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Abstract Dynamic neural fields have been used exten-
sively to model brain functions. These models coupled with

the mechanisms of path integration have further been used

to model idiothetic updates of hippocampal head and place
representations, motor functions and have recently gained

interest in the field of cognitive robotics. The sustained

packet of activity of a neural field combined with a
mechanism for moving this activity provides an elegant

representation of state using a continuous attractor net-

work. Path integration (PI) is dependent on the modulation
of the collateral weights in the neural field. This modula-

tion introduces an asymmetry in the activity packet, which

causes a movement of the packet to a new location in the
field. The following work provides an analysis of the PI

mechanism, with respect to the speed of the packet

movement and the robustness of the field under strong
rotational inputs. This analysis illustrates challenges in

controlling the activity packet size under strong rotational

inputs, as well as a limited speed capability using the
existing PI mechanism. As a result of this analysis, we

propose a novel modification to the weight combination
method to provide a higher speed capability and increased

robustness of the field. The results of this proposed method

are an increase in over two times the existing speed
capability and a resistance of the field to break down under

strong rotational inputs.
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Bubbles in the Brain!

In 2003, John Taylor wrote a commentary titled ‘‘Bubbles

in the brain?’’ [1] on some work one of the authors

[Trappenberg] did with a group at Oxford University [2, 3].
John had shown how dynamic neural field (DNF) models

as proposed and analyzed by Amari [4] can be related to

many brain functions such as learning somato-sensory
maps [5], learning orientation sensitivity in visual cortex

[6], and illusions in visual perception [7]. The work by the

Oxford group which John commented on proposed an
addition to the basic DNF model to incorporate the ability

to solve path integration (PI) [8]. The Oxford group related

this work to hippocampal representations of head direction
cells in [8], to place fields in [9], and to spatial view cells as

used in the groups modeling efforts [10]. The group also

applied this mechanism to motor learning to which John’s
comments were primarily directed.

John also wrote a foreword to the first edition of the
textbook ‘‘Fundamentals of Computational Neuroscience’’

[11] by one of the authors of this article, where he stressed the

importance of consciousness studies. Competitive mecha-
nisms as realized by DNF have been an important ingredient

in John’s thinking which he outlined in ‘‘The Race for

Consciousness’’ [12] based on his previous work with Taylor
and Alavi [13]. John’s commentary on bubbles in the brain

showed his enthusiasm for theories that solve important

information processing requirements, such as idiothetic
updates of internal representations, in the neural field con-

text. While the specific PI mechanism has demonstrated a

new concept with possible biological implementation, no
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attempt has been made to this day to optimize the perfor-

mance of this mechanism. In this paper, we propose an
optimized version of PI in dynamic neural fields.

Introduction

Wilson and Cowan introduced rate nodes as a mean field
approximation of spiking neurons [14] and combined them

with basic anatomical accounts of the cortex to develop a
model with local excitation and long-distance inhibition

[15]. Amari [4] simplified this model further and formal-

ized it as a field model and analyzed this model formally to
show possible solutions of the field. We are here specifi-

cally interested in solutions to the field equations with

spatially localized field activation called activity packets or
bubbles. Amari’s analysis was generalized to the case of

2-D fields by Taylor [16] that more closely resemble cor-

tical maps (but also see Doubrovinski and Herrmann [17]).
DNF theory has been used to describe many biological

phenomena in areas including visual cortex [18], the

superior colliculus in primates [19], spatial and episodic
memory [20], Hippocampus [8–10, 21] learning somato-

sensory maps [5], learning orientation sensitivity in visual

cortex [6], and illusions in visual perception [7]. More
recently, DNF models have been applied to non-biological

systems in robotic sensing, motion, navigation [22–24],

and cognitive robotics [23].
Dynamic neural fields are a type of recurrent neural

network with lateral inhibition that has the capability to

develop a localized area of activity (activity packet or
bubble) through external stimuli and maintain this local-

ized activity through local cooperation (excitation) and

global competition through inhibition. These fields are also
commonly referred to as continuous attractor neural net-

works (CANN), as they possess a continuous manifold of

point attractors, allowing for stabilization of noisy inputs
into a localized stable state over any node in the field [11].

The dynamics of the field are controlled by center surround

kernels, a weighting function that regulates long-distance
inhibition and short-distance excitation. This kernel func-

tion is typically described by a difference of Gaussians

commonly known as a Mexican hat function, or a Gaussian
radial basis function shifted by an inhibition constant.

These weights can be self-organized through Hebbian

learning [8, 9], which allows the training of nodes in the
field to encode a sensitivity to a set of features, for example

direction, based on external stimuli during training. This

sensitivity can be thought of as tuning curves, where a
specific node is sensitive to a specific external input.

Animals contain a sense of pose or direction, which

suggests that a representation is maintained in the brain that
is continually updated from visual or idiothetic cues. A

continuous attractor can encode a continuous value such as

head direction, or in 2-D, a position of the animal in a plane
[25]. To provide such functionality, however, the network

must be updated both through visual input and through

idiothetic cues such as angular velocities through the ves-
tibular system [25]. A common model proposed for head

direction [8, 25, 26] is through the use of a DNF where

each node in the continuum is sensitive or ‘‘tuned’’ to a
specific direction. This tuning sensitivity, in concert with

the dynamics of a CANN above, leads to the development
of localized activity, or an activity packet, that is located

over a particular portion of the field which is sensitive to

the current head location of the animal. Using the above
model, however, poses a challenge with respect to idio-

thetic input.

Self-directed movement of the activity packet caused by
angular velocities from the vestibular system requires a

mechanism for moving the field activity based on these

angular velocities. This poses a challenge with respect to
the existing DNF model. Amari [4] showed that in order to

provide a stable and static activity packet in the DNF

model, this packet must have symmetric excitatory inputs
from neighboring nodes. To provide a capability to move

this activity, asymmetries must be introduced into the

activity packet, modulated by a mechanism for integrating
the idiothetic input. This mechanism would allow for

control of not only the movement of the packet in a specific

direction, but also control over the speed of the movement.
Stringer et al. [8] have shown how asymmetric weights

can be learned and how to apply these weights in combi-

nation with the neural fields to introduce a mechanism for
PI. They used this mechanism to explain updating head

direction and place representations from vestibular signals

[8, 9]. This mechanism was also applied to motor control
[2], showing learning and stable reproduction of a motor

sequence. The PI mechanism as applied in these examples

was used to demonstrate the functionality of motor control,
but no experimental analysis of the behavior of this

mechanism was conducted.

The goal of this work is to illustrate the results from an
analysis of the PI mechanism and show limitations caused by

the method of combining the field and PI weights. These

limitations result in instability of the field under strong
rotational input and limited range of speed for the packet

movement. We propose an alternate method for combining

symmetric and asymmetric weights to yield more stable PI
over a larger speed range as compared to the original

mechanism. In addition, Stringer et al. [2] introduced a sta-

bilization mechanism, referred to as NMDA stabilization,
which is examined in more detail as a mechanism to coun-

teract noisy or partially learned field weights. We will show

that the proposed weight combination and use of NMDA
stabilization will provide a more robust implementation of PI
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which allows a wider speed range and resistance to break-

down of the field due to activity packet growth.

Dynamic Neural Fields and Path Integration

This section briefly outlines the basic PI mechanism based

on the DNF model, where the neural field h(x, t) describes
the activity at location x at time t. These neural fields are

governed by the dynamic equation

s
ohðx; tÞ

ot
¼ %hðx; tÞ þ

Z

y

wðx; yÞrðy; tÞdyþ Iextðx; tÞ; ð1Þ

where w(x, y) are the synaptic weights between node x and

node y, r(y, t) is the firing rate of the field at location y

rðx; tÞ ¼ 1

1þ e%bðhðx;tÞ%aðxÞÞ;
ð2Þ

and Iext(x, t) is the external input to the field at time t.s is

a time constant, and the constants b and a describe slope

and the offset of how the field h is related to the firing
rates r. We are specifically interested in solutions of this

system with stable localized activity packets that can
encode and even memorize a pose of a system such as

head directions, or in 2-D, a location on a plane. These

fields are often approximated with discrete nodes that are
labeled with index i, which in turn is related to the field

location by

x ¼ iDx: ð3Þ

A 1-D network of such pose cells is shown in Fig. 1.

This model is organized as a ring; therefore, the boundaries

of the field are at 0 and 2p. The weights between these pose
cells can be learned by Hebbian learning [8],

~wðx; yÞ ¼
Z2p

0

rðx% xpÞrðy% xpÞdxp; ð4Þ

based on Gaussian radial basis function training patterns

centered around the preferred direction, xp,

rðx% xpÞ ¼ e%ðx%xpÞ2=2rr
2

: ð5Þ
This preferred direction, xp, can be seen as the direction

at which the node represents, or the direction ‘‘tuning

curve.’’ To implement the periodic boundaries, we replace
the distance between x and xp with,

jx% xpj ! min jx% xpj; 2p% jx% xpjð Þ: ð6Þ

Finally, we use a scaled and shifted version

wðx; yÞ ¼ Awð~wðx; yÞ % CÞ ð7Þ

of this symmetric weight kernel between the pose cells,

where C is a inhibition constant, and Aw is a scaling factor

for the pattern, depending on the strength of the training
pattern, and the learning rate [11].

Path integration requires the integration of the neural

activity from rotation cells, as shown in Fig. 1, to shift the
neural activity packet. Rotation cells, denoted by rrot, were

proposed by Skaggs et al. [27] as an additional set of cells

that control the movement of the packet through preferen-
tial synaptic connections for clockwise and anti-clockwise

directions. These nodes provide preferential connectivity of
clockwise and anti-clockwise rotation nodes, resulting in

modulation of the collateral connections in the field based

on the firing rates of the rotation nodes. These nodes rep-
resent the vestibular input, where the firing rate of the

rotational node is directly proportional to the angular

velocity. This modulation in effect introduces an asym-
metric connectivity between pose cells, allowing the packet

to move. More specifically, the model shown in Fig. 1 as

proposed by Stringer et al. [8] proposes a modulatory
influence from rotation nodes on the pose cell connectivity,

which is equivalent to a sigma-pi network [8] as described

by

s
ohðx; tÞ

ot
¼ %hðx; tÞ þ

Z

y

weffðx; y; rrotÞrðy; tÞdy; ð8Þ

where weff(x, y, rrot) are the effective weight kernels, which
describe the effective connectivity between the pose nodes.

This kernel combines the rotation weights, rotation node

firing rates, and the existing field weights. The specific form
chosen by Stringer et al. for this weight combination is,

Fig. 1 The model for path integration showing a 1-D manifold of
pose cells with collateral connections (such as cells encoding head
directions). The rotation nodes signal rotation velocities proportional
to their activity, which is propagated through synapses to modulate
the activity of the field, causing an asymmetry in the activation, and
moving the activity packet
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weff
ij ¼ wij

X

k

1þ wrot
ijk rrot

k

! "
; ð9Þ

where rk
rot is the clockwise and anti-clockwise rotation node

firing rates. The rotation weights are learned with a Hebbian
rule for the rotation node connectivity, incorporating a

historical trace or ‘‘short-term memory’’ of previous
movement during training. This trace allows for the

association of the movement of the activity packet with

the firing of the appropriate rotation node. Hebbian learning
of the rotation weights using a trace for association of

movement with rotation node firing rates is given by,

dwrot
ijk ¼ !ri!rjr

rot
k ; ð10Þ

where !r is the trace of previous activity

1=g
o!ri

ot
¼ %!riðtÞ þ riðtÞ: ð11Þ

The g term controls the amount of influence earlier
movements of the activity packet have on the synaptic

weights, and can be used to increase the effective asymmetry

of the neural field. This trace provides a short-term history of
the activity packet movement, which is associated with the

firing of the rotation cells and the movement of the activity

packet using (10), where ! is a learning rate.
Earlier work with path integration models [28] was

centered around the idea of pre-specified weights, specified

during the development of the field. Indeed, some current
applications of path integration for RatSLAM [29] robotic

navigation have implemented pre-specified translation of

the activity packet to ensure stable performance of the
system over a widely varying set of speeds. The work by

Stringer et al. [8] showed a method of learning based on a

history of movements. This history provides both an ability
of the system not only to learn from a short-term history or

memory, but also to allow the encoding of specific motions

in the movement model itself, rather than just generic
motion. The learning of these asymmetries, as outlined

above, provides the ability for a PI system to learn a

temporal sequence of movements, as illustrated in [2].
To provide a stable activity packet, the DNF weights

must provide symmetrical recurrent input. In cases of

partial or noisy training, this may not be the case, where
improper or inconsistent weights can cause asymmetries.

These asymmetries can cause the packet to drift, therefore

not providing a stable solution for a memory of an encoded
feature, such as a direction. To counteract these stability

issues, a nonlinear activation method proposed by Stringer

et al. [8] has been applied to the activity of the pose cells.
This proposal considered that the nonlinear activation

could be implemented biologically through the effects of

voltage dependent ion channels, such as NMDA receptors.
When neurons are at rest, these receptors are blocked by

magnesium ions and are inactive. An increase in the

membrane potential of the neuron will remove this block,
allowing the neuron to fire under lower stimulus input for

subsequent time steps. Using a nonlinear activation such as

NMDA receptors results in a group of neurons which can
be activated with lower stimulus at time t ? 1 if they were

active at time t. The NMDA stabilization provides a

resistance of the activity packet to move due to noisy
weights by boosting the previous activity of the field. This

method can be implemented in the model through the
variation of an offset in the sigmoid activation function,

depending on the field activity in the previous time step.

The offset for the sigmoid activation function in Eq. 2 is
described by,

ai ¼
ahigh if ri\c:
alow if ri' c:

#

where c is a firing threshold to activate the NMDA sta-

bilization, and ai is the offset that is applied to activation

values being input into the sigmoid. This method has the
effect of boosting the activation of the nodes in the field

which were firing above the threshold in the time step

before and therefore causes an effective strengthening of
the recurrent input to the nodes that are active. As PI

requires a stable set of field weights, the qualities of

NMDA stabilization are attractive in cases of noisy field
weights or irregular training.

Analysis of Path Integration Methods

Analysis Model

The following analysis was based on the DNF/PI model

above. The field was implemented as a ring, using periodic
boundaries. This field was discretized using 360 nodes,

each corresponding to one degree of head direction. The

field was set to a moderate level of inhibition C = 0.5, and
kernel weights for each node were trained using a Gaussian

radial basis function, where the mean is the preferred

direction, and r = 2p/18. For training the rotation weights,
using trace learning a window size (g) of 0.2 was used

along with a learning rate (!) of 0.1.

The activity packet encodes the pose or position of the
system; therefore, the question is how to decode this

position from the activity. A simple max decoding scheme,

where the node corresponding to the maximal activity is
selected, can be incorrect due to small fluctuations in the

activity packet. These fluctuations in the size and shape of

the packet can cause drastic shifts in the selected node.
Furthermore, this decoding mechanism does not take into

account the contribution of the surrounding nodes. To

correct for these decoding limitations, a center of mass
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calculation is used. This population decoding method is

described by,

CoM ¼
X

i

riiDx ð12Þ

where i is the index of the pose node, and ri is the activity

at node i. One challenge of this method of decoding for
fields with periodic boundaries is calculating the center of

mass when the activity packet is spanning the boundary.

Simply applying the method above results in an incorrect
calculation of the center of mass. To compensate for the

boundaries, the activity packet is translated to the center of

the field where no activity crosses the boundary, then the
center of mass is calculated. The reverse translation that

was applied to the activity packet is applied to the center of

mass, resulting in the center of mass of the packet that is
spanning the boundary.

To illustrate the difference between the decoding

methods, consider Fig. 2. In this simulation, a subset of the
weights were underdeveloped, having peaks that were

slightly lower than the other kernel weights in the field.

When the bubble travels over these weights, it causes an
unintended change in shape of the activity packet. Using

max activity decoding, however, results in the pulsing

behavior seen in Fig. 2a, where the activity packet appears

to slow down and then speed up, showing inconsistent

speed over that area of the field. Using a center of mass
calculation considers the entire activity packet, rather than

just the node with maximum activity, therefore does not

exhibit the sensitivity to the change in shape of the packet.
This can be seen in Fig. 2b, where the speed is consistent

throughout the simulation.

For each simulation, the field was stimulated through
external input to develop an activity packet at pose node

180. Once this has been formed, the external input was
removed and the PI mechanism would be used to control

the movement of the packet. This model was developed for

the MATLAB" environment, using the ‘‘ode45’’ differen-
tial equation solver to compute activity of the field which is

a non-stiff solver using the Runge–Kutta algorithm. Fur-

thermore, results were verified using other ode solvers
available through MATLAB". For speed tests of the

activity packet, the difference between the previous posi-

tion and the current position was compared at each time
step, taking into account the boundary conditions of the

field. To examine the stability of the field, the simulation

would increase the rotation rate input over time, causing a
ramp up in the activity packet speed during the simulation.

Training

A challenge to DNFs and PI is the creation of perfectly

symmetric states to sustain a stable activity packet. As
already addressed by Zhang [21], noise in the weights

would cause drift of the activity packet, thereby deterio-

rating the pose memory. To provide the perfect symmetry
in these weights, the fields should be trained carefully,

considering every node for the same amount of time. This

allows for a fully symmetrical set of synaptic weights to be
formed. These ideal learning conditions are not always

present, which can lead to underdeveloped synaptic

weights over parts of the neural field or noisy weight
kernels as illustrated in Fig. 3. The noisy or incomplete

training of the field weights can result in unwanted asym-

metries in the activity packet, causing the packet to drift
without rotational input. This effect is illustrated in Fig. 4,

where the activity of the field drifts due to noisy weights

without external stimuli or PI.
In the case where incomplete training results in under-

developed weights, the result is a point attractor network.

This network will consist of a series of point attractors,
which correspond to the pose nodes with the most devel-

oped weights. When an activity packet is formed, it will

drift to the nearest pose node with fully developed weights,
and then settle over this pose node. Figure 5 illustrates the

point attractor effect, where a simple DNF of 100 nodes

was developed to show the effect of noisy weights. In this
plot, a simple DNF was developed and trained with 10 sets

Fig. 2 Illustration of the population decoding differences for max
versus center of mass decoding. Using max activity decoding (a) over
undeveloped weights results in an inconsistent speed calculation of
the activity packet due to changes in shape of the packet. Using center
of mass decoding (b), the speed calculation is consistent over the field
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of fully developed weights spaced equally throughout the
field. To plot the point attractor effect, 100 simulations

were run, one for each node, where input was provided into

each pose node of the field and the movement of the

activity packet recorded. The composite plot in Fig. 5 was

developed over time to show the point attractor effect,
where each trace in the plot is the movement of the activity

packet formed over each pose node. These traces show the

activity packets formed over each node converging to the
closest point attractor.

As noted above, to provide a stable neural field for path

integration, a stable, non-drifting activity packet, and
therefore, symmetrical neural field weights are required.

Symmetrical weights can be developed through careful
training where each node is considered with the same

inputs and for the same time. If this is not possible, then a

stabilization mechanism such as the NMDA stabilization
which is considered in this work can be used to counteract

the effect of asymmetrical or noisy weights.

Maintaining Appropriate Inhibition During Weight

Combination

The inhibition of the DNF is critical to ensure that a stable

activity packet is formed. As each node is fully connected

to all other nodes, distance-dependent excitatory input is
provided to all nodes when a particular pose node is

excited. The inhibition in the field counteracts this effect,

resulting in a single, localized packet of activity. In the
case where the inhibition is insufficient or absent, this

results in the uncontrolled growth of the activity packet,

and a decrease in the utility of the field as it would become
fully excited [4]. A careful maintenance of inhibition is key

to both DNF and PI, to prevent an unstable state of the

network where the activity packet grows uncontrolled. The
key to any weight combination method for PI is to combine

the weights in a meaningful way that allows for an asym-

metry in the activity packet, while maintaining the inhibi-
tion at a rate where the packet size remains stable.

The existing method for weight combinations in Eq. 9

uses the addition of a constant to allow for the resulting
effective weights to maintain inhibition, therefore main-

taining some stability. This addition of a constant is

required as the rotation weights have a minimum value of
zero (Fig. 6), therefore do not contain inhibition. The

multiplication of the DNF weights which include inhibition

and PI weights which do not would result in an effective
weight kernel which does not contain any inhibition. This

loss of inhibition results in the field moving to a stable state

of full activation. The addition of the constant to the
rotation weights allows the inhibition to be maintained

during the multiplication of the weights; however, it also

has the undesirable effect of increasing the amplitude of the
weight kernel. This increase in amplitude increases the

amplitude of the neural field kernel, which will lead to

activity packet growing due to the limit of the sigmoid
activation function and eventually breaking down. Any

Fig. 5 The centers of mass for activity packets formed from partial
training, resulting in a point attractor type field, where only 10 node
weight kernels were fully developed

Fig. 3 Comparison of kernel weights for node 50, showing the
typically symmetrical weights that the fields are trained on, and the
same weights with noise added

Fig. 4 Surface plot of the field activity for a simple, 100 node neural
field when noisy weight kernels are used. The asymmetries caused by
the noisy weight kernels causes drift in the activity packet, resulting
in inconsistent activity in the field
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alternative method for weight combination must seek to
minimize the growth of the activity packet, while main-

taining the inhibition to ensure that the packet remains

stable.
As noted above, the combination of weights and rotation

rates for path integration are multiplicative; therefore, they

run the risk of increasing in amplitude to orders of mag-
nitude larger than the neural field weights. This increased

amplitude due to rotational input causes a growth in the

activity packet width, which if uncontrolled, can result in
an inability of the field to maintain a localized solution of

pose as the maximal activity is over a large area. Figure 7

illustrates this, where under a low rotational input, there is
a noticeable increase in the activity packet width. This

effect can also cause an unstable growth in the network

during PI, resulting in a growing packet which eventually
saturates the field. Figure 8 illustrates this effect, where

rotation rates are increased to illustrate the growth of the

activity packet.

To provide control of the activity packet size during PI,
a method to control the amplitude of the effective weight

kernel is required. One possible technique would be to

apply a normalization to stabilize the amplitude of these
weights, when used after the rotation weights and rates are

combined with the neural field. Using the existing weight

combination method, however, the normalization does not
have the desired effect. Consider the combination of the

rotation rate and synaptic weights (Fig. 6). The PI rotation

weights have no inhibition (negative component); there-
fore, a positive constant (1) is added to the result of the

weights multiplied by the rotation rates in Eq. 9 to main-

tain the fields inhibition during the weight combination.
This has the effect of amplifying the positive weights

further, while leaving the inhibition at the same rate. When

the scaled rotation weights are combined with the field’s
weights through multiplication, the inhibition is maintained

at the fields rate; however, the excitation (positive) portion

of the activation is scaled up. A simple normalization of
these resulting activations to a range that is equivalent to

the field’s rates will shrink the peak, but it will also

decrease the inhibition, effectively shifting up the kernel.
As the rotation strength increases, eventually the inhibition

is decreased to approach zero. The decreased inhibition

causes growth of the activity packet, eventually causing the
field to be fully excited and break down.

Proposed Modifications to Path Integration

Alternative Weight Combination Methods

The current weight combination method, as outlined in

Eq. 9, introduces specific characteristics to the path inte-
gration mechanism which can be limiting in applica-

tion. The goal of this work is to examine alternative

weight combination methods to provide a more robust

Fig. 6 Comparison of neural field kernel and rotation synapse
weights. The rotational synaptic weights, which have a minimum
value of 0, require care when combining multiplicatively with the
kernel weights, to ensure that the inhibition is not removed from the
field. Without this inhibition, the weights would result in a growing
state where the entire field becomes excited

Fig. 7 Illustration of the activity packet using PI with a low
rotational input between t = 200 and 600, showing that even under
low rotational input, the activity packet will increase in width, due to
the high activation rates

Fig. 8 Comparison of activity packet size under differing rotation
rates, showing the effective growth of the activity packet under strong
rotational input. This growth eventually leads to an uncontrolled
excitation of the field
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implementation of the path integration method which

provides more stability in the kernel weights, while
increasing the overall range of speeds of the path integra-

tion with respect to rotational input. Specifically, we would

like to find a method which controls the growth of the
activity packet, limits any instabilities caused through

learning, maintains the required inhibition in the field, and

increases the overall speed range of the rotational input.
In this section, we propose a new method of combining

the rotation weights and kernel weights, to eliminate or
greatly limit the effects noted above, while maintaining or

improving the effectiveness and computational tractability

of path integration. The weight combination mechanism
(Eq. 9) uses a multiplicative combination of the synaptic

rotation weights, the firing rate of the rotation node, and the

collateral weights of the neural field. As noted in
‘‘Dynamic Neural Fields and Path Integration’’ section, this

combination causes a very rapid growth of the activity in

the field and amplifies any inconsistencies in the rotational
weights caused by the trace learning.

Trace learning results in a set of synaptic weights that

are slightly skewed from the overall kernel weights in the
neural field. This slight distortion, when combined with the

neural field weights, results in a skew of the weight kernel

in the appropriate direction. As the goal of the weight
kernel is to cause an asymmetry in the activity packet, rules

which increase this skew will increase not only the overall

top speed at which the activity packet will move, but also
the sensitivity of the asymmetry to input from the rotational

nodes.

The proposed method is a modification of Eq. 9 to use
the addition of the neural field kernel weights with a shifted

version of the rotational weights trained from Eq. 11 and

scaled by the rotation speed. This method is described by

weff
ij ¼ wij þ

X

k

ðwrot
ijk % lÞrrot

k ð13Þ

where wij
eff is the effective neural field weights from i to

j, wij is the neural field kernel weights, wijk
rot is the trained

rotational synaptic weights, and rk
rot is the rotational syn-

aptic strength. Any value of the inhibition constant l can

be subtracted from the weight kernel, as long as this value
maintains the overall inhibition of the field at an appro-

priate rate. We use in the following work the mean of the

rotational synaptic weight for modeling; however, biolog-
ical implementations would likely use adaptive mecha-

nisms to maintain the inhibition. This method removes the

multiplication of the neural field and rotational weights,
while still maintaining inhibition in the resulting effective

weight kernel, through the subtraction of the mean value

for the kernel. The training of both the neural field and the
rotational synaptic weights is identical, and normalization

is applied to regularize the weights.

Results

Weight Combination

Through addition rather than multiplication of the weights,
the overall asymmetry of the kernel is increased, which is

illustrated in Fig. 9. The addition supports the widening of

the kernel, specifically on the appropriate side of the
required rotation allowing more recurrent input to distort

the activity packet, thereby moving the bubble in a more

efficient manner than the multiplicative method. The
existing weight combination method (Eq. 9) amplifies the

distortion at high weight values (e.g. near the center of

mass), but maintains a narrow profile for the weights
(Fig. 9a). The modification of the effective weight kernel

allows for a finer control of the activity packet speed,

which results in a larger range of speeds for a given set of
rotation strengths. The addition further has the effect of

increasing the amplitude of the activity at a much slower

rate as seen in Fig. 9 which, when run through a sigmoidal

Fig. 9 Comparison of effective weight kernels of node 180 for
counter clockwise rotation of a 1-D field. Plotted together (a), the
amplitude difference between methods is shown, where the existing
method grows rapidly, resulting in rapid growth of the activity packet
leading the field to be fully excited. When scaled together and with
inhibition removed, the differences in the kernel weights become
more apparent, where the proposed method contains more skew in the
counter clockwise direction (left), allowing more recurrent input in
the activity packet, creating the desired asymmetry. This is illustrated
in b, where a portion of the weights have been magnified to view the
weight differences
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activation function such as Eq. 2, results in a narrower

activity packet, and extends the intensity of rotational input
that can be maintained by the field before an uncontrolled

growth of the activity packet.

The movement speed of the activity packet is controlled
through the asymmetries in the effective weight kernel.

This speed, which can be increased by increasing the

asymmetry, has an asymptotic speed limit and can be noted
in Fig. 10. As noted above, the proposed method for weight

combination results in a wider, more asymmetrical input to
the field, thereby allowing for a higher maximum speed as

well as a wider range in inputs from the rotational nodes as

shown in Fig. 10b.
Figure 10 compares the movement speeds of both the

existing weight combination method (a) and the proposed

new weight combination method (b). These methods were
compared by increasing rotational input to the fields on

kernels trained using different training speeds. The training

speeds are defined by the rate of movement that is shown to
the trace during training, therefore allowing the trace to

learn that a given movement and rotation rate input covers

a larger area of the field. The goal of this figure is to
illustrate the difference in speeds across different training

rates, as well as the stability of the field to high rotational

input. As illustrated in Fig. 10b, the proposed method
achieves a higher overall speed of more than two times the

existing method. Furthermore, the proposed method shows

a higher speed range for the same set of rotational inputs,
allowing for more robust control of the activity packet

speed. Through the additional rather than multiplicative

combination of the synaptic weights with the field weights,
the proposed method shows a higher resistance to the

breakdown of the field due to growth of the activity packet,
resulting in stability over higher rotational inputs. This

effect is illustrated in Fig. 10, where the field breaks down

under increasing rotational input (a). This breakdown in the
field is prevented in (b), showing increased stability over

(a). The improvements from the proposed weight combi-

nation method can be noted in Fig. 10, where the speed of
the activity packet for fast training (32) shows the

exceeding the size of the field at rotation rate input [37.

This high speed results in a wrapping effect in the figure,
while still showing stable activity.

NMDA Stabilization of Path Integration

Finally, we want to demonstrate that NMDA stabilization

is an effective stabilization technique for path integration.
Intuitively, the nonlinear activation using thresholds allows

for an added level of resistance to movement or ‘‘stiffness’’

in the activity packet. This resistance is defined by the
sigmoid thresholds ahigh and alow. In the case of a noisy

kernel, which results in an activity packet that drifts,

this stabilization results in a fully stable activity packet.
Figure 11 illustrates this stabilization effect, showing the

activity when trained with noisy input, causing drift in the

packet (a). The NMDA stabilization dampens the noise
sufficiently to maintain a stable activity packet, as shown

in (b).

As noted in ‘‘Dynamic Neural Fields and Path Integra-
tion’’ section, partially developed weight kernels can result

in a point attractor network, as illustrated in Fig. 5. For

partially developed weight kernels, a high value of ahigh

reverses the point attractor behavior of the field; however,

this value creates some ‘‘stiffness’’ to the mobility of the

activity packet, requiring strong input at alternate locations
of the field to form a new activity packet. Figure 12 shows

the effect of NMDA stabilization using a value of

ahigh = 10 for the nodes with an activity under the
threshold on the partially trained field in Fig. 5 which

resulted in a point attractor. Using NMDA stabilization

results in a reversal of the point attractor behavior, allow-
ing for stable activity across the field.

In consideration of path integration, NMDA stabiliza-

tion is effective at stabilizing the field during movement, as

Fig. 10 Comparison of existing weight combination method (a) and
the proposed weight combination method (b).This comparison
illustrates the higher top speed insensitivity to the spiking behavior,
higher overall speed, and stability under a larger range of rotational
inputs
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well as when the rotation nodes are not firing. This allows
for a stabilization of the activity packet from drift when not

moving, but also smoother movement of the activity packet

when trained on noisy weights. Figure 13 illustrates the
smoothing effect. The field was trained on noisy weights,

causing both drift in the activity packet when at rest, but

also inconsistent movement of the activity packet when
rotational input is applied (Fig. 13a). In the figure, rota-

tional input was applied from t = 100 to 500 and shows

that the packet was stabilized both when rotational input
was applied, and also when the rotational nodes were at

rest (Fig. 13b).

This form of stabilization requires an increase in the
rotation input to control the activity packet. This is a side

effect of the resistance of the activity packet to move due to

stabilization. This increased input is offset by the utility of
the stabilized packet, as it shows stability from drift and

consistent movement of the activity packet when a rota-

tional input is supplied.

Discussion and Outlook

The preceding work is a result of an analysis of the existing
path integration method proposed by Stringer et al. [2] and

Fig. 11 Comparison of the effects of nonlinear activation through the
application of a firing rate-dependent threshold. a The asymmetrical
activity packet which resulted from noisy weights in Fig. 3, and b, the
result of using non-linear activation to dampen the drifting through
boosting the most active neurons

Fig. 12 Comparison of the effects of nonlinear activation through the
application of a firing rate-dependent threshold on the partially trained
network shown in Fig. 5. The result of using nonlinear activation with
a high ahigh value (10) to dampen the point attractor effect through
boosting the most active neurons, which effectively counteracts the
point attractor effect

Fig. 13 Comparison of the effects of nonlinear activation through the
application of an firing rate-dependent threshold on a field trained
with noisy input which is used for path integration (a) a high ahigh

value (10) to dampen noise effects. The asymmetries introduced
through the noise in the weight training results when no rotational
input is supplied (t = 0–100, t = 500–1,100) and inconsistent
movement when PI is applied (t = 100–500). The application of
NMDA (b) dampens the effect of drift and allows for stable path
integration speed
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considers issues of performance and stability. This work

explored the boundaries of the performance of the path
integration system, with respect to training speed and

rotational input. Through the characteristics noted above,

most were traced back to the method that the synaptic
weights from the rotation nodes and the field weights were

combined. Issues discovered in ‘‘Dynamic Neural Fields

and Path Integration’’ section included noisy or partial
training, the rapid growth of the activity packet, and the

low speed range of the field to rotational inputs.
Partial or noisy training for path integration also has a

large effect in the movement of the activity packet, there-

fore causing instability of the motion and the field. These
instabilities result in a drifting packet when no rotational

input is supplied to the field, and also inconsistent move-

ment of the activity packet during movement. The appli-
cation of a nonlinear activation method for the field results

in a stabilization of the rates in the field, which in turn

results in not only a removal of drift in the activity packet,
but also stable movement of the activation when rotational

input is applied. Although this method has the desirable

quality of resisting noise and incomplete training, it also
will limit the competition effect of the field. The selection

of the threshold as well as the offsets ahigh and alow is

critical to ensure that these values resist the drift in the
field, while allowing for the formation of a new activity

packet at a different area of the field. These thresholds will

be application dependent, in consideration of the maximum
activation of the field, as well as the level and amplitude of

noise in the weights. Using path integration with NMDA

stabilization requires higher rotational input due to the
stiffness of the field, however, as path integration involves

the combination of weight kernels between the field and

rotation weights, this causes a smoothing effect for noisy
weights. Due to this effect, the value of ahigh can be low-

ered, therefore lowering the required rotation input for the

packet movement.
The rapid growth of the activity packet was caused by

the method at which the weights were being combined. The

multiplication of the weights caused a rapid increase in the
amplitude or intensity of the excitatory weights; however,

it did not conversely increase the width or skewness of the

distortion of the packet. This behavior results in a rapid
increase in the activity of the field, but not a proportional

rapid increase in the speed of the bubble movement

through skew in the weight asymmetry, or sensitivity to
rotational input. This mechanism, combined with the sig-

moid activation function, resulted in the rapid width

increase in the activity packet, thereby increasing the col-
lateral excitatory input given to other nodes in the field. As

this excitatory input increased, the field was driven to an

overall higher state of activity, eventually resulting to the
entire field being excited and breaking down. Although it is

ideal to consider normalization to correct this, the rapid

amplitude increases resulted in normalization decreasing
the inhibition, unfortunately causing the very effect we

were trying to prevent.

The proposed weight combination rule allows for a more
robust implementation of the weight combinations for path

integration. This robustness is shown in a higher overall top

speed, a greater dynamic range for control of the activity
packet through rotation rates, and a more robust control of

the activity packet size. Computationally, this method
reduces a complex convolution of weights to a simple

addition, which increases the computational tractability of

the rule when extended to multiple dimensions.
For modeling human or animal behavior, this method

provides a technique for better control of the activity

packet size and therefore stability of the simulations. For
non-biological applications (e.g. robotics), this method

allows for a faster movement of the packet based on input

and a more consistent movement of the packet. For
example, the head direction model in rodents could be

extended to develop a gyrocompass functionality in a

robot. To illustrate, consider an environment where a
compass is not a reliable sensor, such as an area of high

iron content, or potentially an area where magnetic fields

are unpredictable (e.g. arctic environments). Through the
use of a dynamic neural field using path integration, and a

simple sensor which can output rotational speeds, this

model could be used to integrate accelerations in a stable
manner to produce a simple gyrocompass. Extended to

2-D, path integration allows for navigation; however, it

requires fine and stable control of the field for integration
of low-level accelerations. The proposed kernel not only

offers a stable solution to the path integration models for

animals, but could also be applied to other model tasks
where a high stability and better control is required.

As noted in the current work, the inherent speed limit in

the movement of the bubble is directly related to the
asymmetry in the activity packet in the field. This asym-

metry is controlled through the synaptic weights that are

used to modulate the shape of the activity packet. In this
study, the weight kernels applied were learned through

self-organization and resulted in slightly skewed versions

of a radial basis function. These weights were highly
similar to the learned weight kernels of the neural field. In

order to influence the speed and dynamic range of the

activity packet with respect to rotational input, alternative
kernels which increase the skewness of the packet could be

considered. These kernels could increase the skewness to

resemble an ex-Gaussian rather than a Gaussian distribu-
tion, using the long tail of the ex-Gaussian to influence the

excitatory influence of the field. Furthermore, this could be

a contrived kernel designed specifically to achieve a spe-
cific goal, potentially resembling a time varying gain curve.
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Further work on path integration should consider the

influence of these types of kernels, specifically for the role
of non-biological implementations of neural fields for

topics such as robotic navigation.

The different kernel functions can also be related to
different types of learning. The trace rule is an effective

method for self-organizing the synaptic weights for mod-

ulating the collateral weights in the neural field. This
method uses exponential decay of the trace, which rapidly

limits the influence of previous actions of the activity
packet in time. This decay rate is an area where further

work should be dedicated, to consider potential other

methods of decay, such as a stretched exponential, or a
linear decay, to potentially increase the skewness of the

synaptic weights, allowing for even finer control of the

activity packet.
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