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Abstract— Determining the most appropriate inputs to a model
has a significant impact on the performance of the model
and associated algorithms for classification, prediction and data
analysis. Previously we proposed an algorithm ICAIVS which
utilizes independent component analysis (ICA) as a preprocessing
stage to overcome issues of dependencies between inputs, before
the data being passed through to an inout variable selection (IVS)
stage. While we demonstrated previously with artificial data that
ICA can prevent an overestimation of necessary input variables,
we show here that mixing between input variables is common in
real world datasets so that ICA preprocessing is useful in practice.
This experimental test is based on new measures introduced in
this paper. Furthermore, we extend the implementation of our
variable selection scheme to a statistical dependency test based
on mutual information and test several algorithms on gaussian
and sub-gaussian signals. Specifically, we propose a novel method
of quantifying linear dependencies using ICA estimates of mixing
matrices with a new Linear Mixing Measure (LMM).

Index Terms— Input variable selection, modeling, data pre-
processing, independent component analysis, mutual information
estimation.

I. INTRODUCTION

INPUT variable selection is a simple concept: the idea is
that of all the observed inputs from which we seek to

develop a model for purposes such as classification, system
identification, control, prediction etc, not all of them are es-
sential to the model-building process. Moreover, if we include
these unnecessary inputs, there may be noise introduced into
the model, the parameter estimation process is made more
difficult, and the overall results may be poorer than if only the
required inputs are used. The area of input variable selection
(IVS) has received renewed interest due to the increasing size
of electronically available datasets [1], [2].
IVS is closely related to the well known area of feature
selection. In the latter case, features may be information-
bearing characteristics of a generative model or the observed
data and may be spread across the space of inputs. Such
features could also occur over time. There is usually a very
specific method of extracting the features which is dependent
on the generative model itself. In this paper, we consider
the specific issue of selecting inputs, that is, given a data
set x = [x0...xN−1]′, how can we select a possible subset
of indices IQ ∈ [0...N − 1] which yield, in some sense, the
best or optimal performance for a given model and associated
parameter estimation algorithm?
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This problem is not trivial and has been considered previously
in various ways. What makes input variable selection a difficult
problem is that, theoretically all possible subsets of inputs have
to be considered in order to make an accurate decision about
each input variable. While this problem might be unavoidable,
it is possible that approximate solutions exploiting some
heuristics can work well in practice. For example, forward
or backward elimination schemes have been used traditionally
for subset selection [3].
Most approaches depend statistically independent inputs, as
this allows the IVS algorithms to perform various statistical
tests to determine if an input index should be included1 in the
set IQ.
We have proposed previously an input variable selection
algorithm known as ICAIVS [4] which has two distinct steps:

1) ICA: Taking the raw inputs, produce a set of “de-mixed”
inputs which are as statistically independent as possible.

2) IVS: Perform a set of statistical tests between the de-
mixed variables and the desired output variables.

In our previous work we demonstrated that ICA preprocessing
can reduce the overestimation of necessary inputs when inputs
are linear mixtures of model dependent and independent
variables. However, in order to claim that this preprocessing
is useful in many applications we have to study how common
mixing is in real world datasets. There appears to be a
widespread belief within the data mining community that input
variables are statistically dependent. For example, it has been
shown that using combinations of input variables can result
in more suitable representations for learning algorithms and
hence improve performance in knowledge discovery and data
mining applications [5], [6], [7]. However, no quantitative
analysis has been made to our knowledge. Our objective here
is to determine how likely it is in practice that such ICA
demixing is required. To do this, we propose to perform a
number of experiments on real world datasets. This will be
addressed in the second part of this paper.
In the first part of this paper we extend our implementation of
the input variable selection scheme. Our previous selection was
based on higher order cross cumulants to determine the de-
pendence of each input on the desired output. However, there
are various ways in which this dependence can be estimated.
A popular choice is mutual information (MI) as a measure
of dependencies, and in this paper we seek to determine the
performance of a range of MI estimation methods in the input

1In the discussion that follows, we will dispense with the notation and
specific wording to indicate input indices. Instead it should be understood
that when we say inputs, this implies the above indices context.
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variable selection step. We compare these methods with our
original cumulant-based method and a simpler correlation-
based method.
The paper is organized as follows. In Section II, we review
several mutual information estimation methods that have been
proposed in the literature. In Section III we perform some
simulations to gauge the performance of various mutual in-
formation estimators. This approach is taken in an attempt to
give an indication of the relative advantages and disadvantages
of some basic methods for MI estimation that can be used for
IVS. In Section IV, we then compare our original ICAIVS
algorithm using equally weighted cumulants with the best
MI estimators from the previous section. In Section V we
propose a novel method of quantifying linear dependencies
using ICA estimates of mixing matrices with a new Linear
Mixing Measure (LMM). In Section VI we apply the proposed
LMM to derive estimations of a mixing strength for several
machine learning databases.

II. EVALUATION OF ALGORITHMS FOR INPUT VARIABLE
SELECTION

A. Mutual Information for IVS

Although many techniques can be proposed for IVS, MI can be
seen as a very fundamental statistical approach to determine
the dependence between variables. MI is a natural measure
for selecting input signals, and such measures have been used
previously for input variable selection [8], [9].
It is not always easy to find ways to reliably estimate MI, for
example, it is well known in the statistical literature that a
sufficient amount of data must be used to obtain valid results,
whatever method is used. However, the task of using MI for
selecting inputs is not the same as computing MI directly.
Since we only require a relatively simple binary decision to
be made about the dependence or otherwise of signals, it is
not necessary to compute a precise value for the joint mutual
information (JMI).
This has formed the basis of the ICAIVS algorithm that
was proposed previously [4]. In this case, higher-order cross
cumulants were normalized and combined in a heuristic way
to guide the decision process, without the precise value for
mutual information ever needing to be estimated. In this
section, we consider a number of MI estimation algorithms and
seek to determine their suitability for input variable selection.

B. Definition of Mutual Information

For completeness, we include the definition of MI and JMI.
Shannon’s definition of MI between an input signal x and
output signal y is given as the Kullback-Leibler distance
between the joint PDF f(x, y) and the product of the marginal
PDFs f(x) and f(y),

I(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y) log(

f(x, y)
f(x)f(y)

)dxdy. (1)

Statistical dependencies between subsets of input signals and
an output signal can similarly be defined as the JMI, for

example

I(x1, x2, y) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2, y)

× log(
f(x1, x2, y)

f(x1, x2)f(y)
)dx1dx2dy (2)

= I(x1, y) + I(x2, y|x1) (3)

C. Mutual information estimation methods

Bonnlander and Weigend compared two MI estimation meth-
ods, one based on PDF estimations with a kernel method
and one which is based on PDF estimations with an equal-
mass binning method [8]. The experimental results show that
the estimated value for MI depend highly on the choice of
algorithmic parameters such as the kernel width and bin width.
However, kernel width and bin width did not change the rank
of the relevance of the input subsets for reasonable parameters.
Yang and Moody proposed another method to estimate JMI,
I(xi, xj , y), i 6= j, for data visualization [9]. For the purpose
of data visualization, the two most important inputs were
selected. The JMI methods take advantage of using conditional
MI to rank combinations of two input variables when the MI
of individual inputs (e.g. I(xi, y)) is the same.
In this paper we compare some further methods of MI
estimation. This includes a standard (equal bin) histogram
method (HG), an adaptive partitioning histogram method (AP)
proposed by Darlellay and Vajda [10], and MI estimation
based on the Gram-Charlier polynomial expansion (GC) [11].
The AP histogram method is similar to the histogram methods
used by Bonnlander and Weigend in that it aims at partitioning
the range of random variables into bins containing the same
number of samples, so that the influence of each bin is
balanced. Unlike the binning method used in [8], the AP
partitioning is a recursive method that subpartitions the space
based on an χ2 to test if the current data distribution is close
to uniform.
The GC method of MI estimation is based on the Gram-
Charlier polynomial expansion of a PDF [11],

f(x) ∼
∞∑

n=0

cn
dnZ(x)

dxn
, (4)

where Z(x) = exp(−x2/2)√
2π

is a gaussian function and cn are
factors that determine the weights of different order derivations
of Z(x).
Using the truncated polynomial expansion for marginal PDFs,
Amari et al. [12] derived an approximation of the marginal
entropy

Ĥ(x) =
2eπ

2
− (kx

3 )2

2 · 3!
− (kx

4 )2

2 · 4!
+

5 · (kx
3 )2kx

4

8
+

(kx
4 )3

16
. (5)

Here kx
3 and kx

4 are 3rd and 4th order cumulants that can be
calculated from moments mx

n = E(xn) as kx
3 = mx

3 , kx
4 =

mx
4 − 3. Using the fourth order Gram-Charlier expansion for

two-dimensional joint PDF, Akaho et al. [13] derived the joint
entropy

H(x, y) = H(r, s) +
1
2

log (1− ρ2) (6)
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where ρ = E[xy], r and s are a linear combination of x and
y (assumed to be zero mean and unit variance),

[
r
s

]
=

(
c+ c−

c− c+

) [
x
y

]
(7)

c+ =
(1 + ρ)−1/2 + (1− ρ)−1/2

2
(8)

c− =
(1 + ρ)−1/2 − (1− ρ)−1/2

2
, (9)

and

Ĥ(r, s) = 1 + log 2π

− 1
2 · 3!

[(β3,0)2 + 3(β2,1)2 + 3(β1,2)2 + (β0,3)2]

− 1
2 · 4!

[(β4,0)2 + 4(β3,1)2 + 6(β2,2)2 + 4(β1,3)2 + (β0,4)2](10)

where

βk,l = E{rksl} − βk,l
0

βk,l
0 =





3 k=4 or l=4
1 k=l=2
0 otherwise.

The MI can then be calculated from these estimates as

Î(x, y) = Ĥ(x) + Ĥ(y)− Ĥ(x, y), (11)

which corresponds to a polynomial of high order cumulants.
While there are other choices to measure the difference
between statistical distributions [14] on which a statistical
dependency test can be based, MI has become a benchmark
of choice for IVS.

III. PERFORMANCE OF MUTUAL INFORMATION
ESTIMATORS

In this section we describe the results of a number of ex-
periments on different MI estimation methods. We consider
two data sets: a set of two dependent gaussian signals, and a
mixture of two independent sub-gaussian signals.
While in the literature many performance tests of MI es-
timators are made with independent signals, we think that
tests on dependent signals are important. The aim of the
experiments reported here is to carefully control the degree
to which dependence is introduced between variables. An
important aspect of the experiments is that we can calculate
the theoretical value for the MI between signals in order to
assess their accuracy.

A. Experimental Data

For the first data set we use gaussian distributions with the
following PDFs [15]

f(x) =
1

2
√

π
e−

x2
4 ,−∞ < x < ∞

f(y) =
1

2
√

π
e−

y2

4 ,−∞ < y < ∞

f(x, y) =
√

3
6π

e−
(x2−xy+y2)

3 ,−∞ < x, y < ∞. (12)

x and y have the same distribution with zero mean and vari-
ance equal to 2. The two signals are dependent on each other as
the joint PDF is not equal to the product of marginal PDFs. To
generate this data set, we generated random numbers according
to f(x, y) with a two-dimensional Metropolis algorithm [16].
The MI for this example can be calculated analytically from
eq.1.
For the second data set, the dependent sub-gaussian signals
are generated from two independent sub-gaussian signals

f(x) = 12x2(1− x), 0 ≤ x ≤ 1
f(y) = 2y, 0 ≤ y ≤ 1

f(x, y) = 24x2(1− x)y, 0 ≤ x, y ≤ 1, (13)

where each of the random numbers X and Y are generated
with a standard Metropolis algorithm [17]. To make the desired
dependent signals, we generate two new signals that are
functions of the independent signals. The new signals are:

[
u
v

]
=

(
1 C
C 1

)[
x
y

]
, (14)

where
(

1 C
C 1

)
is a covariance matrix and C is a covariance

parameter. The strength of the dependency between u and v
can be adjusted by tuning the value of C. Thus, by changing
the covariance between u and v we also change the value
of MI. The joint PDF f(u, v) of the dependent sub-gaussian
signals can be calculated with a coordinate transformation
taking the Jacobian into account, and is given by

f(u, v) = 24
(Cv − u)2(Cu− v)((Cv − u)/(C2 − 1)− 1)

(C2 − 1)4
.

(15)
The theoretical value for MI can then be calculated by numer-
ical integration.

B. Experimental Results

We conducted a range of experiments on the MI estimation
algorithms described above. Specifically, we examined the
dependence of the MI estimation for different numbers of
training samples and also calculated the averages and standard
deviations over 20 runs2. The results of the MI estimations of
the gaussian signals are shown in Figure 1. All three estimation
methods gave reasonable estimates of the theoretical MI
(dotted line) with enough data points in the sample, although
the AP method converged first. The results for the sub-gaussian
signals with covariance parameter C = 0.2 and C = 0.6 are
shown in Figure 2.

C. Discussion of the experimental results

In these experiments the AP estimator demonstrated outstand-
ing performance. For each single test with different C, the
AP estimator converges to the analytical value after a certain

2Most estimation methods depend on some algorithm specific parameters
such as the bin width in HG and the partitioning threshold in AP. We attempted
to choose these parameters fairly for each case to give a true representation
of the performance of each algorithm.
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Fig. 1. Estimation accuracy of three MI estimators on gaussian signals with
varying number of sample points.
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Fig. 2. Comparison of performance of three different MI estimators on
sub-gaussian data. Correlated signals are made with covariance parameter (a)
C = 0.2 and (b) C = 0.6.

number of samples. As the MI increases, the required number
of samples increases.
The HG estimator performs similarly to the AP estimator when
the dependence between the signals is not very high (Figure
2a). However, the HG estimate exhibits a systematic shift when
the MI increases to a certain level, although the bin width
was tuned appropriately. The deviation between the theoretical
value and the estimate becomes larger as the MI increases.
Thus, testing the methods on independent signals would not
have revealed this difference.
The GC estimator experienced difficulty converging and sys-
tematically underestimated the theoretical value in all sub-
gaussian tests.
The comparison of these three MI estimators can be summa-
rized as follows: The advantage of MI estimation with Gram-
Charlier expansion is that it only calculates the expectation
value of different powers of the samples. Thus it is fast
and easy to calculate. The disadvantage of the GC method
is that the estimate might suffer from the truncation of the
expansion in the case of non-gaussian signals. This resulted
in an underestimate of MI in our example of sub-gaussian
signal, although the 4th order was taken into account in our
implementation.
The histogram based methods are in this sense more general
than polynomial expansion based methods because they are
less sensitive to the nature of the signals. However, the
histogram methods are sensitive to the bin partitioning. A
rough partition might result in bias toward high MI while fine-
grained partitions might result in underestimating MI. A good
choice of bin width is particularly important for MI estimation
as the regions with low data densities carry large information
content (such as the tails of a distribution).

IV. ICAIVS: EQUALLY WEIGHTED CUMULANTS OR
MUTUAL INFORMATION?

Having determined the most appropriate MI estimator in the
previous section, we ask - will the MI estimator give better
performance than the original method of higher order equally
weighted cross cumulants?
In this section, we compare our original ICAIVS algorithm
with a new version which employs MI. We choose to consider
the two best performing MI estimation methods from the
previous section, GC and AP, and for interest, a simple test
based on a correlation measure to show the effect of higher
order statistics.
To keep the comparison results easy to understand, we report
only the test results between individual input signals and
the output signals. More complex tests between other subset
combinations have also been considered, but are not included
in the results reported here3.

A. Experiment 1

For the first test we considered the example discussed in the
original ICAIVS implementation [4]. This example consists of

3For the mutual information estimation algorithms, we did not tune the par-
titionining parameters, instead we used the default partition of the algorithms.
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Fig. 3. Input variable selection results for the model of eqn. (16). Shown is
the normalized dependency strength between the output value and each input
value as estimated with (a) the equal-weight cumulant method, (b) the AP
mutual information estimator, (c) the GC mutual information estimator, and
(d) with correlation coefficients. Note that the choice of threshold in (a) is
an open problem. In this case, we chose a nominal value. The difficulty in
deciding relevant inputs in this case is evident.

15 iid signals x1, ..., x15 normalized to be in the range −1 to
1. From these signals we used only the three signals x2, x6

and x9 to generate the output signal based on the nonlinear
model

y = x3
2 + cos(x6) + 0.3 sin(x9). (16)

To facilitate the comparison we show in the following nor-
malized results in which each dependency value is divided
by the largest value in the input set. Thus, the signal with
the strongest dependency value has always a value of 1 (with
exception of the data shown in Figure 4c).
Figure 3 shows the results for the dependency values of the
four methods. All methods identify the signals x2 and x9

with a considerable dependency strength, while the remaining
dependent variable x6 is only identified by the AP method.
The signal x6 is missed by the correlation method as the
expectation value of x cos(x) is zero. Our results also indicate
that such terms are difficult to detect with the cumulant and
GC method.

B. Experiment 2

A further test is aimed at the case where the model is
multiplicative between two signals,

y = x2 ∗ x3. (17)

In this model, neither of the two inputs is dominant while only
the product determines the output. The results are shown in
Figure 4.
The correct signals are identified by both MI methods, al-
though the values of the MI in the GC method are all negative
(no normalization was used in this sub-figure). A possible
reason for the negative MI values is the underestimation
mentioned before.
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Fig. 4. Results for the input variable selection test for the model of eqn. (17).
The normalized dependency strength between the output value and each input
value as estimated with (a) the equal-weight cumulant method, (b) the AP MI
estimator, (c) the GC MI estimator, and (d) with correlation coefficients (as
in Figure 3). The maximum dependency strength in (c) is not normalized to
a maximum of one because all numerical values are below zero. Note again
the that the threshold in (a) is nominal value which presents some difficulties
in deciding relevant inputs for this case.

C. Summary

These simple experiments indicate that inputs can be detected
by all the methods in some cases. For some situations, it can
be difficult to detect the inputs reliably with the cumulant and
GC method. The AP MI estimator offers evidently very good
performance. This method also gave the best estimations of MI
in our previous tests indicating that a more accurate estimation
of MI can contribute to the accuracy of the IVS test.

V. DO WE NEED TO USE ICA?: DEPENDENCE ESTIMATION
USING LMMS

A. Linear Mixing Measures

In this section we propose an efficiently computed measure
we term LMM (Linear Mixing Measure) which quantifies the
degree of mixing between input variables. This measure will
be used to explore and quantify mixing between input signals
in several machine learning datasets. There are a number of
variations of LMMs that will be discussed in addition.
For the discussion that follows, it is assumed that there is a
set of inputs s that is passed through a mixing matrix M to
give a set of mixed input variables x,

x = Ms, (18)

where M is a generally unknown, instantaneous mixing matrix,
s is a vector of unobserved independent source signals, and
x is a vector of observed dependent signals. In this scenario,
x corresponds to the observed input data. We would like to
determine how likely it is that ICA preprocessing for IVS,
which corresponds to performing IVS on s, will have an effect
on the results.
A fully diagonal square mixing matrix M corresponds to zero
mixing between source signals s. We require a criterion which
measures the effect of off-diagonal elements in M that will
result in signals being mixed. It is also necessary to estimate
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the mixing matrix using ICA. The resulting estimate of the
mixing matrix is denoted by A in the following. A is only an
estimate of M up to column permutations and scaling factors
of the individual signals which has to be taken into account
in the definition of LMM.

B. A Lower Bound on an LMM

We define the LMM, EC
1 , as the sum of all elements of the

matrix A minus the largest element of each column, where

EC
1 =

1
n(n− 1)

n∑

j=1

(
n∑

i=1

|aij |
maxk |akj | − 1

)
(19)

and aij is an element of matrix A in the ith row and jth
column. The superscript ‘C’ of this measure indicates that
the normalization and inner summation is carried out over the
columns of the matrix. EC

1 does not depend on either column
or row permutations and can be calculated in quadratic time
(O(n2)).

Remarks
1) The subscript 1 indicates that this measure is based

on a linear weighting of the off diagonal elements.
Other forms can be used, such as a square of the linear
distances.

2) An appropriate definition of the total linear mixing based
on the true mixing matrix can be defined as

EM
1 =

1
n(n− 1)

n∑

j=1

(
n∑

i=1

|mij |
maxk |mkj | −

|mjj |
maxk |mkj |

)
,

(20)
where mij are the elements of the (typically unknown)
mixing matrix M.
EM

1 measures the normalized4 sum of the differences
between the normalized off-diagonal mixing strength
and the normalized on-diagonal mixing strength. It gives
an indication of the degree to which inputs are mixed,
but does not take into account permutations of the input
signals which EC

1 does.
3) Another LMM that we could have considered is

Emin
1 = min

{
EM

1 (B)|B ∈ Pc(A)
}

(21)

where Pc(A) is a set of all matrices resulting from
all possible column permutations of A. This measure
captures the main objective of the study to give a
conservative estimate of mixing in real world datasets.
However, while Emin

1 overcomes the issue of permuta-
tions of the input signals, it has the disadvantage that it
scales factorially due to the necessary permutations of
A.

4) Another approach is to find the minimal mixing condi-
tion corresponding to the matrix B ∈ Pc(A) in which
the sum of the diagonal elements is maximal.

4Note that normalization is used here so that different mixing matrices can
be compared, where only the relative magnitude of the off-diagonal elements
to the diagonal elements are important. We also take normalization with
respect to the rank n of the matrix into account so that the possible values
of this strength measure range between 0 and 1 for mixing problems with
arbitrary number of signals n.

This matrix is easy to find in the case that each column
vector has the maximum value at a position different
from the position of the maximum values in all the other
column vectors. The matrix can then be found by placing
each column vector at the position of the index of the
maximal element. This ordering can be done in quadratic
time (O(n2)).
The case when two column vectors from one mixing
matrix have maximal elements at the same index is
termed a coincident column maximum index. For any
given matrix A, the index of the maximum value of
column k is αk, k = 1, ..., n, we define Nc as the
number of coincident column maximum indices where

Nc =
n∑

i

ui

ui =
{

x− 1 when index i occurs x > 1 times
0 elsewhere. (22)

It is not practical to try to find a measure of min-
imal mixing using an exhaustive search, testing all
permutations of columns which have coincident column
maximum indices.

It is easy to see that EC
1 is a lower bound of Emin

1 . The
measure EC

1 is equal to Emin
1 if A has no coincident column

maximum indices because then the maximal element, which
is 1 after normalization, can be placed on the diagonal with
the ordering of the columns.
If A has Nc > 0, then the above measure corresponds to
the case of ignoring the coincident column maximum indices
and allowing each column vector to be optimally placed with
the maximal element on the diagonal. This introduces an
error for each but one coincident column maximum index,
underestimating the true mixing strength because a value
of one instead of a true diagonal element less than one is
subtracted from the sum of all elements of the column vector
in the measure EC

1 .
In other words, compared to the measure Emin

1 , where the true
diagonal element is subtracted, an error of 1 − aii is made
for each but one coincident column maximum index, where
aii is the diagonal element of the permutated matrix with the
smallest mixing strength.
A large value of EC

1 indicates a large value of Emin
1 so that

this measure is sufficient for our argument if EC
1 is large.

However, a small value of EC
1 can still be caused by matrices

with large Emin
1 in the case where Nc is large.

C. LMM with Column/Row Normalization

We define the quantity ER
1 ,

ER
1 =

1
n(n− 1)

n∑

i=1




n∑

j=1

|aij |
maxk |aik| − 1


 , (23)

which is similar to EC
1 except that the normalization is

performed on the row vectors of the matrix A. ER
1 is also

independent of permutations, and in case of Nc = 0 it holds
that ER

1 = EC
1 = Emin

1 . In the case of Nc > 0, ER
1 is an
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upper bound on Emin
1 . As EC

1 is a lower bound on Emin
1 , and

ER
1 is an upper bound, it is appropriate to take the average

E1 =
1
2

(
EC

1 + ER
1

)
(24)

as an approximation of Emin
1 . This quantity corresponds to

the measure E1 introduced by Amari et al. [12] up to a
normalization factor 1

n(n−1) .
A better LMM can be obtained by replacing the term ER

1 in
the above definition with an estimate that performs the row
normalization after a column normalization. The normalized
LMM is defined by

EN
1 =

1
2

(
EC

1 + ECR
1

)
, (25)

where the column/row-normalized LMM is given by

ECR
1 =

1
n(n− 1)

n∑

i=1




n∑

j=1

|ãij |
maxk |ãik| − 1


 (26)

in which ãij is an element of the column-normalized matrix

Ã =
(

aij

maxk |akj |
)

. (27)

The measure EN
1 is very similar to the measure E1 introduced

by Amari et al. [12]. However, note that E1 is most commonly
used in the performance evaluation of ICA algorithms where
the true mixing matrix is known. Here we adapted this criteria
to the situation where the true mixing matrix is unknown. We
augmented the original measure with a normalization factor
to enable the comparison of mixing strength values between
mixing matrices of different size. Note that E1 and EN

1 are
the same when the columns of the estimated mixing matrix
are first normalized.
The different LMMs are illustrated with an example in Fig-
ure 5. Shown there is the average numerical values for the
difference of the LMMs to EM

1 on random mixing matrices
for different values of number of coincident column maximum
indices Nc. In each experiment a random mixing matrix of size
21 × 21 with elements drawn equally between 0 and 1 was
added to a unit matrix. This corresponds to a mixing matrix
where Nc = 0. To generate mixing matrices where Nc > 0 we
randomly picked a specific number of columns equal to Nc

and exchanged the diagonal elements with the first element in
the same column.

Remarks
1) All the measures agree when Nc = 0. However, the

quality of the approximation of EM
1 is different for

increasing Nc.
2) In our experiments, EC

1 always underestimates the true
value in case of Nc > 0, and this difference increases
linearly with Nc.

3) ER
1 always overestimates EM

1 , and the difference from
EM

1 increases with Nc.
4) E1 slightly overestimates EM

1 but is a reasonable ap-
proximation of EM

1 .
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Fig. 5. Example of LMMs from experiments with random mixing matrices
with different numbers of coincident column maximum indices. As argued in
the text, EC

1 is a lower bound on Emin
1 and thus also smaller than EM

1 . EN
1

is the best estimate of EM
1 from all considered LMMs. All LMMs show a

linear dependence on Nc in this example.

5) The best estimate of EM
1 when Nc > 0 is the measure

EN
1 .

6) The minimal mixing strength, Emin
1 , is always smaller or

equal to EM
1 . The measure of EN

1 is thus overestimating
Emin

1 . However, as mentioned above, EC
1 is always a

lower bound on Emin
1 . Thus, EC

1 might overestimate
the number of cases with small mixing strength, while
EN

1 might underestimate the cases with small mixing
strength. We are using therefore both measures, EC

1 and
EN

1 , in the following study as the combination of these
measures can provide a better picture of the possible
range of expected mixing strength values.

VI. EXPERIMENTAL RESULTS OF LMMS

A. How common are Dependent Inputs in Real World
Datasets?

Several datasets were chosen arbitrarily from four data col-
lections, the StatLib-Datasets Archive [18], the Delve library
[19], the UCI Machine Learning Repository [20], and the FMA
collection [21]. These datasets stem from a variety of subject
areas such as economics, robotics, or health informatics.

The datasets present a good test of LMMs as the number of
inputs range from 2 up to 33, and the number of samples range
from tens to thousands (see Table I). For simplicity we omitted
datasets with missing data and non-numeric feature values. In
the remaining datasets we eliminated features which had no
obvious problem-dependent meaning such as serial numbers,
or which had obvious dependencies on other features such as
classification numbers.

To verify the stability of the LMM estimates with respect to
the size of the samples, we calculated the mixing strength EN

1
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Fig. 6. The dependency of EN
1 on the amount of training data used for

the estimation in each of the 31 datasets. EN
1 is plotted for different values

relative to the value as estimated from the complete dataset.

for different fractions of data5. This is shown in Figure 6.
Each curve represents the average of 30 trials. A steady value
for large coverage was taken as an indication for convergence
of the estimation. All but one dataset showed consistent
values when most of the data was included, establishing some
confidence that the number of samples is sufficient to estimate
the mixing matrix. Only one dataset showed a strong variation
of EN

1 for high percentages of the data. This dataset was not
included in the following analysis.
The detailed results of the estimates of EC

1 and EN
1 are given

in Table I. In some problems it became evident that there
are inputs supplied in the datasets that have no bearing on
the technical problem. For clarity, these inputs were removed
manually before commencing the experiments. The results
for Nc and the various mixing strength measures represent
averages over 30 trials with different starting conditions of
the ICA algorithm.
A histogram of values EC

1 , which represent a strict lower
bound on the minimal mixing strength Emin

1 , is shown in
Figure 7 (open bars). 24 out of the 30 datasets have a lower
bound of the mixing strength larger than 0.025, while half of
the dataset have values of EC

1 larger than 0.075.
We then compared the histogram of mixing strength estima-
tions derived from EC

1 to the histogram of mixing strength
estimation derived from EN

1 in Figure 7 (solid bars). With
this estimate there are now 28 out of the 30 datasets with an
estimated mixing values larger than 0.025 and 23 out of 30
with estimated mixing strength larger than 0.075.
Interestingly, all of the 7 datasets with EN

1 < 0.075 are from

5Datasets 1-17 are from the StatLib library [18], specifically (1) alr56, (2)
alr57, (3) Boston house-price, (4) Body fat, (5) S&P Letters Data, (6) ch10, (7)
ch17, (8) ch1a, (9) ch3a, (10) Wages, (11) Disclosure, (12) Irish Educational
Transitions, (13) papir, (14) places, (15) pollen, (16) pollution, and (17) Child
witness example. Datasets 18-25 are from the Delve library [19], specifically
(18) KINematics-32fh, (19) KINematics-32fm, (20) KINematics-8fh, (21)
KINematics-8fm, (22) PUMA DYNamics-32fh, (23) PUMA DYNamics-
32fm, (24) PUMA DYNamics-8fh, (25) PUMA DYNamics-8fm. Datasets
26-28 are from the the UCI library [20], specifically (26) Liver-disorders
Database, (27) Iris Plants Database, and (28) Wine recognition data. Datasets
29 and 30 are from the FMA library [21], specifically (29) Bank Data, and
(30) Boston Stock.

TABLE I
RESULTS OF THE ICA ANALYSIS FROM 30 DATASETS FROM PUBLIC

MACHINE LEARNING DATASETS SPECIFIED IN THE TEXT. THE MEASURED

QUANTITIES EN
1 , EC

1 , AND Nc , ARE THE AVERAGE VALUES OVER 30
RUNS WITH DIFFERENT INITIALIZATIONS OF THE ICA ALGORITHM.

PLEASE REFER TO THE TEXT FOR DETAILS OF THE DATASETS.

SN # Features # Samples # Nc EN
1 EC

1
1 11 26 8.2 0.28 0.19
2 11 32 7.9 0.31 0.22
3 16 506 12.7 0.16 0.07
4 15 252 10.7 0.23 0.16
5 9 20640 7.9 0.16 0.03
6 7 60 1.1 0.44 0.44
7 13 68 11.9 0.11 0.04
8 4 704 3 0.24 0.05
9 4 50 0.9 0.5 0.49
10 11 534 7.1 0.21 0.16
11 4 662 3 0.16 0
12 6 500 4 0.28 0.21
13 13 29 4.3 0.42 0.41
14 9 329 5 0.27 0.21
15 5 481 2 0.42 0.39
16 16 60 14 0.11 0.03
17 14 42 5.4 0.44 0.43
18 33 8192 0 0.02 0.02
19 33 8192 0.3 0.02 0.02
20 9 8192 0.4 0.03 0.03
21 9 8192 1 0.1 0.09
22 33 8192 11.1 0.05 0.05
23 33 8192 13.8 0.06 0.05
24 9 8192 2 0.04 0.03
25 9 8192 1.6 0.06 0.04
26 6 345 1.4 0.2 0.17
27 4 126 2 0.52 0.42
28 13 138 11.4 0.11 0.02
29 3 60 2 0.29 0.03
30 2 35 1 0.37 0.2

simulated robotics experiments. The features in these datasets
represent well designed measurements so we expect minimal
dependency between inputs of these datasets.

VII. DISCUSSION AND CONCLUSIONS

MI is a valuable method that can be applied to input variable
selection, both from a theoretical and practical point of view.
In this paper, we have compared a range of MI algorithms and
shown that the adaptive partitioning (AP) histogram method
by Darlellay and Vajda [10] showed superior performance in
our examples.
The MI estimation method based on the Gram-Charlier expan-
sion (GC) is also useful for input variable selection. Although
this method does not provide very accurate MI values for
data that are far from gaussian, some dependent signals were,
nevertheless, detected with less computational effort compared
to AP.
We have shown that both MI estimation methods offer superior
performance in terms of accuracy over the original higher
order, equally weighted cross cumulant algorithm used in
the original ICAIVS implementation [4]. In addition, the AP
algorithm drastically simplifies the choice of threshold value
for the final binary decision, since the values for the irrelevant
data have also a very small value, whereas this was a problem
in the previous method.
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Fig. 7. Distribution of EC
1 (open bars), which is a lower bound on the

minimal possible mixing strength, and EN
1 (solid bars), which is a better

estimate on the minimal possible mixing strength, in 30 real world datasets.

A further advantage of the MI methods compared to the cu-
mulant method is that the values for the dependency indicator
are more meaningful compared to the cumulants used in the
original ICAIVS implementation. For example, the values for
the MI can be used to rank the relative strength of the signals
and to use this in the decision process to add additional inputs
to the set of selected inputs. Such information could also be
used to provide guidance in further model development.
A disadvantage of the histogram based MI method is that it
still suffers from the curse of dimensionality in that high-
dimensional histograms have to be evaluated when subsets
of input variables are investigated. The GC method uses MI
estimation based on the Gram-Charlier polynomial expansion
of a PDF and hence this enables us effectively determine the
orders of input variables to include.
The LMMs introduced in this paper can be used to sys-
tematically quantify dependencies between signals from ICA
estimates of mixing matrices. The application of LLM to
several real world datasets demonstrates that ICA is a useful
preprocessing step.
While we demonstrated previously with artificial data that ICA
can prevent an overestimation of necessary input variables,
we show here that mixing between input variables is common
in real world datasets, as demonstrated in a number of real
world datasets. This indicates that ICA preprocessing is useful
in practice to isolate the ”true” statistically independent data
inputs from what can often be datasets with strong statistical
dependencies between inputs. It seems important therefore, to
ensure that preprocessing of data with ICA is available as part
of any tool kit, including data mining.
While completing this paper we became aware of a recent
paper by Chow and Huang [22] who developed a new MI
method for IVS based on similar points raised in this and
our previous paper, that a precise estimation of MI is not
necessary for a binary IVS decision step. This new method
seems specifically promising in overcoming the dimensionality
problem in MI estimation. Also, their IVS scheme includes the
evaluation of MI between input signals to prevent the inclusion

of highly redundant signals. This parallels to some extent the
effect of ICA preprocessing. The results shown in this paper
confirm that their approach should be highly relevant to many
applications.

REFERENCES

[1] Ron Kohavi and George H. John. Wrappers for feature subset selection.
Artificial Intelligence, 97(1-2):273–324, 1997.
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