
5 MLP

This chapter starts with a brief historical introduction to neural networks and the basic
perceptron, basically a neural network without hidden layers. We also discuss the
multilayer perceptron and training with gradient decent.

5.1 The historical threshold perceptron

There was always a strong interest of AI researchers in real intelligence, that is, to
understand the human mind. For example, both Alan Turing and John von Neumann
worked more directly on biological systems in their last years before their early passing,
and human behaviour and the brain have always been of interest to AI researchers.

Y

x

x1

2

w = 12

x x y
0
0
1
1

0
1
0
1

0
1
1
1

1 2

x1

x2

y

x =10

w x +w x = 1 21 2

A. McColloch-Pitts neuron (TLU)

w = 11

w = 10

B. Thruth table C. Graphical represenatation

-w 0

Fig. 5.1 Representation of the boolean OR function with a McCulloch-Pitts neuron (TLU).

A seminal paper, which has greatly influenced the development of early learning
machines, is the 1943 paper by Warren McCulloch and Walter Pitts. In this paper, they
proposed a simple model of a neuron, called the threshold logical unit, now often
called the McCulloch–Pitts neuron. Such a unit is shown in Fig. 5.1A with three input
channels, although it could have an arbitrary number of input channels. Input values
are labeled by x with a subscript for each channel. Each channel has also a weight

parameter,w
i

. The McCulloch–Pitts neuron operates in the following way. Each input
value is multiplied with the corresponding weight value, and these weighted values are
then summed. If the weighted summed input is larger than a certain threshold value,
�w

0

, then the output is set to one, and zero otherwise, that is,

y(x;w) =

⇢
1 if

P
n

i=0

w
i

x
i

= w

T

x > 0

0 otherwise . (5.1)

Note the notation for the function on the left hand side; it tell us that the output y
is calculated from the input x and that this function has parameters w listed after

MLP44 |

the semicolon. The right hand side then specifies this function. We can also write the
formula more compact as

y(x;w) = ✓(wT

x) (5.2)
where the function ✓ is called a threshold function of the Heavisde step function

✓(x) =

⇢
1 if x > 0

0 otherwise . (5.3)

The Heaviside step function is here first example of a non-linear function that trans-
formed the sum of the weighted input. This function is often called transfer function
or grain function in the neural network community.

The model above resembles, to some extend, a neuron in that a neuron is also
summing synaptic inputs and fires (has a spike in its membrane potential) when
the membrane potential reaches a certain level that opens special voltage-gated ion
channels. McCulloch and Pitts introduced this unit as a simple neuron model, and they
argued that such a unit can perform computational tasks resembling boolean logic.
This is demonstrated in Fig. 5.1 for a threshold unit that implements the Boolean
OR function. The symbol h is used in these lecture notes since the output of this
neuron represents the hypothesis that this neuron implements given the parameters w.
Also note that the non-linear step-function used in this neuron model corresponds to
hypothesis for classification.

The next major developments in this area were done by Frank Rosenblatt and his
engineering colleague Charles Wightman (Fig. 5.2), using such elements to build a
machine that Rosenblatt called the perceptron. As can be seen in the figures, they
worked on a machine that can perform letter recognition, and that the machine consisted
of a lot of cables, forming a network of simple, neuron-like elements.

The most important challenge for the team was to find a way how to adjust the
parameters of the model, the connection weights w

i

, so that the perceptron would
perform a task correctly. The procedure was to provide to the system a number of
examples, let’s say m input data, x(i) and the corresponding desired outputs, y(i). The
procedure they used thus resembles supervised learning. The learning rule they used
is called the perceptron learning rule,

w
j

:= w
j

+ ↵
⇣
y(i) � y(x(i)

)

⌘
x
(i)

j

, (5.4)

which is also related to the Widrow-Hoff learning rule, the Adaline rule, and the delta
rule. These learning rules are nearly identical, but are sometimes used in slightly
different contexts It is often called the delta rule because the difference between the
desired and actual output (difference between actual (training) data and hypothesis) to
guide the learning. When multiplying out the difference with the inputs results in two
product term, where the components are the values of nodes framing the connection.
A learning rule that depends on the activities of the pre- and post-synamptic neurone
is called a Hebbian rule. Thus the delta rule is a Hebbian rule (after the famous
NovaScotian Donald Hebb) which learned according to the desired output and unlearns
the actual output,

�w
j

/ (y(i)x
(i)

j

� yx
(i)

j

). (5.5)
In other words, the learning rule reinforces the correlation between the input and the
desired output and reduces the correlation between input and the actual output. Such

| 45The sigmoid perceptron

Frank Rosenblatt

Charles Wightman

Fig. 5.2 Neural Network computers in the late 1950s.

a learning rule is also called Hebbian . We will see later that learning rule as a special
case of a gradient descent rule for a linear hypothesis function. Although this rule is
not ideal for a perceptron with non-linear functions, it turned out that it still works in
same cases since it corresponds to taking a step towards minimizing MSE, albeit with
a wrong gradient.

There was a lot of excitement during the 1960s in the AI and psychology community
about such learning system that resemble some brain functions. However, Minsky and
Peppert showed in 1968 that such perceptrons can not represent all possible boolean
functions (sometimes called the XOR problem). While it was known at this time
that this problem could be overcome by a layered structure of such perceptrons (called
multilayer perceptrons), a learning algorithms was not widely known at this time. This
nearly abolished the field of learning machines, and the AI community concentrated
on rule-based systems in the following years.

5.2 The sigmoid perceptron

5.2.1 Derivation of the batch learning rule

The logistic perceptron is a specific model or parameterized hypothesis functions

given by

MLP46 |

y(x;w) =

1

1 + e�w

0
x

=

1

1 + e�
P

i

w

i

x

i

. (5.6)

A graphical representation of this model is shown in Figure 5.3A. This is a perceptron
which sums up the weighted inputs and puts the resulting value through the logistic
function

g(x) =
1

1 + e�ax+b

. (5.7)

We have included there the parameters a and b which determines the slope and offset
of this sigmoidal function. Some examples of this function with different values for
this parameter is show in Figure 5.3B. In the perceptron the slope parameter represents

ï� 0 �0

���

1

X

y
1+exp(-2x)

1+exp(-2x+3)
1+exp(-x)

1

1
1

Y

w = 12

x1

x2

y

x =10

w = 11

w = 10

g

A: Perceptron B: Logistic function

Fig. 5.3 A) Graphical representation of a perceptron with three input channels of which one is
constant. B) The logistic function with different slopes and offset parameters.

the weights for the different input channels, and the offset is represented by a weight
to a fixed input that is always set to 1. This little trick in representations simplifies the
notation considerably.

Supervised learning means that we are fitting this function to our data points of
the training set {x(i), y(i)}. The superscript (i) labels the individual training datum.
We do this by comparing the desired label y(i) with the label predicted by the model
y(x(i)

;w). Note the difference between these two y-values. The first is a given number
for each training datum, the other one is calculated from the feature values x

(i)

according to the model with for a given set of parameters w
The next step is to specify how we will search for good parameters. The first step

for this is to quantify how we measure a good fit. We chose here to measure this with
what we will call the objective function or error function. We choose this for now
to be the mean square error function

E(w) =

1

2N

X

i

⇣
y(i) � y(x(i)

;w)

⌘
2

. (5.8)

Using the 1/2 in this formula is pure convention. Note that this is a function of the
parameters as the output of our model represents depends on the weight values. The
minimum of this function correspond to the weight values that best describe the training
data. To find this minimum we use an iterative method called the gradient descent.
In this method we start with a guess of the weight values and improve our prediction

| 47The sigmoid perceptron

iteratively according to the change of the error function. More formally, the update of
the weight values is

w
j

 w
j

� ↵
@E

@w
j

, (5.9)

where ↵ is a learning parameter. We can now calculate the gradient in order to provide
a formula that can be implemented with Matlab. For this we have to recall two rules
from calculus namely that the derivative of an exponent function is

d

dx
xn

= nxn�1. (5.10)

The derivative of the Euler function is

d

dx
ex = ex, (5.11)

which means that this function at every point is equal to its slope. Finally we need the
chain rule

d

dx
f(g(x)) =

df

dg

dg

dx
. (5.12)

With these rule we get

@E

@w
j

=

1

N

X

i

✓
(y(i) � y(x(i)

;w))(�1) @y

@w
j

◆
. (5.13)

The derivative of our model with respect to the parameters is

@y

@w
j

=

@

@w
j

1

1 + e�
P

i

w

i

x

i

=

e�
P

i

w

i

x

i

(1 + e�
P

i

w

i

x

i

)

2

@
P

i

w
i

x
i

@w
j

. (5.14)

In the remaining derivative derivative over the sum only the term survives that contains
the w

j

. Hence this derivative is x
j

. We can also write the some other portion of this
equation in terms of the original function, namely

e�
P

i

w

i

x

i

(1 + e�
P

i

w

i

x

i

)

2

= y(1� y), (5.15)

and hence
@y

@w
j

= y(1� y)x
j

. (5.16)

We can now collect all the pieces and write the whole update rule for the weight values
as

w
j

 w
j

� ↵
1

N

X

i

⇣
(y(i) � y(x(i)

;w))y(x(i)

;w)(1� y(x(i)

;w))x(i)

j

⌘
(5.17)

The first part of in the sum is after called the delta term

�(x(i)

;w) = (y(i) � y(x(i)

;w))y(x(i)

;w)(1� y(x(i)

;w)), (5.18)

MLP48 |

or, if we write this without the arguments to better see the structure, it is

� = (y(i) � y)y(1� y) (5.19)

We can thus write the learning rule as

w
j

 w
j

+ ↵
1

N

X

i

⇣
�(x(i)

;w)x
(i)

j

⌘
(5.20)

5.2.2 Batch versus online learning rule

We have derived here the learning rule based on the mean square error over all the
training points. This corresponds to applying all the training examples and calculating
the average gradient before updating the weight values based on this average. This
is called batch training since we use the whole batch of training examples for each
weight update step.

In contrast, in class we have derived the learning rule for for one example. That
is, we could just apply one training tuple (x

(i), y(i) and calculate the gradient for this
point, and use this gradient to update the weight value after the application of each
data point. This is called an online learning since the idea is that we could use each
incoming data point for one update and don’t have to store anything. Of course, in
reality we want to do several iterations so that we have anyhow keep each training
point. This method is also called stochastic gradient descent is we assume that the
training points are randomly chosen.

(Include figure showing the difference)
What is the advantage or disadvantage of the different methods? The batch algo-

rithm is guarantied that the average training error goes down. So if you plot this curve
and you see that the training error is raising than there must be something wrong. In
contrast, when we change the weights based on the last training example it is expected
that the performance to the other training points get worse and we have to make sure to
keep the learning rate small. Note that we might at first think that making the average
training error small is hence much better, but also keep in mind that we are after good
generalization and that making the average training error very small might indeed lead
to overfitting. It is hence god to monitor the generalization (test or validation) error.
The advantage of the stochastic nature is that it is less likely to get stuck in shallow
areas of the error manifold. With big data it is now common to use a method with mini

batches in which we divide the data into small batches and use a stochastic gradient
over these sub batches.

5.2.3 The threshold perceptron

The original perceptron we discussed was a threshold perceptron that was based on a
grain function

g(x) =

⇢
1 if x > ✓
0 otherwise . (5.21)

We can not apply gradient descent directly to this function as it is not differentiable
at g(✓). Even if we take the left or right limit would not work as the gradient of g(x)

| 49Multilayer perceptron (MLP)

2

x2

1

03
2

x1

1
0

1

0.5

0

y

x
-1 0 1 2 3

y

0

0.2

0.4

0.6

0.8

1

Fig. 5.4 A) logist function versus threshold function. B) Logistic regression in two dimensional
feature space.

for x 6= 0 is always zero. However, we can see the the sigmoid function as a smooth
approximation of the step function.

We could however also think about just using a linear perceptron with transfer
function

g(x) = x, (5.22)

and just use a threshold function after training in a post processing step. The gradient
of the linear function is just x so that we end up with the perceptron learning rule as
originally stated.

5.3 Multilayer perceptron (MLP)
The generalization of a delta rule, known as error-backpropagation, was finally intro-
duced and popularized by Rumelhart, Hinton and Williams in 1986, although many
others including Paul Werbos and Sunichi Amari have used it before. This populariza-
tion resulted in the explosion of the field of Artificial Neural Networks.

A multilayer perceptron with a layer of m input nodes, a layer of h hidden nodes,
and a layer of n output nodes, is shown in Figure 5.5. The input layer is merely just
relaying the inputs, while the hidden and output layer do active calculations. Such a
network is thus called a 2-layer network. The term hidden nodes comes from the fact
that these nodes do not have connections to the external world such as the input and
output nodes. Instead of the step function used in the McCulloch-Pitts model above,
most such networks use a sigmoidal non-linearity,

g(x) = tanh(�x) = 2

1

1 + e��x

� 1, (5.23)

to allow for continuous values of the nodes. The network is thus a graphical represen-
tation of a nonlinear function of the form

y = g(wog(wh

x)). (5.24)

MLP50 |

1

1

n

x

y

y

h

2x

mx

ow w

Fig. 5.5 The standard architecture of a feedforward multilayer network with one hidden layer, in
which input values are distributed to all hidden nodes with weighting factors summarized in the
weight matrix wh. The output values of the nodes of the hidden layer are passed to the output
layer, again scaled by the values of the connection strength as specified by the elements in the
weight matrix wo.

It is easy to include more hidden layers in this formula. For example, the operation rule
for a four-layer network with three hidden layers and one output layer can be written
as

y = g(wog(wh3g(wh2g(wh1

x)))). (5.25)

Let us discuss a special case of a multilayer mapping network where all the nodes in
all hidden layers have linear activation functions (g(x) = x). Eqn 5.24 then simplifies
to

y = w

o

w

h3

w

h2

w

h1

x

= w̃x. (5.26)

In the last step we have used the fact that the multiplication of a series of matrices simply
yields another matrix, which we labelled w̃. Eqn 5.25 represents a single-layer network
as discussed before. It is therefore essential to include non-linear activation functions,
at least in the hidden layers, to make possible the advantages of hidden layers that
we are about to discuss. We could also include connections between different hidden
layers, not just between consecutive layers as shown in Fig. 5.5, but the basic layered
structure is sufficient for the following discussions.

Which functions can be approximated by multilayer perceptrons? The answer is,
in principle, any. A multilayer feedforward network is a universal function approx-

imator. This means that, given enough hidden nodes, any mapping functions can be
approximated with arbitrary precision by these networks. The remaining problems are
to know how many hidden nodes we need, and to find the right weight values. Also, the
general approximator characteristics does not tell us if it is better to use more hidden
layers or just to increase the number of nodes in one hidden layer. These are important
concerns for practical engineering applications of those networks. These questions are
related to the bias-variance tradeoff in non-linear regression as discussed later.

| 51Multilayer perceptron (MLP)

To train the these networks we consider again minimizing MSE which would be
appropriate for Gaussian noisy data around the mean described by the model. The
learning rule is then given by a gradient descent on this error function. Specifically,
the gradient of the MSE error function with respect to the output weights is given by

@E

@wout

ij

=

1

2

@

@wout

ij

X

k

(y

(k) � y)

2

=

1

2

@

@wout

ij

X

k

⇣
y

(k) � g(woutg(wh

x

(k)

)

⌘
2

(5.27)

Let’s call the activation of the hidden nodes yh,

y

h

= g(wh

x)). (5.28)

Then we can continue with our derivative as,

@E

@wout

ij

=

1

2

@

@wout

ij

X

k

⇣
y

(k) � g(wout

y

h

)

⌘
2

= �
X

k

g0(wh

x

(k)

)(y
(k)

i

� y
i

)yh
j

= �out
i

yh
j

, (5.29)

Eqn 5.28 is just the delta rule as before because we have only considered the output
layer. The calculation of the gradients with respect to the weights to the hidden layer
again requires the chain rule as they are more embedded in the error function. Thus
we have to calculate the derivative

@E

@wh

ij

=

1

2

@

@wh

ij

X

k

(y

(k) � y)

2

=

1

2

@

@wh

ij

X

k

⇣
y

(k) � g(woutg(wh

x

(k)

)

⌘
2

. (5.30)

After some battle with indices (which can easily be avoided with analytical calculation
programs such as MAPLE or MATHEMATICA), we can write the derivative in a form
similar to that of the derivative of the output layer, namely

@E

@wh

ij

= �h
i

x
j

, (5.31)

when we define the delta term of the hidden term as

�h
i

= gh0(hin

i

)

X

k

wout

ik

�out
k

. (5.32)

The error term �h
i

is calculated from the error term of the output layer with a formula
that looks similar to the general update formula of the network, except that a signal

MLP52 |
Table 5.1 Summary of error-back-propagation algorithm

Initialize weights arbitrarily
Repeat until error is sufficiently small

Apply a sample pattern to all input nodes: x
i

Propagate input through the network by calculating the rates of
nodes in successive layers l: yl

i

= g(
P

j

wl

ij

yl�1

j

)

Compute the delta term for the output layer:
�out
i

= g0(yout�1

i

)(ydesired
i

� yout
i

)

Back-propagate delta terms through the network:
�l�1

i

= g0(yl�1

i

)

P
j

wl

ji

�l
j

Update weight matrix by adding the term: �wl

ij

= ↵�l
i

yl�1

j

is propagating from the output layer to the previous layer. This is the reason that the
algorithm is called the error-back-propagation algorithm.

In this derivation we used the MSE over all the training patterns. Since all the
training patterns are used at once, this algorithm is called a batch algorithm. This is
generally a good idea, but it also takes up a lot of memory with large training sets.
However, we can also use a similar algorithm with one training pattern at a time. This
is called an online algorithm, and this algorithm is summarized in Table 5.1. Much
more common with large data sets are mini-batches as discussed later in more detail.

Such multilayer perceptrons were able to learn nonlinear relations in data and
had some success in application. However, the general problem of overfitting and the
question of optimality, and well as the applicability to large data problems with more
complex functions, has hampered the field since the early successes. This area of
artificial neural networks become now absorbed into the more general are of machine
learning with new methods that have clarified field and have led to more applicable
methods that we will discuss below. We therefore follow in the next sections a more
contemporary path.

Before leaving this area it is useful to point out some more general observations.
Artificial neural networks have certainly been one of the first successful methods
for nonlinear regression, implementing nonlinear hypothesis of the form h(x;w) =

g(wTx). The corresponding mean square loss function,

L /
�
y � g(wTx)

�
2

(5.33)

is then also a general nonlinear function of the parameters. Minimizing such a function
is generally difficult. However, we could consider instead hypothesis that are linear in
the parameters, h(x;w) = w

T�(x;, so that the MSE loss function is quadratic in the
parameters,

L /
�
y �w

T�(x)
�
2

. (5.34)

The corresponding quadratic optimization problem can be solved much more effi-
ciently. This line of ideas are further developed in support vector machines discussed
next. An interesting and central further issue is how to chose the non-linear function
�. This will be an important ingredient for nonlinear support vector machines and
unsupervised learning discussed below.

| 53Stochastic MLPs and Cross-Entropy Loss for sigmoidal classification

5.4 Stochastic MLPs and Cross-Entropy Loss for
sigmoidal classification

We have previously argued about the stochastic nature of the problem by building
specific parameterized probabilistic models. But what if we don’t know the functional
form of the underlying probabilistic nature and how do MLPs fit into this view.
Bayesian people would say that this must be suboptimal, so here we will relate this to
our of using neural networks. These learning machine do somewhat try to compensate
for the unknown by building large and encompassing functional models, in particular
when it comes to deep networks with a large number of parameters.

For a given set of parameters, such a model gives us a specific response to each
possible input. In order to make such a model stochastic we need to introduce some
stochastic component into the model. There are different types of generalizations of
such models. For example, we could include some noise into the response of each
node of the network or include stochasticities in the parameters (weight values) of the
model. In the past, different versions of stochastic gain functions have been used, and
drop-out, which sets the response of a node to zero in random trials is another more
recent example. With such stochastic modifications we get a model that represents a
density function p(ŷ|x).

Now we need a measure how good this model is in comparison to the true nature of
data that are described by the unknown density function q(y|x). One specific measure
of the distance or divergence between two probability distributions is given by the
Cross-entropy

H(p, q) = �
X

x

p(x) log q(x) (5.35)

In other words, this is the negative log probability of the given labels under the current
model. Since we want to maximize the probability of the data under the model, we
want to minimize the cross entropy. The cross entropy is related to the KL-divergence

by
H(p, q) = H(p) +KL(p||q), (5.36)

and since changing model parameters do not effect the true data, minimizing the cross
entropy is equivalent to minimizing the KL-divergence.

Let us apply this to binary classification model which is described by Bernoulli
variables that take the value 0 or 1. For this density function, the cross entropy is given
by

H(p, q) = �p(x = 0) log q(x = 0) +�p(x = 1) log q(x = 1)

= �p(x) log q(x)� (1� p(x)) log(1� q(x))

where p(x) is shorthand for p(x = 1). The natural way for a neural networks to
represent a Bernoulli variable is with a sigmoid output.

p(ŷ|x;w) = 1

1 + e�xw

(5.37)

1� p(ŷ|x;w) = 1 + e�xw � 1

1 + e�xw

=

1

1 + exw
(5.38)

MLP54 |

log p(ŷ|x;w) = � log(1 + e�xw

) (5.39)
(5.40)

Note that the output of the network is the probability of the label being y=1 and not
directly the label.

Maximizing the log-probability of the observed data is given by minimizing the
cross-entropy between the network output, p(ŷ), and the given labels, y, or mathemat-
ically minimizing the Loss function

L = �y log p(ŷ)� (1� y) log(1� p(ŷ)) (5.41)
= y log(1 + e�xw

) + (1� y) log(1 + exw) (5.42)
dL

d(xW)

= y
�e�xw

1 + e�xw

+ (1� y)
exw

1 + exw
(5.43)

= �y 1

1 + exw
+ (1� y)

1

1 + e�xw

(5.44)

= �y(1� p(ŷ)) + (1� y)p(ŷ) (5.45)
= �y + yp(ŷ) + p(ŷ)� yp(ŷ) (5.46)
= p(ŷ)� y (5.47)

For multi-class problems, the equivalent of the sigmoid is the softmax function

p(ŷ = i|x) = exWi

P
N

j=1

exWj

, (5.48)

where N is the number of classes. You can easily see the equivalence to the sigmoid
in the case of having two classes where one of them has input 0,

p(ŷ = 0) =

e0

e0 + exw
=

1

1 + exw
= 1� 1

1 + e�xw

p(ŷ = 1) =

exw

e0 + exw
=

exw

1 + exw
=

1

1 + e�xw

The derivation of the gradient for this multi class case works out to the same as the
binary classification,

dL

d(xW)

= p(ŷ)� y (5.49)

dL

dx
= (p(ŷ)� y)W

T (5.50)

dL

dW
= x

T

(p(ŷ)� y) (5.51)

