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Abstract

A hypothesis on the function of the basal ganglia was recently proposed
based on reinforcement learning, however, only at conceptual level [1].
Our ongoing project is to quantify this hypothesis in cooperation with
the experiment of reward-modulated activities of caudate neurons by
Kawagoe et al. [2]. This paper, as our initial e�ort, aims to summarize the
followings: (1) predictions of experimental results drawn from a minimal
model, (2) comparison between these predictions and currently-obtained
experimental results, (3) some extensions of a minimal model, (4) the
requirement for further experimental and computational studies.

1 Introduction

Inspired by the experiment on dopaminergic (DA) neurons in the substantia

nigra pars compacta (SNc) [5], a recently-proposed hypothesis on the basal

ganglia[1, 3, 4] is that the spiny neurons (Sps) in the striatum perform rein-

forcement learning based on the actor-critic scheme by use of a prediction error

carried by DA neurons in the SNc (see Figure 1a). This hypothesis, however, is

not yet quantitatively examined, particularly with respect to neural activities

in the striatum. Our ongoing project is, based on this hypothesis, to have a

quantitative analysis of neural activities in the striatum in cooperation with

the ongoing experiment of reward-modulated neural activities in caudate (CD)

nuclei (a part of the striatum) of monkeys by Kawagoe et al. [2]. In the fol-

lowing we �rst brie
y introduce the experiment in [2] and outline some of their

currently obtained results. Second, to start a quantitative analysis of those we

introduce a minimal model based on the above hypothesis and state predictions

given by this model. Third, we show that several modi�cations of the minimal

model can explain some additional details of the experimental results. Finally,

we discuss the requirements for experimental and computational studies for

further quantitative investigations.
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Figure 1: Model architecture of the caudate-SNc loop. Cortical neurons are

denoted by c, spiny neurons by Sp, dopaminergic neurons by DA, and the

subthalamus by ST.

2 Reward dependent caudate activities

Kawagoe et al. [2] have studied the activity pattern of Sps in CD in a memory-

guided saccade task with several reward conditions. In each trial, one of four

possible target locations was randomly illuminated for a short duration, and

a monkey was required to saccade to the memorized target when the �xation

point was removed. In each block of trials, a successful saccade to all of four

possible targets was rewarded with liquid in ADR condition. In exclusive-1DR

condition, only one of four targets comes with a reward, and in relative-1DR

condition, one of four comes with a bigger reward than the other three targets.

Kawagoe et al. [2] found a variety of neural activity patterns in these di�erent

reward conditions. Most salient results are (1) that many Sps in CD showed the

biggest response for rewarded directions in each block of all four possible targets

in exclusive-1DR and (2) that the reversed behavior of (1) was also observed,

that is, some Sps responded increasingly only for the non-rewarded direction.

Let us call such Sps of (1) and (2) reward-dependent (R-dependent) Sps and,

particularly, such Sps of (2) reversed Sps for convenience. The activities of

R-dependent Sps were also consistent in ADR in that the enhancement or

suppression of responses occurred with all the rewarded directions. We will

mention further details of results in [2] during the course of this paper.

3 Towards a quantitative description

In this section we �rst see our minimal model based on the hypothesis discussed

in the introduction (see Figure 1a for the scheme of this hypothesis) for an

analysis of results in Kawagoe et al. [2]. A simpli�cation we made in our

minimal model is to neglect the subthalamic (ST) loop, which is suggested to

convey information of the predicted value of the previous states to the DA as

in the temporal di�erence (TD) learning framework [3]. Even though that is



very helpful for delayed reward in general, we neglect it in our minimal model

because there is not much delayed reward aspect nor varying timing of reward

in the experiments of Kawagoe et al [2]. Also, our minimal model is just a

linear perceptron for sake of simplicity. Then, provided a cortical input vector

x, the output, y, of the Sp in CD can be given by

y =
X
j

!jxj ; (1)

where ! denotes the cortico-striatal synaptic e�cacy (weights).

The Sp project in an inhibitory way to a DA in the SNc, which will also

receive an excitatory input r related to the physical liquid reward. These two

inputs, y and r, determine the output r̂ of the DA at the dopamine receptors

of the Sp,

r̂ = (r̂0 + r �

X
i

vi yi)�(r̂0 + r �

X
i

vi yi): (2)

This rule di�ers from the one in [1] only slightly in that we restricted r̂ to

positive values with the step function � and included r̂0 to represent a constant

background activity of DA. The cortico-striatal weights are only changed if the

dopamine level is di�erent from this constant background amount according to

!
new
ij = !

old
ij + �(r̂ � r̂0)xi; (3)

where � is a learning rate. Note that we do assume here for simplicity that the

timing of the reward is synchronized with the arrival of cortical activity.

3.1 The basic predictions of the minimal model

A major aim of this paper is to outline the basic predictions of this minimal

model. We start here with the additional simplifying choice of using orthog-

onal input vectors representing the targets. The simulation of two blocks in

exclusive-1DR is shown in Figure 2 (a & b), where we used input vectors which

have an entry 1 for the illuminated location and 0 otherwise (e.g. x = (0; 1; 0; 0)

for the target at location j = 2) and used the reward value r = 1 for a rewarded

direction. The curves for the Sp activity of the model (Figure 2a) are similar,

as a �rst approximation, to typical R-dependent Sp activities (not reversed

ones) in [2]. The DA activity (Figure 2b) for an unexpected reward is large

and converges to the background activity once the conditioning is established,

which is in general agreement with cell recording data from Schultz et al. [5].

When the amount of reward is varied in exclusive-1DR, the saturated Sp

response of the minimal model is linearly proportional to that amount, sim-

ply because the increase of Sp response stops when it correctly predicts this

amount, i.e. y = r (Figure 2c). We can not quantify this relation directly with

the data in [2] since we do not have a direct measure for the reward input to

DAs, r, but only indirectly as the amount of liquid in the experiment. How-

ever, the magnitude of r is expected to monotonically increase as the amount
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Figure 2: Simulated Sp and DA responses (rewarded as solid and non rewarded

as dotted lines) in exclusive-1DR by the minimal model. (a,b) 2 blocks with

100 trials with orthogonal input vectors. (c) 1 block of 200 trials only for

rewarded direction, superimposed for di�erent reward values r between 0 and

1 with �r = 0:25. (d) Same as (a) with partial overlapping input vectors.

of liquid increases in a certain range, which was also generally consistent in

exclusive-1DR [2]. Then, the prediction of the minimal model should be a

monotone relation between R-dependent Sp activity and the amount of liquid

for exclusive-1DR and also for ADR and relative-1DR. However, this does not

seem to hold for some data of the relative-1DR experiments and should be

investigated further.

3.2 Partial overlapping input vectors

The choice of orthogonal input vectors seems rather special. Hinted by the

topographical organization of the cortical areas that also have a topographical

projection to CD, one way to relax orthogonal condition is to introduce partially

overlapping input vectors, while the input vectors are still separable by our

perceptron model (eq. 1). The example of such input vectors used in this study

is

x
j
i =

8<
:

1 if i = j

0:5 if i = j � 1

0 elsewhere

with i = 0; :::; 5 (4)

where j = 1; :::; 4 denotes four possible targets.

Figure 2d Shows the Sp responses with these input vectors in the same

setting as of Figure 2a. Note that 
uctuation of Sp responses in Figure 2d is

induced by the overlapping components of input vectors for di�erent directions.

The data in [2] do show 
uctuations, and it should be explored if some parts

of those 
uctuations can be related to overlapping input vectors.
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Figure 3: Some varieties of Sp activities in the model simulations. (a) Critic

cell with small learning rate for ; (b) Critic cell with small initial weight to

rewarded target; (c) Actor cell with reverse input.

3.3 Including multiple Sps

The minimal model with a single Sp and DA can be extended to include several

Sps and DAs as shown in Figure 1b. Here, we only discuss the case of several

Sps and one DA. Note that we have included synaptic weights v for the Sp-DA

projections in Figure 1b. This architecture does include critics and actors only

in the sense that actors do not contribute to the reward prediction and can be

simulated by zero weights to the DAs. There are di�erent ways to combine the

predictions (outputs) of di�erent critic Sps. In the following we used simply a

geometrical average of Sp predictions by setting vi = 1.

We showed a typical response of R-dependent (not reversed) Sps by the

minimal model in Figure 2a. A variation, however, exists in the degree of such

enhancement for rewarded targets in Kawagoe et al. [2], though the response

for rewarded targets was still the biggest in each block. There are several

ways to achieve such responses in our model including (1) varying learning

rates for some synapses, (2) varying the initial synaptic strength, (3) varying

the magnitude of input, and (4) limiting the range of synaptic strength. We

demonstrated the �rst two scenarios in Figure 3 (a&b) with a setting similar to

the �rst block in Figure 1a except that we let r = 2 and included a second Sp

(critic node with a unit projection to DA). The learning rate of the synapse for

the target in Sp2 was smaller than other synapses of Sp1 and Sp2 in Figure 1a,

whereas the initial value of the same synapse in Sp2 was smaller than others in

Figure 3b. Both modi�cations result in a weakened activity (y < 1).

As mentioned in Section 2, Kawagoe et al. [2] found the reversed Sp behavior

which enhanced their activity only for non-rewarded targets. This behavior

can be simulated with a minimal model by treating such a Sp as an actor.

We demonstrate this in Figure 3c with an actor cell (no projection to DA)

which receives reverse input 1 � x. This reversed response is very interesting

to consider as actor in relation to the direct and indirect pathways scheme

of the basal ganglia. In this scheme, the inhibition of Sps in CD results in

facilitating movement in the direct pathway, whereas the excitation of Sps

results in suppressing movement in the indirect pathway. Then, it is intriguing

to ask whether the reverse Sps are related to the direct pathway.



4 Discussion

Based on the actor-critic hypothesis of the basal ganglia, this paper has outlined

a minimal model which can be compared to the experiments on spiny (Sp)

neurons in the caudate (CD) of monkeys under various reward conditions by

Kawagoe et al. [2]. We �rst demonstrated that our minimal model exhibits a

typical reward-dependent behavior of Sps found in [2] with qualitative feature

resembling dopamine (DA) neuron responses in SNc similar to that found in [5].

We also outlined some extensions to capture more details of their exper-

imental data, necessary for a more quantitative analysis. It was shown that

some overlaps in the cortical input representation lead to 
uctuations in Sp re-

sponses and we also noted that various patterns of reward-dependent responses

found in [2] could be realized by considering several modi�cations such as dif-

ferent learning rates and initial preferences in synaptic projections. It was also

possible to show reversed Sp response by simple modi�cations of the minimal

model.

Many important questions remain to be investigated experimentally and

computationally. The relation between DA responses and physical rewards

should be quantitively investigated in the on-going experiments. It should be

noted that a monotone relation between Sp responses in CD and the physical

rewards seems not to hold in relative-1DR in the preliminary experiments. We

need more experiment data, which are under way. Also, we should explore

di�erent models of several Sps, e.g., competitive scheme between Sps. We

pointed out that reverse Sp responses may work as actor particularly in the

direct pathway. A further experimental and computational analysis is required

to relate their responses with behavior, or saccades. This paper only treated one

DA but the e�ects of multiple DAs (see Figure 1b) on reinforcement learning

in CD should be investigated with di�erent models of Sp-DA projections.
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