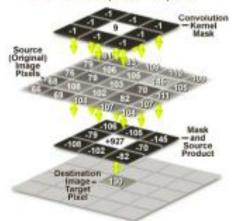
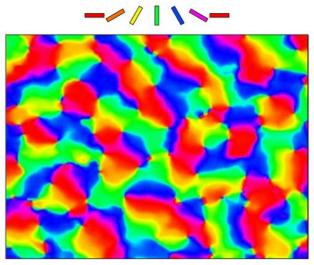

Convolutional Neural Nets

October 24, 2013

Convolution

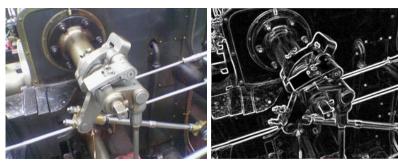


- Blur operation on 512×512 image of the moon's surface
- Matrix multiplication: 512² × 512² matrix
 ... 256GBytes of memory & 128GFlops:/
- Convolution (conv2): 9 × 9 "kernel" (aka "filter") & 20.25 MFlops


Intro

Convolution

The Convolution Operation Sequence



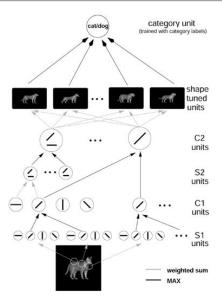
Orientation Maps

Miikkulainen, 2005

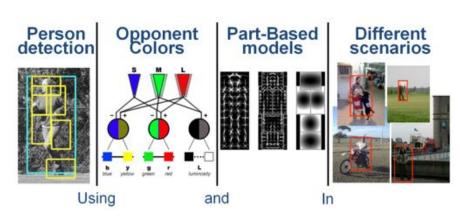
Edge Filters

Sobel

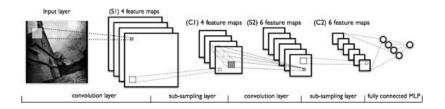
$$G_{x} = \begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -2 \end{bmatrix} \star A , G_{y} = \begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \star A$$
$$G = \sqrt{G_{x}^{2} + G_{y}^{2}}$$


Networks

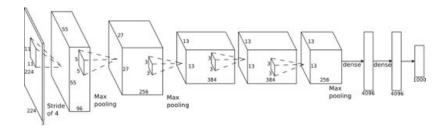
Filterbanks


Histogram of Oriented Gradients (HoG)

Biologically-inspired filters: HMAX

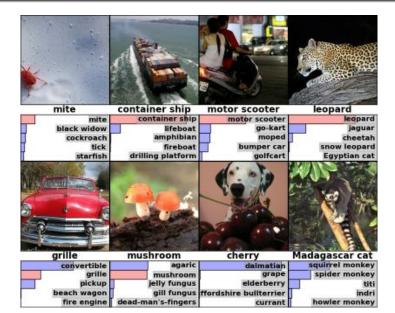

HoG + SVM

Dalal 2005


Multi-Layer Convolutional Neural Nets (MLCNNs)

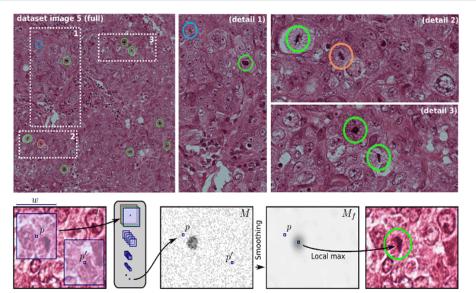
"The basic design principle is to reduce the number of free parameters in the network as much as possible without overly reducing its computational power. Application of this principle increases the probability of correct generalization because it results in a specialized network architecture that has a reduced entropy"

"LeNet" (LeCun 1989)


Winning the competition

Krizhevsky & Hinton 2012 LSVRC Challenge (1K classes, 1M images): ${\sf convolution} + {\sf ReLU} + {\sf max-pooling} + {\sf dropout} + {\sf transforms}$

"Trained with stochastic gradient descent on two NVIDIA **GPU**s for about a week ... 650,000 neurons, 60,000,000 parameters, 630,000,000 connections"


Object Recognition

+ Localization

Cancer Detection

Schmidhuber, MICCAI 2013 Grand Challenge on Mitosis Detection

Code

Matlab: https://github.com/rasmusbergpalm/DeepLearnToolbox

Python + CUDA: http://deeplearning.net/software/theano/

 $C++\ CUDA:\ http://code.google.com/p/cuda-convnet/$

Lua: http://www.torch.ch