using the Copy and Paste actions in the Edit menu.

Notice that if you drag a block over the Thymio, it is outlined in red and cannot be placed.
This prevents you from sticking the Thymio inside a physical object.

2. Drag the Thymio robot into the center of the enclosure that you constructed.

3. Save the environment in the file “BlockRing.hmr”.

4. Switch to Aseba Studio, start a new program, and enter the program in Figure 15.

5. Load and run the program.

Robotics Tutorial 3 23

http://www.cs.dal.ca/~abrodsky/other/thor_hammer.pdf
http://www.cs.dal.ca/~abrodsky/other/thor_hammer.pdf

Figure 14: An enclosure of blocks with Thymio in the middle.

motor.left.target = 0 # reset motors

motor.right.target = 0

onevent button.forward # when forward button is pressed

motor.left.target = 200 # start moving forward

motor.right.target = 200

onevent button.backward # when backward button is pressed

motor.left.target = 0 # stop motors

motor.right.target = 0

Figure 15: A simple go forward program.

6. Switch to Hammer and click on the Forward button to start the robot. Observe what happens
when the robot touches a block. It stops and a sad face appears, indicating the robot cannot
proceed. In Hammer blocks have infinite mass and cannot be moved by the robot. This is very
different form the real world, where a robot can easily move a block. There are two reasons for
this. First, simulating a robot pushing a block on the table requires more complex calculations
than are implemented in the simulator. It requires knowing the friction coefficients of the
table, the blocks, the robot’s tires, as well as the weight of the blocks and the robot. While
this can all be determined experimentally, it is not useful, because our robot generally wants
to avoid touching the blocks in most cases.

Robotics Tutorial 3 24

7. Click on the Back button to stop the robot.

8. Switch to Aseba Studio and start a new program.

9. If you saved the program “ObjectAvoider” from last lab, you can load it
instead of reentering the code.

10. Enter the program in Figure 16 and create two constants: SPEED with a value of 200, and
THRESHOLD with a value of 0.

11. Review how this program works by looking at Section 2.4 in the previous tutorial.

12. Save the program under the name “ObjectAvoider”.

13. Load and run the program.

14. Switch to Hammer and press the Forward Button.

15. Observe the robot’s behaviour. The robot should avoid bumping into any of the walls.

16. Questions for Section 3.4:

(a) Does the speed at which the robot travels matter? Try increasing the speed to maximum
(500) and see if it makes a difference.

(b) Suppose you wanted to make the robot move closer to an object before turning away.
What would you need to adjust? Try it!

Caveats

Note: Hammer is still in the development stage, so it may crash. Be sure to save your
work often. Send bug reports to abrodsky@cs.dal.ca.

Robotics Tutorial 3 25

var min # min over all sensor readings

var max # max over all sensor readings

var mean # average over all sensor readings

motor.left.target = 0 # reset motors

motor.right.target = 0

onevent button.forward # when forward button is pressed

motor.left.target = SPEED # start moving forward

motor.right.target = SPEED

onevent button.backward # when backward button is pressed

motor.left.target = 0 # stop motors

motor.right.target = 0

onevent prox # check proximity sensors

if motor.right.target == 0 then # only if we are moving

return

end

compute min, max, and mean over the current sensor readings

call math.stat(prox.horizontal[0:4], min, max, mean)

if max > THRESHOLD then # if a sensor is above threshold

if we are moving forward

if motor.right.target > 0 and motor.left.target > 0 then

if object is closer on the left

if prox.horizontal[0] > prox.horizontal[4] then

motor.right.target = -SPEED # turn right

else # else

motor.left.target = -SPEED # turn left

end

end

else all sensors are below threshold, if we are also turning

elseif motor.right.target < 0 or motor.left.target < 0 then

motor.left.target = SPEED # move forward

motor.right.target = SPEED

end

Figure 16: Object Avoidance Program can be downloaded from the course website.

Robotics Tutorial 3 26

4 Modeling Sensors
-Creating Sensor Models

In this tutorial you will empirically evaluate your robot’s sensors and create simple models of how
the sensors behave. A model is a simplified description of a system (sensor) that we are trying to
understand and use. We use the model to predict how the sensor behaves and interpret its response.

You will be provided with programs that you will use to measure the accuracy of the sensors.
This is called characterizing the sensors, i.e., determining the sensors’ characteristics. This tutorial
builds on the previous one by having you empirically evaluate the sensors you will be using.

Once you have gathered the data, you will then construct a simple model of the sensor, which
you will then be able to use when programming your robot in the future.

4.1 Modeling the Ground Proximity Sensors

In this section, we will investigate the response of the ground proximity sensors in typical lighting
conditions. We will then construct a simple model of sensors’ response.

1. Start a new program.

2. Add three constants: SAMPLES with a value of 5, SAMPLE PERIOD with a value of 1000
and SENSOR with a value of 0. The first constant represents the number of times that we
want the measurement performed, i.e., 5 measurements. The second constant represents the
delay between measurements (one second). The third constant represents the sensor number;
in this case, ground proximity sensor 0.

3. Copy and paste the code in Figure 17 into the Code Area.

var v[SAMPLES] # array of samples

var min # stats variables

var max

var mean

var i = 0 # counter

call math.fill(v, 0) # initialize arrray

timer.period[0] = SAMPLE_PERIOD # turn on timer

onevent timer0 # when time goes off

v[i] = prox.ground.delta[SENSOR] # record sensor reading

i++ # increment counter

if i >= SAMPLES then # if we are done

timer.period[0] = 0 # disable timer and

call math.stat(v, min, max, mean) # compute stats

end

call sound.freq(440, 10) # beep to indicate progress

Figure 17: Sensor Sampling Program can be downloaded from the course website.

Robotics Tutorial 4 27

This program works in the following manner:

(a) The program takes a measurement of the ground proximity sensor, every second for 5
seconds. It stores the measurements in an array, and after completing the measurements
computes the minimum, maximum, and mean of the values in the array. These values
can be viewed from the Aseba Studio, by examining the variables in question in the
Variable Area on the left.

(b) Each of the ground proximity sensors measures three values:

ambient light is the light intensity at ground level (the surrounding light level)

reflected light is the mount of light received while the sensor emits an infrared light

delta light is the difference between the reflected and the ambient light

To use an analogy, if you are out in the forest at night, there is certain amount of light
around, even when your flashlight is off. This is the ambient light. If you turn your
flashlight on, you see all the light emanating from the flashlight that reflects from the
ground. The difference between your flashlight being on and off is the delta light. We
are typically interested in the delta or reflected light because the ambient light has little
effect on the sensors.

(c) The program first declares and initializes the variables it uses to store the sensor mea-
surements and compute the various statistics.

(d) The program then initializes the period of timer0 to SAMPLE PERIOD , which is
1000ms (1 second). This causes the timer0 event to occur every second.

(e) The timer0 event handler reads the current value from one of the ground proximity
sensors prox .ground .delta[SENSOR] and stores it in the ith element of the array, where
i is then incremented by the event handler.

(f) If i is greater or equal to the number of SAMPLES , then the sampling is completed.
The handler disables the timer by setting its period to 0 and computes the statistics.

(g) Lastly, the handler emits a beep, indicating that progress is being made.

(h) Once the beeping stops, the values in the array and the other variables can be examined
in the Variable Area, located on the left side of the main pane of Aseba Studio.

4. Save the program under the name “GroundSensorSampler”.

5. Load the program on the robot.

6. Locate Table 1 (located at the end of this tutorial). Include with lab report.

7. For each band in the gray-scale in Figure 18 (located at the end of this tutorial):

(a) Place the robot so that proximity ground sensor 0 is directly over the band.

(b) Run the program.

(c) Once the program finishes (no more beeps) examine the array of recorded values and
statistics and record these in the corresponding column of Table 1.

Note, to speed things up, you can view the array and variables as the program runs and
transcribe the values on the fly.

Robotics Tutorial 4 28

8. Create a line graph of “Grayscale Value” on the x-axis and “Ground Sensor Readings” on
y-axis. Plot the line using the computed mean for each of the grey bands. This is to be
included with your lab report as well.

9. Let the other groups know of your results by publishing a table of the computed means on
the whiteboard at the front of the lab. Note: All groups will need to put their tables up, so
don’t take too much space. Your table should look like this:

Group # Group Members: Alice, Bob, Carol

Real Values 0% 20% 40% 60% 80% 100%

Mean Values (Sensor 0)

10. We can construct a linear model for the ground proximity sensor.

(a) Using a ruler, draw a line that best approximates the plotted values. Mark the start and
end points of the line on the graph, and determine their coordinates. E.g., The start
point s may be at (0, 95) and the end point e at (100, 700). This line represents the
linear model of the sensor. From this we can derive an equation that models the sensor.

(b) Compute the slope m of the line by dividing the rise by the run. I.e.,

m =
ey − sy
ex − sx

In the example above, the slope would be:

m =
700 − 95

100 − 0
= 6.05

(c) Compute the y-intercept of the line, denoted by b, by noting where it crosses the y axis.
In this example, the initial point (0, 95) is on the y axis, so the y-intercept is b = 95.

(d) We now insert the slope m and y-intercept b into the equation of a line

y = m× x+ b

to yield the equation for our model, where x is the actual value and y is the measured
value. That is, if we measure a grey colour at brightness x, then y is what the sensor
in question should return. We can use this equation to model (predict) how our sensor
behaves. Typically, it is more useful to determine what the brightness is given the value
from the sensor. Thus, we need to re-arrange the equation:

(e) Re-arrange this equation by solving for x:

x =
y − b

m
=

y

m
− b

m

Thus, if we measure y, plug it into the equation above, the result (approximately) is the
shade of grey that the sensor is sensing.

Congratulations! You have created a linear model of your robot’s ground proximity sensors.

Robotics Tutorial 4 29

11. Ask your TA to check the results and if your program work.

12. Stick a piece of electrical tape onto your wooden table top.

13. Repeat the above procedure to model the response of the ground sensors for the following
three conditions (instead of the grey scale values):

(a) the robot is sensing the desk

(b) the robot is sensing the edge of tape/desk, and

(c) the robot is sensing the tape

14. Let the other groups know of your results, by publishing a summary table. The summary
table on the whiteboard should look like this:

Group # Alice, Bob, Carol

Surface Desk Edge Tape

Mean Values (Sensor 0)

15. Ask your TA to check the results and if your program work.

16. Questions for Section 4.1:

(a) What variables were fixed and what variables varied in the characterization that you
performed?

(b) Would the lighting conditions affect the readings? For example, would shadows or
additional overhead lights change your measurements?

(c) Suppose that you implemented your program on one robot but then had to run your
program on a different robot (of the same type)? What problems would you encounter?
How could these problems be addressed?

(d) Would it be possible to create a single model (a single equation) for both sensors? Why
or why not?

(e) Given your measurements with the tape and table top. What threshold(s) would you
use to distinguish between tape versus table top? Can the same threshold be used for
both sensors? Why or why not?

(f) How do your values (in both tables) compare to that of the other groups? Note: you
may need to answer this question near the end of the lab.

4.2 Modeling the Horizontal Proximity Sensors

In this section you will modify the program that you used in the previous section to model the
horizontal proximity sensors.

1. Load the program “GroundSensorSampler”, which you used in Section 4.1.

2. Save the program under the name “HorizontalSensorSampler”.

Robotics Tutorial 4 30

3. Modify the program in the following ways:

(a) Change the SENSOR constant to 2.

(b) On line 11, replace the variable access prox .ground .delta[SENSOR] with the variable
access prox .horizontal [SENSOR].

4. Save the program.

5. Load the program on the robot.

6. Locate Figure 19, the 15cm ruler, which you will use for this portion of the lab.

7. Borrow a Duplo wall from the lab facilitator. The wall should be three bricks high.

8. Locate Table 3, entitled “Response of Horizontal Sensor 2”, which you will fill in and include
in your lab report.

9. For each of the distances in Table 3:

(a) Place the robot on the ruler paper so that the horizontal sensor is located at centimeter
0 and the ruled line emanates directly from the center of the sensor and is perpendicular
to the surface of the robot.

(b) Place the Duplo wall at the corresponding distance such that it is directly parallel to
the sensor (perpendicular to the ruler line).

(c) Run the program.

(d) Once the program finishes (no more beeps) examine the array of recorded values and
statistics and record these in the corresponding column of the table. Note:, as before
you can record the values as the program is running.

10. Plot a line graph of “Distance” on the x-axis and “Horizontal Sensor Readings” on y-axis.
For each of the two horizontal sensors plot the computed mean for each of the distances.
This is to be included with your lab report as well.

11. Using the same procedure as in Section 4.1 derive a linear model horizontal sensor 2 and
derive the corresponding equation. That is:

(a) Draw line that best matches the plotted averages.

(b) Compute the slope (m) and y-intercept (b) of the line.

(c) Plug the values into the standard equation of a line.

12. Let the other groups know of your results by publishing a table of the computed means on
the whiteboard at the front of the lab. Note: All groups will need to put their tables up, so
don’t take too much space. Your table should look like this:

Group # Group Members: Alice, Bob, Carol

Real Values 0cm 2cm 4cm 6cm 8cm 10cm 12cm 14cm

Mean Values (Sensor 2)

Robotics Tutorial 4 31

13. Ask your TA to check the results and if your program work.

14. Questions for Section 4.2:

(a) What variables were fixed and what variables varied in the characterization that you
performed?

(b) Would the lighting conditions affect the readings? For example, would shadows or
additional overhead lights change your measurements?

(c) Compare your results to other groups. Do all the horizontal proximity sensors have the
same response (behaviour)? If not, what are the differences? Note: you may need to
answer this question near the end of the lab.

(d) Would it be possible to create a single model (a single equation) for all sensors? Why
or why not?

Figure 18: Gray-scale for characterizing the ground proximity sensors.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 19: Ruler for characterizing the horizontal proximity sensors.

0% 20% 40% 60% 80% 100%

1
2
3
4
5

Min
Max
Ave

Table 1: Response of Proximity Ground Sensor 0. Include with lab report.

Robotics Tutorial 4 32

Desk Edge Tape

1
2
3
4
5

Min
Max
Ave

Table 2: Edge Response of Proximity Ground Sensor 0. Include with lab report.

0cm 2cm 4cm 6cm 8cm 10cm 12cm 14cm

1
2
3
4
5

Min
Max
Ave

Table 3: Response of Proximity Horizontal Sensor 2. Include with lab report.

Robotics Tutorial 4 33

5 Modeling Drive Actuators
-Speed, Divergence, and Turning

In this tutorial you will empirically evaluate the robot’s actuators. For example, suppose that you
wanted your robot to make a 90 degree right turn. In this case, the left wheel has to turn forward,
and the right wheel in reverse. Furthermore, for each degree that the robot turns, the motors
need to run at the given speed for a specific duration. Without knowing the duration needed
to turn the robot some fixed number of degrees, it is not possible to program the robot to make
specific maneuvers, In fact, as we shall see, the duration depends not only on the amount of turning
required, but also on the speed and possibly other factors as well.

You will also evaluate movement accuracy. Initially you would expect that the robot will move
or turn by an exact amount and that the robot should behave identically for a rerun of the same
program. However, this may not be the case, and knowing the accuracy of the robot’s movement
will be critical when deciding how much to rely on the robot’s expected position in a given task.

5.1 Relating Target Setting to Speed

In this experiment you will create a program that runs the robot at various motor settings for a
fixed period of time and measure the distance that the robot travels. You will then use this data
to construct a linear model of how fast the robot moves for a given motor setting.

1. Start a new program.

2. Build a simple program that drives the robot forward 5 seconds when the Forward Button
is pressed. You will not need any variables, but you should create a constant TARGET ,
initially set to 100, which you can use to set the speed of the robot. You will need two
event handlers: One for the button.forward event, to start the robot, and the other for
the timer0 event to stop the robot after 5 seconds (5000 milliseconds). The entire program
should between 8 to 10 lines of code! Hint: Take a look at the square program you wrote in
the secound tutorial, if you don’t know where to start.

3. Save the new program as “DistanceTest”.

4. The edge of the table will be the start line. Be sure that the robot has at least a meter of
travel distance.

5. Locate Table 4, at the end of this tutorial, where you will record your measurements. Its
five columns are labeled with a motor target setting: 100, 200, 300, 400, and 500 and each
column contains 5 entries: 3 measurements, the minimum, maximum, and the mean. This
is to be included with your lab report.

6. For each of the five motor target settings (100, 200, 300, 400, 500):

(a) Set the TARGET constant to the target setting.

(b) Save the program and load it on the robot.

(c) Run the program and unplug the USB cable.

(d) Perform the following measurement three (3) times:

Robotics Tutorial 5 34

i. Place the robot so that its rear edge is aligned with the start line.

ii. Press the Forward Button. The robot will move forward for five seconds.

iii. Measure this distance and record it in the table under the corresponding column.

(e) Plug the USB cable back into the robot

(f) Compute the minimum, maximum, and mean of the column of measurements and record
these at the bottom of the column. To compute the mean (average), sum the 3 mea-
surements and divide the total by 3.

7. Plot a line graph of “Target Setting” on the x-axis and “Distance Traveled in Centimeters”
on y-axis. Use the mean values computed above. This is to be included with your lab
report as well.

8. Let the other teams know of your results by publishing a table of the computed means on the
whiteboard at the front of the lab. Note: All teams will need to put their tables up, so don’t
take too much space. Your table should look like this:

Team # Team: Alice, Bob, Carol

Target Setting 100 200 300 400 500

Distance Traveled

9. Create a linear model relating target setting to distance traveled. Recall from the previous
tutorial, that we construct a model by:

(a) Using a ruler, draw a straight line that best approximates the plotted points.

(b) Compute the slope (b) of the line.

(c) Compute the y-intercept.

(d) Plug these into the equation of the line:

y = m× x+ b

(e) The resulting equation relates the target setting (x) to the distance (y) traveled in 5
seconds.

10. We can now create a linear model relating speed to target setting. Recall that speed is
distance traveled divided by the time it took to travel the distance.

v =
d

t

Hence, since our robot ran for 5 seconds, its speed is y
5 , where y is the distance traveled.

Thus, our model for speed of robot given target setting is:

v =
y

5
=
m× x+ b

5

Thus, given a target setting (x), you can now predict at what speed (v) the robot will move.
And if you wish to make the robot move at a specific speed (v), you can rearrange the equation
above, solving for x, to figure out what the target setting should be.

Robotics Tutorial 5 35

11. Questions for Section 5.1:

(a) What variables were fixed and what variables varied in the characterization that you
performed?

(b) Would the surface on which the robot is moving affect your measurements?

(c) How do your measurements compare to that of the other teams? Note: you may need
to answer this question near the end of the lab.

(d) Does the robot alway travel straight? If not, under what conditions does it veer from
the straight path?

5.2 Measuring Divergence

In this experiment you will measure the amount of divergence from the straight path that robot
undergoes as it moves in a straight line. Since the motors are imperfect, they may run at slightly
different speeds, resulting in the robot veering to one side or another. This effect tends to be
correlated with the speed of the robot. You will measure the divergence that occurs over a fixed
distance that a robot travels at various speeds. You will then use this data to construct a linear
model that predicts the amount of divergence, for a given speed per unit distance.

1. Start a new program.

2. Build a simple program that drives the robot forward when the Forward Button is pressed.
The robot should stop if either of its ground proximity sensors encounters a black line (elec-
trical tape). You can use the Boundary Avoidance Program from Tutorial 2 as an example,
if you are not sure how to proceed.

You will not need any variables, but you should create two constants: TARGET , initially set
to 100, which you can use to set the speed of the robot, and THRESHOLD , set to 300, which
is to be used to identify when the robot has encountered the black line. You will need two
event handlers: One for the button.forward event, to start the robot, and the other for the
prox event, which should use the when ... do statement to check whether either of the two
ground sensors is registering the black line, and if so, stops both motors. As we learned in
the last tutorial, a ground proximity sensor registers a dark patch on the ground if it returns
low values that are typically less then 300, which is what our THRESHOLD is set to.

3. Save the new program as “DivergenceTest”.

4. Using black tape, demarcate a start and finish line on the table, such that the lines are
parallel, and exactly 111cm apart. The robot itself is 11cm deep, so when its rear is placed
on the start line, it will need to travel exactly 1m (100cm) before stopping. Note: The finish
line should be about 30cm to 50cm long. Using a straight edge and two small pieces of tape
mark two points, representing a straight line that is perpendicular to the start and finish
lines. (See Figure 20.) The first point should be on the finish line. The second, should be
11cm from the start line, when the nose of the robot will be when the rear of the robot is
aligned with the start line. Note: the tape marks should be as small as possible.

5. Locate Table 5 where you will record in your measurements. This is to be included with
your lab report.

Robotics Tutorial 5 36

Figure 20: Setup for measuring divergence per unit distance.

6. For each of the five motor target settings (100, 200, 300, 400, and 500):

(a) Set the TARGET constant to the target setting.

(b) Save the program and load it on the robot.

(c) Run the program and unplug the USB cable.

(d) Perform the following measurement 3 times:

i. Place the robot so that its rear edge is aligned with the start line and its front is
aligned with the tape mark.

ii. Press the Forward Button. The robot will move forward until it encounters the
finish line.

iii. Measure the distance along the finish line between the nose of the robot and the mark
on the finish line, denoting where the robot should end up if there is no divergence.
Record the distance in the table under the corresponding column.

(e) Plug the USB cable back into the robot

(f) Compute the minimum, maximum and mean for the column of measurements and record
them at the bottom of the column.

7. Plot a line graph of “Target Setting” on the x-axis and “Divergence Distance in Centimeters”
on y-axis. Use the mean values computed above. This is to be included with your lab
report as well.

8. Let the other teams know of your results by publishing a table of the computed means on the
whiteboard at the front of the lab. Note: All teams will need to put their tables up, so don’t
take too much space. Your table should look like this:

Team # Team: Alice, Bob, Carol

Target Setting 100 200 300 400 500

Divergence Distance

9. Create a linear model and the corresponding equation relating target setting to divergence
distance.

Robotics Tutorial 5 37

10. Questions for Section 5.2:

(a) What variables were fixed and what variables varied in the characterization that you
performed?

(b) To minimize divergence, what target settings (speed) would you recommend? Why?

(c) How do your measurements compare to that of the other teams? Note: you may need
to answer this question near the end of the lab.

(d) Describe a way that your robot could correct for divergence, assuming you had the model
you developed in this section. If you have time, try out your solution.

5.3 How to Turn?

In this experiment you will measure the amount of time it takes to perform a 360-degree turn and
relate that to the target setting. This is necessary information because if we want to make our
robot turn. We need to know how long and how fast to run the motors to complete the turn. Once
we know this, we can predict how long it would take to perform d degree turn, by multiplying the
time it takes to perform a 360-degree turn by d

360 . You will measure the time it takes to perform a
360-degree turn at a given target setting. You will then use this data to construct a linear model
that predicts the time required to perform a turn of d degrees at a given target setting.

1. Start a new program.

2. Copy and paste the code listed in Figure 21.

3. You will need to add three constants:

TARGET which is initially 100 and denotes the target setting of the motors.

THRESHOLD which is initially 300 and denotes the threshold between dark (tape) and light
(table) sensed by the ground proximity sensor

SAMPLES which is 3 and denotes the number of samples that this program will perform.

4. Save the new program as “TurnTimer”.

5. Place two 10cm (approximately) pieces of tape side by side on the table to create a dark
10cm × 3cm patch. The pieces of tape should overlap slightly. There should be plenty of
table space for the robot to do a complete turn, assuming it starts beside the black tape.

6. Locate Table 6 at the end of this tutorial, entitled “360-Degree Left Turn Time for a given
Target Setting”. You will record the measurements in this table. This is to be included
with your lab report.

7. For each of the five motor target settings (100, 200, 300, 400, 500):

(a) Set the TARGET constant to the target setting.

(b) Save the program and load it on the robot.

(c) Run the program and unplug the USB cable.

Robotics Tutorial 5 38

var data[SAMPLES] # variable declarations

var turn # id of turn being timed

var min

var max

var mean

var ontape # on tape

motor.left.target = 0 # reset motors

motor.right.target = 0

sub stop # subroutine to stop robot

motor.left.target = 0 # reset motors and timer

motor.right.target = 0

timer.period[0] = 0

call math.stat(data, min, max, mean) # compute stats on data

onevent button.forward # ON forward button press

call math.fill(data, 0) # Init data array & turn id

turn = -1

motor.left.target = -TARGET # Activate motors and timer

motor.right.target = TARGET

timer.period[0] = 100 # time turns in .1 secs

ontape = 0 # init on-tape flag

onevent button.backward # On back button press

callsub stop # invoke subroutine to stop

onevent prox # when prox event occurs

if motor.left.target != 0 then # if moving, proceed

if prox.ground.delta[0] < THRESHOLD then # if robot senses black tape

if ontape == 0 then

ontape = 1 # set ontape flag to true

turn++ # next 360 turn

if turn >= SAMPLES then # if no more turns, stop

callsub stop

end

call sound.freq(440, 10) # sound progress beep

end

else

ontape = 0

end

end

onevent timer0 # on timer0 event

if turn >= 0 then # if performing turn

data[turn]++ # inc time of turn

end

Figure 21: Turn Timing Program

Robotics Tutorial 5 39

(d) Place the robot so that the black tape patch you created is adjacent to the left side of
the robot. The robot should be about 0.5cm from the patch.

(e) Press the Forward Button. The robot will start turning. Every time its left ground
proximity sensor encounters the black patch it will make a beep, indicating the start of
the next turn to be timed. The robot will perform three (3) turns as specified by the
SAMPLES constant.

(f) Plug the USB cable back into the robot and click on the “auto” checkbox to refresh the
variable values from the robot.

(g) Read variable values in the data array and the min, max , and mean variables and record
them in the corresponding column of the table.

8. Plot a line graph of “Target Setting” on the x-axis and “Turn Time in Seconds” on y-axis.
Note: your data is in tenths (0.1) of a second, so a value of 78 is interpreted as 7.8 seconds.
Use the mean values recorded above. This is to be included with your lab report as
well.

9. Let the other teams know of your results by publishing a table of the computed means on the
whiteboard at the front of the lab. Note: All teams will need to put their tables up, so don’t
take too much space. Your table should look like this:

Team # Team: Alice, Bob, Carol

Target Setting 100 200 300 400 500

Time of Left Turn

10. Create a linear model and the corresponding equation relating target setting to time it takes
to make a 360-degree turn. You might use the model for the next step.

11. We can now use the model you created in the previous step to create a second model that
relates the number of degrees that the robot needs to turn and the speed at which it is turning.
Recall from our preliminary discussion that if we know the time it takes to turn 360 degrees
(y), then we can multiply this by d

360 to yield the time necessary to turn d degrees. The linear
model from the preceding step is of the form

y = m× x+ b

where y is the predicted time to turn 360 degrees at target setting x, and where m and b are
the constants that you derived from the data. Hence, the time needed by your robot to turn
d degrees at target setting x is

y × d

360
= (m× x+ b) × d

360
=

(m× x+ b) × d

360

For example, if the robot is to turn 90 degrees at a target setting of 200, then we plug in 90
for d, and 200 for x, to get the amount of time needed to make the turn. Then we can engage
the the robot’s motors with the target setting, and set the timer period to the computed
time. When the timer goes off, the turn has completed.

Robotics Tutorial 5 40

12. Questions for Section 5.3:

(a) Describe the structure and function of the program in Figure 21 in the same manner as
the descriptions of programs in the previous tutorial.

(b) What variables were fixed and what variables varied in the characterization that you
performed?

(c) Were the measurements for the left and right turns significantly different? I.e., can one
model be used for both the left and right turns?

(d) How do your measurements compare to that of the other teams? Note: you may need
to answer this question near the end of the lab.

(e) Suggest some general heuristics (rules of thumb) to make the robot’s motion as accurate
as possible.

5.4 Another Square

Now, we can use our knowledge to update our program that makes the robot run in a square.

1. Start a new program.

2. Build a program that drives the robot in a square whose sides are 30cm long. You will need
the models from the previous experiments to determine the best settings. The goal is to
create a program that drives the robot as accurately as possible. You can use the Square
program from Tutorial 2 as a starting point if you are not sure where to begin.

The robot should make one complete square and return to its original position when the
Forward Button is pressed.

3. Save the new program as “Square2”.

4. Load the program on the robot.

5. Run the program and unplug the USB cable.

6. Place a small piece of tape on the table indicating where the robot is to start.

7. Locate Table 7, entitled “Distance from Origin after n Rounds”, where you will record in
your measurements. This is to be included with your lab report.

8. Repeat the following three (3) times:

(a) Place the robot so that it is adjacent to the piece of tape.

(b) Press the Forward Button. The robot will make a square and stop.

(c) Record in the first column the distance from the robot to the piece of tape. (Ideally, it
should be 0.). Note: Do not move the robot.

(d) Press the Forward Button again and record the distance again (in the second column)
after the robot comes to a halt.

(e) Repeat the above step three (3) more times, completing a row of the table.

Robotics Tutorial 5 41

9. Compute the minimum, maximum, and mean distances for each of the columns.

10. Questions for Section 5.4:

(a) Does the average distance increase with the number of squares performed? If so, why?

(b) Consider the maximums and minimums. How far away are they from the mean? To
compute the relative distances use the formulae

dmin =
mean − min

mean

dmax =
max − mean

mean

Does the relative distance change as the number of squares increases? If so, why?

(c) Consider the maximums and minimums from the other previous experiments you per-
formed today. Do the relative distances between the mean and the minimums and
maximums increase as the target setting (speed) increases? If so, why?

(d) Hence, what conclusions can you draw about the reliability of robot’s drive actuators?

Robotics Tutorial 5 42

100 200 300 400 500

1
2
3

Min
Max
Ave

Table 4: Distance traveled in 5 seconds. Include with lab report.

100 200 300 400 500

1
2
3

Min
Max
Ave

Table 5: Divergence after one meter of travel. Include with lab report.

100 200 300 400 500

1
2
3

Min
Max
Ave

Table 6: 360-Degree Left Turn Time for a given Target Setting. Include with lab report.

Robotics Tutorial 5 43

1 turn 2 turns 3 turns 4 turns 5 turns

1
2
3

Min
Max
Ave

Table 7: Distance from Origin after n Rounds.

Robotics Tutorial 5 44

6 Modeling the Real World
-States and Transitions

In this tutorial you will investigate methods for modeling the robot’s behaviour and environment.
You will begin by writing a small program that pauses the robot when it encounters an object ahead
of it and another program that makes the robot to follow a thick black line (electrical tape). You
will then experiment with the program, extend it in various ways, and derive a general approach
for modeling robot behaviour in terms of states and transitions.

Robot behaviour in general can become very complex, particularly as the complexity of the
robot’s environment and the complexity of the tasks it must perform increases. Programming com-
plex behaviour can quickly become overwhelming without some ability to manage this complexity.
One approach is to model a robot’s behaviour in terms of states and transitions. A state refers to
a situation where a unique set of assumptions hold.

For example, consider the “Square” program from the previous tutorials. Initially the robot is
in a Stopped state where it does not do anything. Once the button.forward event occurs, it starts
moving forward and transitions to the Forward state. Once the timer0 event occurs, the robot
starts turning and transitions to the Turn state. Once the timer0 event occurs again, the robot
starts moving straight once more and transitions back to the Forward state. If the button.backward
event occurs, the robot stops and transitions to the Stopped state.

In another example, consider the “DivergenceTest” program from the previous tutorial. In this
program the robot is initially in a Stopped state. Once the button.forward event occurs, the robot
starts moving forward and enters the Forward state. Once the robot detects a black line during the
prox event it stops, transitioning to the Stopped state.

There are also problems with this approach. The number of states can quickly become very
large and the number of transitions even greater. Furthermore, the state-transition approach may
not be appropriate for certain tasks that involve counters. In this tutorial you will investigate the
state transition approach.

Robotics Tutorial 6 45

6.1 A Simple Stop and Go Program

1. Start a new program.

2. Download from the website (or copy and paste) the code listed in Figure 22.

var min # min over all sensor readings

var max # max over all sensor readings

var mean # average over all sensor readings

var state = STOPPED # state of the robot

motor.left.target = 0 # reset motors

motor.right.target = 0

onevent button.forward # if forward button is pressed

state = FORWARD # transition to FORWARD state

motor.left.target = TARGET # start moving forward

motor.right.target = TARGET

onevent button.backward # if backward button is pressed

state = STOPPED # transition to STOPPED state

motor.left.target = 0 # stop motors

motor.right.target = 0

onevent prox # check proximity sensors

if state != STOPPED then # only if we are not STOPPED

compute min, max, and mean over the current sensor readings

call math.stat(prox.horizontal[0:4], min, max, mean)

if we are in state FORWARD and sense a blockage

if state == FORWARD and max > THRESHOLD then

state = BLOCKED # transition to BLOCKED state

motor.left.target = 0 # stop motors

motor.right.target = 0

end

if we are in state BLOCKED and blockage is removed

if state == BLOCKED and max <= THRESHOLD then

state = FORWARD # transition to FORWARD state

motor.left.target = TARGET # start moving forward

motor.right.target = TARGET

end

end

Figure 22: A Simple Stop and Go Program

Robotics Tutorial 6 46

3. Add the following constants:

TARGET the target setting for the motors when the robot is moving, set to a value like 200.

THRESHOLD the threshold used to determine whether the horizontal sensors are sensing
an object ahead, set to 0.

STOPPED the Stopped state identifier, set to 0.

FORWARD the Forward state identifier, set to 1.

BLOCKED the Blocked state identifier, set to 2.

Note that the identifiers of the states need to be unique. The easiest way to ensure this is
to number the states consecutively, starting from 0. The state transition diagram for the
program is depicted in Figure 23.

Figure 23: State transition diagram for the Stop and Go program.

4. Save the program as “StopNGo”.

5. Load the program on your robot and give it a try. You should not need to unplug it.

6. Ask your TA to check if your program work.

7. Questions for Section 6.1:

(a) Briefly explain how this program works.

(b) How does the program encode its current state?

(c) How did the programs that we developed previously encode their state? (Hint: Com-
pare the prox event handler in this program to the prox event handler in the previous
programs.)

(d) Identify where the transitions depicted by the state-transition diagram occur in the
program. Briefly describe the cause of each of the transitions.

6.2 A Simple Line Following Program

We now implement a line following program that will allow the robot to follow a black line (electrical
tape). Ideally we would first derive a state-transition diagram and then implement it. However, it
is instructive to first do the reverse: derive a state-transition diagram from the program.

Robotics Tutorial 6 47

1. Start a new program.

2. Copy and paste the code listed in Figure 24.

var state = STOPPED # variable declarations

motor.left.target = 0 # reset motors

motor.right.target = 0

onevent button.forward # on forward button press

state = LEFT # transition to LEFT state

onevent button.backward # on backward button press

state = STOPPED # transition to STOPPED state

motor.left.target = 0 # stop motors

motor.right.target = 0

onevent prox # on prox event

if state != STOPPED then # if robot is moving

if moving left and not sensing black line

if state == LEFT and prox.ground.delta[0] >= THRESHOLD then

state = RIGHT # transition to RIGHT state

motor.left.target = TARGET # move right

motor.right.target = 0

end

if moving right and sensing black line

if state == RIGHT and prox.ground.delta[0] < THRESHOLD then

state = LEFT # transition to LEFT state

motor.left.target = 0 # move left

motor.right.target = TARGET

end

end

Figure 24: Line Following Program

3. Add the following constants:

TARGET the target setting for the motors when the robot is moving, set to a value like 300.

THRESHOLD the threshold used to determine whether the horizontal sensors are sensing
an object ahead, set to 300, for now.

STOPPED the Stopped state identifier, set to 0.

LEFT the Left state identifier, set to 1.

RIGHT the Right state identifier, set to 2.

Robotics Tutorial 6 48

4. Save the program as “LineFollow”.

5. Load the program on your robot.

6. Using black tape, create a closed loop on the table to be used as a track by the robot. It
should have a couple curves in it and one or two straightaways. (Don’t make the corners too
sharp.

7. Run the robot on the track to see how it performs.

8. Try adjusting the TARGET constant (speed of the motors) and the THRESHOLD used to
distinguish tape from table.

9. Find the optimal settings for your line-follower so that it moves as quickly as possible without
losing track of the line.

10. Ask your TA to check if your program work.

11. Questions for Section 6.2:

(a) Briefly explain how this program works.

(b) Draw the state-transition diagram for the program. Be sure to label all the states and
transitions.

(c) Compare this state-transition diagram to the one from the previous question. How
similar are they? Why?

(d) Identify where the transitions depicted by the state-transition diagram occur in the
program. Briefly describe the cause of each of the transitions.

(e) What is the sharpest corner that this program can negotiate in both directions? I.e.,
the robot should be able negotiate the corner regardless of which direct (along the line)
it is traveling.

(f) Under what conditions will the robot go off-track? Why?

6.3 A Stop and Go Line Follower

One problem with our current line follower is that the robot will bump into things as it is following
the line. Ideally, we would like to make use of the horizontal proximity sensors to detect objects
in the robot’s path and pause the robot until the object is moved. Our next goal is to extend the
line-following program to achieve this requirement.

1. Using the preceding state-transition diagrams as possible starting points, derive a new state-
transition diagram for a program that follows the line but pauses the robot when an object
appears in its path. Hint: The state-transition diagram requires at most four or five states.
This should be submitted with your lab report.

2. Load the “LineFollow” program.

3. Save it as a new program called “StopNFollow”.

Robotics Tutorial 6 49

4. Using the state-transition diagram you developed as a guideline, and the code from both the
“StopNGo” program and the “LineFollow” program as guidelines, extend this copy of the
“LineFollow” program to stop the robot whenever it is blocked. That is:

• The robot should start following the line when the Forward Button is pressed.

• The robot should stop when the Backward Button is pressed.

• If the robot is moving and it encounters an object, The robot should pause while its
path is blocked.

• If the robot is paused because it is blocked and the path becomes unblocked, the robot
should resume following the line.

Note: Your program will have two different thresholds, one for the ground proximity sensors
and the other for the horizontal proximity sensors. Hence you will need distinct names for
the threshold constants. Be sure that all the states have distinct values.

5. Save your program and load it on the robot.

6. Try running your program. Fix any problems you encounter.

7. Ask your TA to check if your program work.

8. Questions for Section 6.3:

(a) Briefly explain how this program works.

(b) Identify where the transitions depicted by the state-transition diagram occur in the
program. Briefly describe the cause of each of the transitions.

(c) When the robot becomes unblocked, how does your program determine whether to tran-
sition to the Left or Right state?

6.4 Building a Better Line Follower

Interestingly, the line follower we have developed only uses one of its ground proximity sensors (the
left one). The robot also wastes a lot of time and energy swinging from side to side when it could
be going straight. The question you should is: Can we do better?

1. Load the “LineFollow” program.

2. Save it as a new program called “BetterLineFollow”

3. Think about how you can improve on the design of this program. As mentioned already,
two possible things to consider is using the other sensor and allowing the robot to travel in a
straight line, when it can.

4. Plan your program extension by designing the state transition diagram for the extension. The
state transition diagram for the “LineFollow” program may be a good starting point.

5. Implement your extensions.

6. Test your extensions. Are your extensions an improvement?

Robotics Tutorial 6 50

7. Iterate over your design and improve it as much as possible.

8. Compare your design to the original by timing how long each of the programs takes to race
around your track. Repeat the races several times. Note: If your design loses the line much
more often than the original design, this may be a drawback.

9. Record the outcomes of your comparison in a table and determine how much faster your
design is compared to the original.

10. Ask your TA to check if your program work.

11. Questions for Section 6.4:

(a) Describe the improvements you made to the original program and justify your decisions.

(b) Include the state-transition diagram of your final design.

(c) What is the performance improvement of your design? Include the timings you gathered
when comparing your design to the original.

(d) Are there any drawback or flaws in your design that you have noticed? If yes, describe
them. If no, justify why.

Robotics Tutorial 6 51

7 Dealing with an Imperfect World
-Fault Identification and Recovery

In this tutorial you will investigate methods for dealing with the harsh reality that the world is
not perfect, that sensors fail, and that almost nothing goes exactly as planned. You will begin
with a line following program that we developed in the last tutorial. We will then “mess” with the
program, and then investigate how to compensate for the “messing”.

To deal with the imperfections of the real world, we must do two things. First, we must identify
when something has gone wrong, i.e., the failure mode. For example, you identify that you have
missed the turn-off because you have driven for too long or that the furnace is broken because it’s
suddenly very cold in the house. Note, in most cases, the failure modes are explicitly enumerated
and hence form part of the underlying assumptions in the system. In many cases, systems fail
because the designers have not taken all failure modes into account, i.e., their assumptions are
either incorrect or incomplete.

Once the identification of failure modes is accomplished, recovery mechanisms must be designed
to deal with the failure modes. In some cases, the only solution is to shut the system down and
wait for a repair-person. However, if the system itself is in an inconvenient location, say Mars,
this is not a workable solution. For example, in the case of missing the turn-off, we find a way to
reverse directions and return to the turn-off. In the case of a furnace failure we call the landlord
(and hope for the best). Of course, if a failure occurs in the recovery mechanism, we may need a
recovery mechanism for the recovery mechanism, especially if you are the landlord. In the language
of states and transitions, a failure mode occurs when the system enters a state it’s not supposed to
be in. The goal of recovery is to return the system to a state that it is supposed to be in.

In this tutorial you will investigate how to deal with common failures of sensors and actuators.

7.1 Determining Failure Modes

1. Load the “LineFollow” program that was implemented in the last tutorial.

2. Load the program on your robot.

3. Create a black tape track, like in the previous tutorial and test how well the robot follows
the track. If the track is too simple, feel free to make it more complex, with sharper corners.
Note, there is asymmetry in the program in the sense that the robot only uses its left ground
proximity sensor and uses it to detect the left edge of the line. Consequently, the robot may
have more difficulty traversing the track in one direction than another. Specifically, the robot
may be more likely to lose track of the line during a sharp left turn than a sharp right turn.

4. Try increasing the likelihood of the robot losing the line by increasing its speed.

5. Place a piece of paper on the track and observe what happens when the robot runs over it.

6. Ask your TA to check if your program work.

7. Questions for Section 7.1:

(a) At what point do you know (from watching the robot) that it has lost the line?

(b) In what direction (left or right) is the robot turning when it loses the line?

Robotics Tutorial 7 52

(c) Consequently, what state is the robot in when it loses the line?

(d) Can the robot (running this specific program) lose the line while turning in the other
direction? Why or why not?

(e) What would cause the robot to lose the line? Justify your answer.

(f) Suppose we were sitting inside the robot. How could we identify that this failure has
occurred?

7.2 Failure Identification

We will now extend the “LineFollow” program by adding in a simple mechanism for detecting
that the line has been lost. The failure that we need to identify occurs when the robot’s ground
proximity sensor either swings over the line too quick to detect it, or is confused by other debris
covering the line. In both cases the sensor does not detect the line and the robot continues to turn
in the same direction, assuming incorrectly, that its sensor has not yet reached the line. A close
analogy is a driver missing the turn-off either because she was driving to fast or because the road
is very foggy. The driver would identify such a failure mode by noting that she has been driving
too long without seeing the turn-off and concludes that she has missed the turn-off.

1. Save a copy of the “LineFollow” program as “FailFollow”.

2. Update the state-transition diagram for the program by adding an additional state (Lost).
As you have already observed, the robot can only lose the line when turning right. I.e., it is
in the Right state. Thus, there must be a transition from the Right state to the Lost state.
The question is, when does this transition occur?

Just like the driver, the robot can assume that it has lost the line, if it has been turning right
(in the Right state) for too long. That is, a timer event has occurred. Thus, the transition
from Right to Lost will happen as a result of a timer event. Once the robot enters the Lost
state, it should, at least for now, beep to alert the user.

We are now ready to make the modifications to our program based on our new state-transition
diagram. Be sure to include the diagram with your lab report.

3. Make the following modifications to the program:

(a) In the initialization code, after the variable declarations, initialize the period of timer0
to 0. (For examples, see programs from previous tutorials.)

(b) Add a new constant LOST with a value of 3. I.e., it should be different from all other
state identifiers.

(c) At the end of the program add a timer0 event handler that

i. Sets state to LOST ,

ii. Resets the period for timer0 to 0, and

iii. Generates a beep.

(d) Immediately after the line that sets state to LEFT , add a line that sets the period of
timer0 to 0.

This line turns the identification mechanism off, because it is not needed when the robot
is turning left, and in fact could adversely affect the program if triggered, i.e., like a false
fire alarm.

Robotics Tutorial 7 53

(e) Similarly, in the button.backward, set the period of timer0 to 0 as well.

(f) Immediately after the line that sets state to RIGHT , add a line that sets the period of
timer0 to 2 second (2000ms).

This line is essential because it turns the timer on and begins the countdown. Once
two seconds has elapsed, the timer0 event is triggered, and its handler transitions the
system to the Lost state,

4. Save the program and load it onto the robot.

5. Try out this program on the track and see if it beeps when the line is lost. Note, the program
makes no attempt, yet, to recover from the failure, all it does is identify that a failure has
occurred.

6. Ask your TA to check if your program work.

7. Questions for Section 7.2:

(a) According to the state transition diagram, once the robot enters the Lost state, it can
never leave.1 Is this actually the case? There are two missing transitions in the state-
transition, both emanating from the Lost state.

i. Identify the transitions and add them to the state-transition diagram.

ii. Justify these transitions by referring to the program to explain how they could occur.

(b) The length of time to wait before setting off the timer is really a function of speed. That
is, we typically, want to wait at least until the robot turns almost 180 degrees before
declaring the line lost. The reason for this is that some sharp right turns may cause the
robot not to see the line for a long time. Since the time it takes for a robot to turn is a
function of its speed, this is another place where the models we derived in the previous
tutorials are useful. Using the model we derived for turning time as a function of degrees
and speed, give formula for determining the time period the robot should wait before
transitioning into the Lost state.

(c) Once we identify that the line is lost, how could the robot recover from this failure?

7.3 Failure Recovery

We will now complete the “FailFollow” program by adding in a simple recovery mechanism for
returning to line that was lost. Recall, that our failure occurs when the robot’s sensor misses the
line because it was moving too quickly, or there was some debris on the line. We can deal with
this in the same manner that a driver would deal with the failure of missing her turn-off: Simply
backtrack and try again. This approach works remarkably well for many simple failure modes.

1. Until the robot recovers, it remains in the Lost state. Recovery ensues when the robot detects
the line once again. Once it does, it can transition into the Left state, and continue as before.
Consequently, our state-transition diagram should already be up to date. All we need to do
is to implement the recovery behaviour associated with the Lost state, which in this case is
simply reversing direction and backtracking to to the line.

1Like Hotel California.

Robotics Tutorial 7 54

2. Add code to the end of the timer0 event handler to move in reverse of the present trajectory.
That is, both the left and right motors should be assigned target settings that are negative
of their current ones. That’s all! Once the robot finds the line and transitions to the Left,
the motors’ target settings will again be set to forward motion during the transition.

3. Save the program and load it onto the robot.

4. Try out this program on the track and see if it recovers from its blunders.

5. Ask your TA to check if your program work.

6. Questions for Section 7.3:

(a) Suppose the robot reaches the end of the line (not a loop). What happens?

(b) Is it possible for the robot to get stuck in the same place and not make any progress?
Why or why not?

(c) Under what conditions could this recovery mechanism fail?

(d) Could these identification and recovery mechanisms be used with your “StopNFollow”
program? Why or why not? If yes, are there modifications that you would need to make
to your program in addition to the ones described in your tutorial? If so, what are they?
If not, why not?

7.4 Acknowledging Defeat

Suppose your robot comes to the end of the line. The robot will assume it lost the line and will
attempt to recover. However, if the robot has arrived at the end of the line, then it will continue
to search for the lost line that is no longer there, forever. This is not desirable. Ideally, the robot
should attempt to locate the line, but if it does not succeed after a couple attempts, it should let
the user know, stop, and save its batteries.

There are two ways to accomplish this. The first is to use a timer. For example, if the robot
remains in the Lost state for more than ten seconds, the search is hopeless. The other approach is
to use a counter. For example, if the robot enters the Lost state too many times in a given period
of time, then there is clearly something wrong and the robot should respond to this. Typically,
both approaches are used because they are complementary.

You will extend your “FailFollow” program by implementing one or both of these methods.

1. Save a copy of the “FailFollow” program as “TryFollow”.

2. Update the state-transition diagram for the program by adding another transition from the
Lost state to the Stopped state. The transition will be triggered by a timer expiring. That
is, when the Lost state is entered, a timer will be set. If the timer expires while the system is
still in the Lost state, then the robot can transition into the Stopped state.

3. Implement the additions to the state-transition diagram by modifying the timer0 event han-
dler. Instead of changing the state of the system to the Lost state, the handler should check,
using an if ... then ... else statement if the system is already in the Lost state. If not, then
the handler should transition to the Lost state, emit a beep, and set the motor speeds as

Robotics Tutorial 7 55

before, but instead disabling timer0 by setting its period to 0, the period should be set to
ten seconds, the amount of time after which the robot is expected to give up.

If the timer0 event handler executes and the robot is in the Lost state, then the handler,
should disable the timer and the motors, and transition to the Stopped state.

4. Save your program, load it on the robot, and give it a try. Try running your robot on a blank
table top, with no tape. See if the robot stops after ten seconds.

5. We will now add a mechanism to stop the robot if it loses the line too often.

Update the state-transition diagram for the program by adding another transition from the
Lost state to the Stopped state. The transition will be triggered by a timer expiring in
conjunction with a counter variable being too high.

6. Implement the additions to the state-transition diagram by adding a variable, adding a second
timer and modifying the timer0 event handler. First, add a variable called LostCount . In
the button.forward handler initialize it to 0 and set the period of timer1 to ten seconds.
This will cause the second timer to go off every ten seconds.

Second, whenever the robot transitions into the Lost state, increment the LostCount variable.
Hence, we are counting the number of times that the robot loses the line.

Third, add a timer1 event handler and a constant called MAX LOST , which should be set
to 3. Using an if ... then ... else statement, the handler should compare LostCount to
MAX LOST . If LostCount is less than MAX LOST , the handler should simply reset the
variable to 0. Otherwise, the handler should transition the robot to the Stopped state and
disable all motors and timers.

Lastly, you may wish to disable timer1 whenever the robot transitions to the Stopped state
by setting its period to 0.

7. Save your program, load it on the robot, and give it a try. Try running your robot on a
track and use a blank piece of paper to make the robot lose the line several times in quick
succession. See if the robot stops.

8. Ask your TA to check if your program work.

9. Questions for Section 7.4:

(a) Suppose the robot only had one timer instead of two. Is it possible to implement the
same behaviour as above? If yes, how? If no, why not?

(b) Currently, the timeout periods are set to 10 seconds.

i. Why is this not necessarily a good idea?

ii. Could you suggest a better way of setting the timeout period? Hint: What is the
timeout period a function of?

Robotics Tutorial 7 56

8 Programming Techniques
-Subroutines and Development Cycle

In this tutorial you will learn about subroutines, a useful programming feature, and go through the
process of solving a problem by analysis, design, implementation and testing. Subroutines provide
a simple mechanism for making your programs simpler and avoiding replication of code. Solving a
problem in robotics, as in any other area can be challenging. However, having a process to follow
does make the task easier, but still requires significant work on your behalf.

8.1 Subroutines

A subroutine is a piece of code that can be called by other parts of the program. When the
subroutine is called, it executes its code and then returns to the caller, from where it was called.
As an analogy, think about how you check your email. That is, every time you check your email
you do the same thing: stop what you are doing, get your phone, enter the access code, run the
mail application, check the messages, lock the phone, put the phone back, go back to whatever
you were doing. Because you check your email or text messages quite often, you most likely have
a routine (subroutine) that you perform each time you do it. When a program needs to perform
a specific task, it calls (executes) the subroutine, and when the subroutine completes, it returns
and the program continues running from where it left off. Subroutines can be called from multiple
locations in a program, which means that they can be used to organize your program into modules
or parts, making it easier to both understand and to modify.

1. Load the “TryFollow” program that was implemented in the last tutorial.

2. Save a copy of the program as “TryFollowSub”.

3. Observe that whenever the program transitions into the Stopped state, the program performs
the same operations: perform transition, disable motors, and disable timers (see Figure 25).

state = STOPPED

motor.left.target = 0

motor.right.target = 0

timer.period[0] = 0

timer.period[1] = 0

Figure 25: Operations performed on transition to Stopped state.

The transition to the Stopped state occurs at least three times in the program, and whenever
it occurs, the same code is repeated. This is a problem!

There are actually a couple problems. First, your program is longer than it needs to be,
taking up more memory and seeming more complex than it needs to be. Second, adding new
transitions to the Stopped state will require you to duplicate the code for each new transition.
Third, any changes to the code associated with transitions into the Stopped state will need
to be duplicated in multiple locations in the code. For example, recall from the last tutorial,
that you had to update the code for all transitions into the Stopped state when you started

Robotics Tutorial 8 57

using the second timer. This adds further complexity to the program and potential for bugs.
Ideally, there should be a single instance of the code to transition into the Stopped state. We
can use a subroutine to solve these problems.

4. Immediately prior to the first event handler in your program define a subroutine called
“to stop” that performs the statements in Figure 25. A subroutine comprises three parts:

sub to_stop

state = STOPPED

motor.left.target = 0

motor.right.target = 0

timer.period[0] = 0

timer.period[1] = 0

Figure 26: Operations performed on transition to Stopped state.

(i) the sub keyword, (ii) the subroutine name (a single alphanumeric string), and (iii) the
subroutine body, comprising the statements to be executed when the subroutine is called.

It is strongly recommended that all subroutines be defined before any of the event handlers
because subroutines must be defined before they can be called. However, subroutines must be
defined after the variable declarations and initialization code. Consequently, the initialization
code cannot call any subroutines.

5. In the event handlers, replace the code for transitioning into the Stopped state (see Figure 25)
with a call to the subroutine. A call consists of the keyword callsub followed by the name
of the subroutine, e.g., callsub to_stop

Observe that your code has become shorter, because the event handlers are shorter and easier
to read, and if you do need to make changes to the transition into the Stopped state, you only
need to make them in one place.

6. Save, load, and test the program. It should behave exactly the same way as the original
program did.

7. Ask your TA to check if your program work.

8. Questions for Section 8.1:

(a) What other programs that you have written over the past tutorials could be improved
through the use of subroutines. Briefly justify your answer.

(b) One use for subroutines is to make a subroutine for each state transition in your program.
Is this a good idea? Why or why not?

8.2 A Spin through the Development Cycle

Developing a program for the robot to solve a given task can be a challenging experience. As we
discussed previously, the world is uncertain and many things can go wrong, Furthermore, the robot

Robotics Tutorial 8 58

has to make decisions and perform actions in a given order which can be complicated in its own
right. Fortunately, we can follow a process to make the task more manageable.

The process involves several steps: analyzing the problem, developing a strategy, designing a
solution, implementing the solution, and testing the solution. For the remainder of this tutorial,
we will run through this process.

First the problem. Suppose we wanted our robot to negotiate a maze composed of walls of
Duplo blocks. Furthermore, we do not know the layout of the maze. We may be told that all
passageways will be 20cm wide and that there are no cycles in the maze, but we do not have a map
of the maze. How do we solve this problem?

1. We begin with an analysis of the problem. First, since the walls of the maze will be composed
of Duplo blocks, we can use the robot’s horizontal proximity sensors to sense the walls.
Second, since we do not know the shape or layout of the maze, the robot will need to search
the maze for the exit. Third, since all passage ways will be at least 20cm wide, the robot
should have plenty of space to maneuver. Thus, we need a strategy for finding the maze exit.

2. Next, we develop a strategy. Our analysis reveals that our robot will need to search the maze
for an exit. We now consider several strategies: the first one would be the random strategy:
drive forward until encountering a wall, turn a random number of degrees, and drive forward
again. Although this strategy may take a very long time to succeed, it will, with high
probability, eventually succeed. Furthermore, the strategy is easy to implement—we did this
in the first tutorial. Can we do better?

Another strategy that would yield a more systematic (and faster search) is to use the right-
hand rule. The idea is that the robot follows the wall on its right-hand size. For example,
suppose we were in an unlit building. We walk until we walk into a wall; place our right hand
on the wall; and start walking forward, keeping our hand on the wall. Eventually, assuming
there are no cycles in the building, we will find the exit. Our robot can use the same strategy.
This strategy is guaranteed to work in a bounded amount of time, because our robot will
traverse each passageway in the maze at most twice (once in each direction). So, we will use
this strategy.

3. We now need to design a solution based on this strategy. How do we implement a right-hand
rule? What tactics should the robot use? Well, the robot must track the wall on its right.

• If the robot senses no wall in front of it or on its right, the robot should move rightward,
until it senses a wall.

• If the robot senses no wall in front of it but a wall on its right, it should move along the
wall, and perhaps slightly leftward to avoid crashing into the wall—once it stops sensing
the wall on its right, it can start moving in a rightward direction again.

• If the robot senses a wall in front of it, but no wall on its right, the robot should make a
sharp right turn until it no longer senses the wall in front—the right-hand rule dictates
that the robot must always turn right if it can.

• If the robot senses a wall in front and on its right, then its only option is to make a
sharp left turn.

Robotics Tutorial 8 59

Note how these four rules essentially define the right-hand rule strategy. We are getting closer
to our solution, because if you observe carefully, the above four rules define the robot’s states
that it will use to implement the strategy.

We should also suggest that robot begin in a nonmoving state, and start moving rightward
when the Forward Button is pressed. It should stop then the Backward Button is pressed.

4. We now derive the corresponding state-transition diagram. There will be five (5) states:

Stopped Robot is motionless.

Rightward Robot is moving in a rightward direction.

Leftward Robot is moving in a leftward direction.

RightTurn Robot is making a sharp right turn.

LeftTurn Robot is making a sharp left turn.

The rules in the previous step define the transitions. Note, that the robot can transition from
any of the latter four states to any of the states, and it transitions from the Stopped state to
the Rightward state.

Submit this State transition diagram as part of your lab report.

5. Start a new program.

6. We now implement the solution, represented by the state-transition diagram as a program.
We will only need to use two horizontal proximity sensors: prox .horizontal [2] (front) and
prox .horizontal [4] (right). Based on the description of the transitions, the program will
need to have three event handlers: prox, button.forward, and button.backward. As with
our previous programs, your program will need to have a state variable, and several con-
stants representing the states: STOPPED , RIGHTWARD LEFTWARD , RIGHTTURN ,
and LEFTTURN , all with unique values. You will also need a TARGET constant and a
THRESHOLD constant to define the speed of the robot and to compare the values returned
by the horizontal proximity sensors. Use programs that you implemented previously as tem-
plates. Hint: To implement the transitions into the latter four states, your prox event handler
will have four when ... do statements, one for each of states.

For the left turn and right turn settings, use the sharpest turn possible, i.e., one motor should
be set to TARGET and the other to −TARGET . For the Leftward and Rightward states the
turns must be wider. In fact, the rightward turn should be wider than the leftward turn.
You will need to try out a variety of values for the target settings. Hint: To make things
consistent, the target setting of one motor should be a fraction of the other. For example,
for the rightward turn, if the target setting for the left motor is TARGET , then the target
setting for the right motor should be TARGET × α where α is a fraction between 0 and 1,
e.g., 0, 1

2 , 1, etc.

Save your program as “MazeRunner”.

7. Lastly, test and refine your program. Using the Duplo blocks provided by the lab facilitator,
create a maze. Note that one wall (2 by 20 pips) is approximately 20cm wide. Run your
robot through the maze. You may need to adjust the settings for your leftward and rightward

Robotics Tutorial 8 60

fractions of TARGET , as well as possibly the TARGET and THRESHOLD as well. This
process may take some time.

8. Congratulations! You have completed a program that solves a specific task.

9. Ask your TA to check if your program work.

10. Questions for Section 8.2:

(a) Give the state-transition diagram for the “Random” strategy described in Step 2.

(b) For each of the when ... do statements in your program give the conditions under which
the statement executes its body and identify the transitions associated with it.

(c) What target settings did you use for the leftward and rightward motion?

(d) Suppose the robot is placed in the middle of a large area in the maze such that there
are no walls near by. What would happen once the Forward Button was pressed?

(e) How long (how many trials) did it take you to determine the optimal settings?

(f) Suppose we wanted the robot to stop at the exit to the maze, which is demarcated by
black tape. How would this change the state-transition diagram and your program?

Robotics Tutorial 8 61

9 Advanced Concepts in Robotics
-Localization

In this tutorial, you will implement a simple version of Markov Localization as a technique in
robotics used to integrate sensor and internal model information to estimate the localization of a
robot within a map. You will learn how the robot can know where it is. This tutorial is taken from
programming examples and projects at http://www.weizmann.ac.il/sci-tea/benari/.

Your Thymio robot navigates within a known environment for which it has a map. The task
of the Thymio is to find its location. So how can the robot know where it is? The purpose of
a localization algorithm is to determine the position within the known environment from sensor
readings and internal knowledge of mast moves.

You will be provided with programs that make the robot to determine its position in a circle
with five dark gray circular sectors (doors on the wall) and three light gray circular sectors (no
door). Figure 27 shows a map with five doors (dark gray sectors) and three sectors where there is
no door (light gray sectors). Note that the environment is periodic so that there is no start or end
of the sequence of doors and walls.

Figure 27: A map with five doors (dark gray sectors) and three sectors where there is no door (light
gray sectors).

Your task is to understand and experiment with the programs, and derive a general idea for
uncertainty in sensing and motion. The task for our Thymio is to find a specific door (a dark gray
circular sector) within a known environment without knowing the starting position.

The map in this tutorial contains eight positions (five dark grays for positions that we label
0,1,4,5,and 6, and three light grays for positions 2,3 and 7) and Thymio must assign a probability
to each position where it might be located. Initially, our robot has no idea where it is (uncertainty),
so it assigns each position the probability 1/8 = 0.125, which corresponds to a uniform distribution:

Robotics Tutorial 9 62

Now suppose that the Thymio’s sensors detect a dark gray area. As the robot knows that it
is in front of one of the five doors, its uncertainty is reduced. The probability distribution shows
1/5 = 0.2 for each of the doors (dark gray areas) and 0 for each of the walls (light gray areas):

Next our Thymio moves and again senses a dark gray area. There are now only three possibil-
ities: it was at position 0 and moved to 1, it was at 4 and moved to 5, or it was at 5 and moved
to 6. If the robot’s initial position was 6, after moving right it would no longer detect a dark gray
area, so it could not have been there. The probability is now 1/3 = 0.33 for each of these three
positions:

After the next step of the robot, if it again detects a door (dark gray area), it is without a
doubt at position 6, while if it does not detect a door, it is either at position 2 or position 7.

Robotics Tutorial 9 63

Doing math on a computer that doesn’t know what a decimal point is: As Aseba does
not support decimal numbers, we need some workaround to represent the fractional probabilities.
Suppose you want to assign a probability 1/8 = 0.125. You can not enter 0.125 so you can not assign
it to a variable. However, it is pretty easy to fix the problem. The solution is to first perform a
multiplication and then a division, so, for example, (1×1000)/8 = 125. As a result, the probabilities
for the positions are scaled to the range 0 through 1000. In this way, the probabilities are measured
in units per million. You might also be familiar with the representation of probabilities in %
(percent or per hundred). By increasing the number we divide by we are increasing the precision
with which we can represent the fractional values with integer numbers.

BTW, integer values are used in Aseba to represent numbers, they are comprised between
−32768 and 32767, which is the range of 16 bit signed integers. You might need to use a native
function “math.muldiv” to compute multiplication-division using internal 32 bit precision.

9.1 Simple localization program

1. Start a new program.

2. Copy and paste the code listed in Figure 28.

3. Add the following constants:

LED scale factor for displaying beliefs in leds. Set to a value 32.

THRESHOLD value for detecting dark gray.

HIT value for detecting dark gray when on dark gray or light gray when on light gray. Set
to a value 1.

MISS value for detecting dark gray when on light gray or light gray when on dark gray. Set
to a value 0.

4. Save the program as “Localization-simple”.

5. Load the program on your robot.

6. Press the center button, look at LEDs and read the values in the beliefs array. Explain
your experience as part of your lab report.

7. Place the robot on one of the circular sectors in the map shown in Figure 29 (located at the
end of this tutorial) so that proximity ground sensor 1 is directly over the circular sector.
Then press the forward button and check LEDs as well as the values in the beliefs array.

8. Repeat (16 times) the previous step (step 7) by placing the robot over the next right circular
sector and explain the results in your lab report as well.

9. Ask your TA to check the results and if your program work.

10. Questions for Section 9.1:

(a) Breifly explain how this program works.

(b) Why we need rotate subroutine? Justify your answer.

Robotics Tutorial 9 64

var world[8]= [1,1,0,0,1,1,1,0]

var beliefs[8]

var i

var hit

var temp

var sum

onevent button.center

when button.center == 0 do

call math.fill(beliefs, 1000/8)

callsub display_beliefs

end

onevent button.forward

when button.forward == 0 do

callsub rotate

callsub sense

callsub display_beliefs

end

sub display_beliefs

call leds.circle(beliefs[0]/LED, beliefs[1]/LED, beliefs[2]/LED,

beliefs[3]/LED, beliefs[4]/LED, beliefs[5]/LED,

beliefs[6]/LED, beliefs[7]/LED)

sub rotate

temp = beliefs[7]

for i in 7:1 step -1 do beliefs[i] = beliefs[i-1] end

beliefs[0] = temp

sub sense

if prox.ground.delta[1] < THRESHOLD then hit = 1 else hit = 0 end

for i in 0:7 do

if (hit==1 and world[i]==1) or (hit==0 and world[i]==0) then

call math.mul(beliefs[i], beliefs[i], HIT)

else

call math.mul(beliefs[i], beliefs[i], MISS)

end

end

callsub normalize

sub normalize

sum = 0

for i in 0:7 do sum += beliefs[i] end

for i in 0:7 do call math.muldiv(beliefs[i], beliefs[i],1000,sum) end

Figure 28: The simple localization program

Robotics Tutorial 9 65

(c) What is the role of normalize subroutine? Why we must use it?

(d) Press the center button again and repeat the experiment without moving the robot
and see if the algorithm works. Explain your observations.

9.2 Uncertainty in sensing

As you have experienced, the robot cannot detect with complete certainty whether it senses a dark
gray area or a light gray sector. Such uncertainties happen for many reasons such as fading colors
for walls and doors, different lighting conditions, or noise in the sensors of the robot so that it could
not distinguish between light and dark gray in question (d). We can model such uncertainties by
assigning probabilities to the sensor detection. If the robot senses dark gray sector, we specify
that the probability is 0.9 that it has (correctly) detected a door and 0.1 that it has (mistakenly)
detected a wall. Conversely, if it senses light gray, the probabilities are 0.1 for a door and 0.9 for a
wall.

1. Save a copy of the “Localization-simple” program as “Localization-uncertain”.

2. Make modifications to the program that can accept HIT = 0.9 and MISS = 0.1. Hint: You
can use “math.muldiv” function.

3. Save your program and load it on your robot.

4. Press the center button, look at LEDs and read the values in the beliefs array. Explain
your experience as part of your lab report.

5. Place the robot on one of the circular sectors in the map shown in Figure 27 (printable
version located at the end of this tutorial) so that proximity ground sensor 1 is directly over
the circular sector. Then press the forward button and check LEDs as well as the values
in the beliefs array.

6. Repeat (16 times) the previous step (step 5) by placing the robot over the next right circular
sector and explain the results in your lab report as well.

7. Ask your TA to check the results and if your program work.

8. Questions for Section 9.2:

(a) What is the difference between the results of this program and previous one?

(b) Press the center button again and repeat the experiment without moving the robot
and see if the algorithm works. Explain your observations..

(c) Experiment with different values of HIT and MISS (HIT+MISS=1). How low can you
specify HIT and have the algorithm still work?

9.3 Localization of a moving robot

Let us now test the localization algorithm on the moving robot. We want our robot to find a
specific location on the map (i.e. position 4) and generates a beep.

1. Save a copy of the “Localization-uncertain” program as “Localization-uncertain-motion”.

Robotics Tutorial 9 66

2. Add a constant variable LOC for the specific location on the map.

3. Make modifications to the program that can rotate right on the map (the right wheel should
be on the black dot at the center of the map). The robot should stop on each circular sector
and show the probability of its location on circle LEDs. After finding the location LOC, the
robot must generate a beep.

4. Save your program and load it on your robot.

5. Ask your TA to check if your program work. Your TA places the robot on a random circular
sector and your robot must find the specific location LOC.

Robotics Tutorial 9 67

Figure 29: A printable map with five doors (dark gray sectors) and three sectors where there is no
door (light gray sectors).

Robotics Tutorial 9 68

10 Advanced Concepts in Robotics
-Object Recognition

Robots must interact with the environment and usually must be able to detect specific objects.
Most robots are therefore equipped with some form of a camera and some form of program to
recognize objects in images. Indeed, our proximity sensors can be seen as a simple form of a
camera. In this tutorial, you will investigate methods for object recognition using the proximity
sensors in different ways to detect specific signatures of objects.

As usual, we will provide you with some example programs that make use of the proximity
sensors, and we will be using LEDs on the circle to communicate the robots’ observation. You will
then experiment with the programs and derive a general idea for object recognition.

10.1 Recognizing objects with different colors and shape

In this experiment, you will measure the width of the bands (black and gray bands in Figure 32
located at the end of this tutorial) using ground sensors. Moreover, you will identify the color of
each band.

The Thymio travels across the band. When it detects a band (Gray or Black) during a prox
event, a counter is set to zero. The counter is then incremented regularly during each subsequent
move until the band is no longer detected. The robot shows the width of the band as measured by
the value of the counter on the circle LEDs. Moreover, the robot will also report the detected color
on the top RGB LED. You will have to experiment with the parameters of this experiment to get
it to work properly.

1. Start a new program.

2. Copy and paste the code listed in Figure 30.

3. Add the following constants”

STOPPED ,SEARCH ,BLACK ,GRAY the Stopped, Search, Black, and Gray state identi-
fiers.

TARGET the target setting for the motors when the robot is moving.

BLACK TH and GRAY TH the thresholds use to determine whether the ground sensors
are sensing Black or Gray.

4. Save the program as “color-code” and load the program on your robot.

5. Place the robot on one of the white areas toward a band so that ground sensors are directly
over the white areas in Figure 32 (located at the end of this tutorial).Then press the for-
ward button and check top RGB LED and circle LEDs. You must adjust the TARGET,
BLACK TH and GRAY TH constants in a way that your robot shows the width of bands on
circle LEDs as well as the color on top RGB LED (blue for black bands and green for gray
bands).

6. Ask your TA to check if your robot can distinguish between different colors as well as shows
the width of different bands correctly.

Robotics Tutorial 10 69

var state = STOPPED

var width = 0

var reading

onevent button.forward

if button.forward == 0 then

state = SEARCH

motor.left.target = TARGET

motor.right.target = TARGET

callsub set_circle_leds

end

onevent button.backward

callsub stop

call leds.top(0, 0, 0)

onevent prox

if state != STOPPED then

reading = (prox.ground.delta[0] + prox.ground.delta[1]) / 2

when state == SEARCH and reading <= BLACK_TH do

state = BLACK

end

when state==SEARCH and reading<=GRAY_TH and reading>BLACK_TH do

state = GRAY

end

if state==BLACK then

if reading <= BLACK_TH then

width++

call leds.top(0,0,32)

else

callsub stop

end

end

if state==GRAY then

if reading <= GRAY_TH then

width++

call leds.top(0,32,0)

else

callsub stop

end

end

end

Robotics Tutorial 10 70

sub stop

state = STOPPED

motor.left.target = 0

motor.right.target = 0

callsub set_circle_leds

width = 0

sub set_circle_leds

if width==0 then call leds.circle(0,0,0,0,0,0,0,0) end

if width==1 then call leds.circle(32,0,0,0,0,0,0,0) end

if width==2 then call leds.circle(32,32,0,0,0,0,0,0) end

if width==3 then call leds.circle(32,32,32,0,0,0,0,0) end

if width==4 then call leds.circle(32,32,32,32,0,0,0,0) end

if width==5 then call leds.circle(32,32,32,32,32,0,0,0) end

if width==6 then call leds.circle(32,32,32,32,32,32,0,0) end

if width==7 then call leds.circle(32,32,32,32,32,32,32,0) end

if width==8 then call leds.circle(32,32,32,32,32,32,32,32) end

Figure 30: The simple color code program

7. Questions for Section 10.1:

(a) Briefly explain how this program works.

(b) What happens if your robot calculates the width greater than eight? Justify your
answer.

(c) Suppose that you want to show the width greater than eight. What strategy will you
take? Justify your answer.

10.2 Simple barcode reading program

In this experiment, you will investigate how to read a barcode consisting of different strips of black
and white with different width using just one proximity horizontal sensor. The robot scans the
barcode using just one sensor (horizontal sensor 2) and shows the barcode on circle LEDs.

1. Start a new program.

2. Copy and paste the code listed in Figure 31.

3. Add the following constants”

STOPPED ,SEARCH ,LEFT ,RIGHT the Stopped, Search, Left, and Right state identifiers.

TARGET the target setting for the motors when the robot is scanning.

THRESHOLD uses to determine whether the horizontal sensors are sensing the barcode.

LENGTH the length of array for storing samples. Set the value to 100.

Robotics Tutorial 10 71

LEN the maximum width of tiny white strips. Set the value to 7 (you might need to change
the value based on the TARGTE value).

4. Save the program as “barcode-reader”.

5. Load the program on your robot.

6. Stack together four 8 × 2 Duplo blocks and cover the Duplo wall with one of the barcodes in
Figure 33 (located at the end of this tutorial).

7. Place the robot in front of the barcode (directly parallel to the wall) so that the horizontal
sensor 2 is located around one-centimeter distance from the middle of the wall. Then press
the forward button.

8. You must adjust the TARGET and THRESHOLD constants in a way that your robot shows
the barcodes on circle LEDs. Hint: Your robot should turn on LEDs for white areas and turn
off LEDs for black areas).

9. Ask your TA to check if your robot can show all different barcodes on circle LEDs correctly.

10. Questions for Section 10.2:

(a) Briefly explain how this program works.

(b) Try to change the distance between the horizontal sensor 2 and the wall and find the
minimum distance that your robot can read the barcode correctly or it can distinguish
different barcodes.

(c) Try to change the initial position of the robot (the wall is not parallel to the wall or the
sensor is not located in front of the center of the wall). Can your robot read all barcodes
correctly or distinguish different barcodes? Justify your answer.

Robotics Tutorial 10 72

var min

var max

var mean

var i=0

var j=0

var len=0

var samples[LENGTH]

var pattern[8]

var state= STOPPED

onevent button.backward

callsub stop

onevent button.forward

state = LEFT

motor.left.target = -TARGET

motor.right.target = TARGET

i = 0

call math.fill(samples, 0)

call math.fill(pattern, 0)

call leds.top(0,0,0)

call leds.circle(pattern[0],pattern[1],pattern[2],pattern[3],

pattern[4],pattern[5],pattern[6],pattern[7])

onevent prox

if state != STOPPED then

call math.stat(prox.horizontal[0:4], min, max, mean)

when state == LEFT and mean == 0 do

state = RIGHT

motor.left.target = TARGET

motor.right.target = -TARGET

end

when state == RIGHT and mean > 0 do

call leds.top(0,32,0)

state = SEARCH

end

if state == SEARCH then

samples[i] = prox.horizontal[2]

i++

end

when state == SEARCH and mean == 0 do

callsub stop

callsub compute

end

end

Robotics Tutorial 10 73

sub stop

call leds.top(0,0,0)

motor.left.target = 0

motor.right.target = 0

state = STOPPED

sub compute

i=0

for j in 7:0 step -1 do

if samples[i] < THRESHOLD then

while samples[i] < THRESHOLD and i<LENGTH-1 do

i++

pattern[j]=0

end

else

len=1

while samples[i] >= THRESHOLD and i<LENGTH-1 and len <LEN do

i++

len++

pattern[j]=32

end

end

end

call leds.circle(pattern[0],pattern[1],pattern[2],pattern[3],

pattern[4],pattern[5],pattern[6],pattern[7])

Figure 31: The simple barcode reader program

10.3 Image recognition

In this experiment, you will investigate how a robot can use its proximity sensors as a camera for
image recognition. You should develop a simple program that reads a pattern shown in Figure 34
(located at the end of this tutorial).

Same as the previous experiment, stack together four 8 × 2 Duplo blocks and cover the Duplo
wall with one of the patterns in Figure 34. Then place the robot in front of the wall and directly
parallel to the wall so that the horizontal sensor 2 is located around one-centimeter distance from
the middle of the wall. Then read the value of all front horizontal sensors (at least horizontal
sensors 1,2 and 3) and display their values on circle LEDs 2 to 6 (or circle LEDs 3 to 5 if you
use sensors 1,2 and 3). For each pattern, you should put a different color on top RGB LED.

1. Start a new program.

2. Build a program that your robot reads a pattern shown in Figure 34 using at least three front
horizontal sensors. We named these pattern based on different color codes (RED, GREEN,

Robotics Tutorial 10 74

BLUE, and WHITE). Your robot should display the observed pattern on circle LEDs number
2 to 6 when the forward button is pressed. Moreover, the robot should identify different
patterns by displaying the color code on top RGB LED. Hint: your robot does not move in this
experiment. Moreover, your robot must observe patterns using at least three horizontal
sensors (sensors 1,2 and 3).

3. Save the program as “image-recognition”.

4. Load the program on your robot.

5. Stack together four 8 × 2 Duplo blocks and cover the Duplo wall with one of the patterns in
Figure 34 (located at the end of this tutorial).

6. Place the robot in front of the wall (directly parallel to the wall) so that the horizontal sensor
2 is located around one-centimeter distance from the middle of the wall. Then press the
forward button.

7. Ask your TA to check if your robot can show all different patterns on circle LEDs correctly
as well as on top RGB LED.

8. Questions for Section 10.3:

(a) Try to change the distance between the horizontal sensor 2 and the wall and find the
minimum/maximum distance that your robot can read the pattern correctly or it can
distinguish different patterns.

(b) Try to change the initial position of the robot (the wall is not parallel to the wall or the
sensor is not located in front of the center of the wall). Can your robot read all patterns
correctly or distinguish different patterns? Justify your answer.

Robotics Tutorial 10 75

Figure 32: A printable color codes for the simple color code program.

Robotics Tutorial 10 76

Figure 33: A printable barcodes for the barcode reader program.

Robotics Tutorial 10 77

Figure 34: A printable patterns for the image recognition program.

Robotics Tutorial 10 78

	The Programming Environment-Becoming Familiar with programming
	Exploring the Aseba Studio Programming Environment
	Simple Programs
	Fahrenheit to Celsius Converter Program
	Inches to Centimeters Convertor Program
	Answer these questions individually.
	Take home questions.

	The Programming Environment and the Thymio II Robot-Becoming Familiar with the System
	Aseba Studio Programming Environment
	Moving in a Square
	The Ground Proximity Sensors: Staying within the Lines
	The Horizontal Proximity Sensors: Staying within the Walls

	Robotics Simulation-Using a Robot Simulator
	Getting Started
	Moving in a Square, Again
	The Ground Proximity Sensors, Once More
	The Horizontal Proximity Sensors, Once More, with Feeling

	Modeling Sensors-Creating Sensor Models
	Modeling the Ground Proximity Sensors
	Modeling the Horizontal Proximity Sensors

	Modeling Drive Actuators-Speed, Divergence, and Turning
	Relating Target Setting to Speed
	Measuring Divergence
	How to Turn?
	Another Square

	Modeling the Real World-States and Transitions
	A Simple Stop and Go Program
	A Simple Line Following Program
	A Stop and Go Line Follower
	Building a Better Line Follower

	Dealing with an Imperfect World-Fault Identification and Recovery
	Determining Failure Modes
	Failure Identification
	Failure Recovery
	Acknowledging Defeat

	Programming Techniques-Subroutines and Development Cycle
	Subroutines
	A Spin through the Development Cycle

	Advanced Concepts in Robotics-Localization
	Simple localization program
	Uncertainty in sensing
	Localization of a moving robot

	Advanced Concepts in Robotics-Object Recognition
	Recognizing objects with different colors and shape
	Simple barcode reading program
	Image recognition

