
CSCI 4155/6505 (2018)
Machine Learning

Thomas P. Trappenberg
Dalhousie University





Acknowledgements

These lecture notes have been inspired by several great sources. I would specifically

like to acknowledge the influence of Andrew Ng’s lecture notes on earlier versions of

this manuscript, as well as the teaching material from the NVIDEA Deep Learning

Institute.

There are now a variety of excellent books on the theory of machine learning that

I would like to recommend for further readings. This includes the by Introduction

to Machine Learning by Ethem Alpaydin, 2nd edition, MIT Press 2010, and Pattern

Recognition and Machine Learning by Christopher Bishop, Springer 2006. The stan-

dard book on RL is Reinforcement Learning: An Introduction by Richard Sutton and

Andrew Barto, MIT press, 1998. The standard book for AI, Artificial Intelligence:

A Modern Approach by Stuart Russell and Peter Norvig, 2nd edition, Prentice Hall,

2003, does also include some chapters on Machine Learning.

The most in-depth book on probabilistic machine learning is likely the book by

Kevin Murphy, Machine Learning: A Probabilistic Perspective, MIT Press, 2012. The

great book onDeepLearning is the book by IanGoodfellow,YoshuaBengio, andAaron

Courville, MIT Press, 2016. These are two books that are invaluable for researchers in

machine learning.

Several people have contributed considerably to this lecture notes. In particular I

would thank Paul Hollensen, Patrick Connor, and Hossein Parvar. And finally I would

like to thank my students who took my classes over the last several years and have

challenged me to think deeper about the machine learning.



Preface

Machine learning has recently made a big splash, both in research and in industrial

applications. Although many of the machine leaning ideas have been around for many

years, the latest breakthrough is based on several advancements. One of them is

the availability of large datasets with labeled data, another is the availability of fast

specialized processors such as GPUs. I would like to add that the progress is also

fueled by a deeper understanding and some new techniques that brought it all together.

There are now several great books on machine learning which include probabilistic

approaches, deep learning and Bayesian modeling. So why another one? The main

reason is that I believe this book can fill a gap based on the style of books I like.

More specifically, I tried to emphasize what seems to be sometimes two opposite ends

of machine learning, Bayesian modeling and deep learning. Second, I like to keep

things short and on to the point; this is in particular important to keep in mind when

using the book. I tried to be brief while still going into some depth. How can this

work? The way I tried to approach this is to discuss minimal models and examples that

show the essence of the ideas behind machine learning approaches. At the same time

I always try to give an outlook to further concepts and tricks. I assume that readers are

mature enough to consult other resources for further studies. I do not claim to cover

all details of machine learning, but my hope is to provide the fundamentals for a good

understanding and further studies.

Another emphasis of this book is to provide a diverse view of machine learning

in combining deep learning and probabilistic modeling. These areas are sometimes

viewed as opposite poles. However, I would like to argue that both approaches are

important, that both approaches have specific strength in specific application areas,

and that both approaches can even be combined. Furthermore, we will also mention

some older machine learning techniques such as support vector machines and decision

trees. While these approaches are considered shallow with respect to deep learning,

they have still important practical applications which should not be forgotten. While

we will not dive deep into the theory of these traditional methods, studying this book

should also give some theoretical background to be a ble to follow more specific

literature on these models. s



Contents

1 Introduction 1

1.1 The basic idea behind supervised Machine Learning 1

1.2 Mathematical formulation of the supervised learning

problem 5

1.3 Applied Learning: Training, validating and testing 8

1.4 Non-linear regression and high-dimensionality 12

1.5 Deep learning 15

1.6 No free lunch and choice of models 18

2 Scientific programming with Python 20

2.1 Programing environment 20

2.2 Basic constructs 20

2.3 Cross validation example from Intro 25

2.4 Code efficiency and vectorization 27

2.5 Data handling 28

2.6 Programing style 30

3 Machine learning with sklearn 31

3.1 Classification of Iris data with SVM and RF 31

3.2 Performance measures and evaluations 33

3.3 Overlapping Gaussians 35

3.4 Support Vector Machines (SVM) * 37

3.5 Decision Trees and Random Forrest * 48

3.6 Feature Selection, Dimensionality reduction, t-SNE 49

4 Regression and optimization 51

4.1 Linear regression and gradient descent 51

4.2 Error surface and challenges for gradient descent 53

4.3 Advanced gradient optimization (learning) 56

4.4 Regularization: Ridge regression and LASSO 59

4.5 Nonlinear regression 63

5 Basic probability theory 66

5.1 Randomnumbers and their probability (density) func-

tion 67

5.2 Moments: mean, variance, etc. 68



Contentsviii |

5.3 Examples of probability (density) functions 71

5.4 Some advanced concepts 73

5.5 Density functions of multiple random variables 77

6 Probabilistic regression and classification 82

6.1 Probabilistic models 82

6.2 Learning in probabilistic models: Maximum likelihood

estimate 85

6.3 Probabilistic classification 87

6.4 MAP and Regularization with priors 90

7 Generative Models 93

7.1 Modelling classes 93

7.2 Supervised Gaussian model: Discriminant analysis 94

7.3 Unsupervised example: K-means clustering 96

7.4 Mixture of Gaussian and the EM algorithm 98

8 Bayes Nets: Multivariate causal modelling 102

8.1 Causal models 102

8.2 Discrete probabilistic modeling in Python using LEA 105

8.3 Naive Bayes 106

9 MLP 108

9.1 Neurons and the threshold perceptron 108

9.2 Sigmoidal perceptron and the delta learning rule 110

9.3 Multilayer perceptron (MLP) 114

9.4 A letter recognition example 119

9.5 Probabilistic and Stochastic Neural Networks 119

10 DeepLearning 123

10.1 Filters and 1d convolution 123

10.2 2-d convolution and image processing 125

10.3 Convolutions with tensors 127

10.4 CNN 129

10.5 Tensorflow 131

10.6 Representational learning and compression 131

10.7 Denoising autoencoders 133

11 Recurrent Neural Networks 135

11.1 Sequence processing 135

11.2 Gated RNN 138

11.3 RNN with external memory 140

11.4 The Boltzmann machine 140



| ixContents

12 Reinforcement Learning 148

12.1 Learning from reward and the credit assignment prob-

lem 148

12.2 Model-based Reinforcement Learning 152

12.3 Model-free Reinforcement Learning 157

12.4 Deep Reinforcement Learning 162



1 Introduction

1.1 The basic idea behind supervised Machine Learning

Machine Learning is literally about building machines that can learn and after learning

perform specific tasks. We will encounter several forms of learning, but for the most

part we consider supervised learning. In supervised learning we show a variety of

examples together with the desired response of a specific task to a learning machine

from which the machine should learn to perform an appropriate response for new

examples. Inunsupervised learningwe show themachine exampleswithout examples

of an appropriate response. The reason for this type of learning is usually to find some

regularities in the data and to learn to represent data. Unsupervised learning is often

combined with some form of supervised learning. A slightly more general form of

supervised learning is reinforcement learning where a teacher gives some feedback

on the goodness of the answers provided by the learner but the learner has to discover

appropriate actions itself. While we will encounter all these different type of learning

in this book, understanding supervised learning is the basic on which all the other

learning methods build. We will hence start with this type of machine learning.

In machine learning we are trying to solve problems with computers without

explicitly programming them for a specific tasks. We will still need to program the

learning machine, but this is somewhat more general than coding logic for a specific

problem. Programming general learning machines instead of specific solutions to a

problem is desirable specifically for tasks that would be difficult to program. A classic

example that we will discuss in some length is character recognition; writing a program

that can translate a visual representation of a character, say the letter A, to the meaning

such as representing this letter as the ASCII string 1010101010 is not easy when

considering all the shapes and styles that this character can take. Some related tasks

form computer vision are shown in Figure 1.1.

Machine Learning might sound like a niche area in science and you might wonder

why there is now so much interest in this discipline, both academically and in industry.

The reason is that Machine Learning is really about modelling data. Modelling is the

basis for advanced object recognition, data mining, and ultimately intelligent systems.

Machine Learning is the analytic engine in areas such as data science, big data, data

analytics and to some extend to science in general in the sense of building quantitative

models.

Machine Learning has a long history with traces far back in time. Alan Turing

was probably one of the earliest thinkers in the field of AI. One of the first recognized

exciting realizations of the promise of learning machines came in the late 1950s and

early 1960s with work like Arthur Samuel’s self-learning checkers program and Frank

Rosenblatt’s perceptron. Arthur Samuel devised a program with some form of rein-

forcement learning that ultimately learned to outperform its creator. Frank Rosenblatt



Introduction2 |

Fig. 1.1 Typical examples where deep learning has been instrumental in practical applications

such as letter and object recognition, and image restorations. Figure from NVIDIA DLI teaching

kit.

set much of the foundation of neural networks and even started to build neural network

computers, the Mark I Perceptron. Neural networks have been popularized again in

the 1980s with a strong influence by David Rumelhart. Many leading figures in Deep

learning have started in this era, including Geoffrey Hinton, Yoshua Bengio, Yann

LeCun, Jürgen Schmidthuber to name a few. We will discuss how we are now in an era

of ‘Deep Learning’ with important recent developments that are mostly the reason for

the popularity of Machine Learning today. However, much of the progress of machine

learning and their scientific embedding is due to probabilistic methods and statistical

learning theories, for which we need to mention some pioneers like Vladislaw Vapnik

and Judea Pearl. Indeed, the development of statistical machine learning and Bayesian

networks has influenced the field strongly in the last 20 years and has been essential

in much of its progress as well as in the deeper understanding of machine learning.

This course will hence introduce these more general ideas for a more thorough theo-

retical underpinning. Finally, we will also discuss the important area of reinforcement

learning where Richard Bellman has contributed important work already in the mid

1950s.

We will discuss how basic supervised learning resembles statistical regression.

However, there are several aspects of machine learning that go beyond the scope of

this traditional statistical approach. In particular, machine learning is usually concerned

with high dimensional problems where many factors have to be incorporated into a

model. Furthermore, a lot of emphasis is given to methods that can handle nonlinear

data. Also, as already mentioned before, there are other forms of Machine Learning

such as unsupervised learning in which the machines have to find some structure in the



| 3The basic idea behind supervised Machine Learning

Fig. 1.2 Some pioneers of Ai and Machine Learning. From top-left to right bottom: Alan Turing,

Arthur Samuel, Richard Bellman, Frank Rosenblatt, David Rumelhart, and Judea Pearl.

data. We will discuss later how unsupervised learning has been a central factor in the

development of deep networks and which also underlies important application areas of

machine learning such as some form of cluster analysis and dimensionality reduction.

Also, the area of reinforcement learning describes situations in which the machine

has to find appropriate actions based only on some form of feedback on the value

of a state reached by a series of actions. A great example of the recent progress in

reinforcement learning is the ability of a computer to learn to play video games. Video

games from the old Atari platform have indeed become a useful paradigm for a new

class of benchmarks that go beyond classical data sets for machine learning from the

UCI machine learning repository that have dominated the benchmarks in the past.

Atari games are somewhat slightly simplified worlds but resemble more learning in

environments that humans have to figure out. In these benchmarks only visual input

is given made up of the computer frames of the video game, and feedback is only

provided with how well the player did in the game. Success in this areas was also made

very visible when Google DeepMind challenged the best players of the Chinese board

game Go. Go was considered to be a real challenge for AI systems as it is considered

to rely a lot on ‘gut feelings’ rather quantifiable strategies. It was hence a huge success

that computers which only reached levels of an advanced beginner a few years ago

would win the world championship in the spring of 2016.

There are several aspects of deep learning that make this area very exciting. One

aspect is that it enables representational learning, which can be seen as the foundation

of much of the recent progress. A good summary of the evolution of machine learning

is shown in Fig. 10.8. While traditional rule based artificial intelligence relied on hand-

designed programs such as programming specific rules for inference, classic machine

learning tries to find (learn) the mapping between an input and desired output. A smart

feature selection and good hand-crafted representations were essential at this time for



Introduction4 |

good results and much of a machine learning course would talk about this. However,

we are now seeing increasingly the emphasis on end-to-end solutions where a whole

tasks are learned from sensory information which includes the discovery of appropriate

hierarchical representations.

Fig. 1.3 Evolution of machine learning systems (from Goodfellow, Bengio, Courville 2015).

Deep learning is now a very important part of machine learning which we will

focus on after introducing the basis of machine learning in more general terms. A

deeper understanding of machine learning requires, to some extend, an understanding

of data modelling in a wider context. This includes the importance of a probabilistic

framework to formulate the problems and solutions. A course on machine learning

also needs to include an overview of some traditional methods such as support vector

machines, classification trees, and clustering methods. Applying machine learning

methods is often easy in principle and difficult in practice. That is, there are now many

tools available with which Machine Learning implementation can be programmed in

a few lines of code. However, the correct application of these methods in practice

requires some care, experience, and a deeper understanding of the underlying issues.

Therefore, our approach will be to explain some of the basic ideas of supervised

learning first. This includes the introduction of some basic concepts such as knowing



| 5Mathematical formulation of the supervised learning problem

the difference between a training set, a validation set is, and a testing set, and how

cross-validation can be used for hyperparameters optimization.

Fig. 1.4 Supervised Learning Frameworks.

In the second chapter we learn how to apply such methods with some program-

ming frameworks. Fig. 1.4 list some of the common Machine Learning frameworks.

We will be using the Python programing language together with some machine learn-

ing libraries, in particular sklearn and tensorflow. The next several chapters explore

the principle behind supervised learning in the form of regression and classifications.

We thereby switch frequently between a functional and a probabilistic framework.

A refresher on the basic probability formalism is included in the third chapter. The

following chapters outline some of the fundamental ideas behind probabilistic ma-

chine learning and some important Machine Learning algorithm including supervised

and unsupervised learning, and issues beyond regression and classification such as

dimensionality reduction and variable selection. The second half of the course is ded-

icated to neural networks and deep learning. This includes convolutional networks,

autoencoders, and various recurrent networks. These subjects will be discussed with

the tensorflow framework. The last section will be dedicated to (deep) reinforcement

learning.

1.2 Mathematical formulation of the supervised learning

problem

Much of what is currently most associated with the success of machine learning

is supervised learning, sometimes also called predictive learning. The basic task of

supervised learning is that of taking a collection of input datax, such as the pixel values

of an image, some measured medical data, or robotic sensor data, and predicting an

output value y such as the name of an object in an image, the state of a patient’s health,

or the location of obstacles. It is common that each input has many components, such

as many millions of pixel values in an image, and it is useful to collect these values in a

mathematical structure such as a vectors in one dimension, a matrix in two dimensions,

or generally in a tensor for higher dimensions. We often refer to Machine Learning

problems as high-dimensional which refers in this context to the large number of

components and not the dimension of the input tensor.



Introduction6 |

At this time we use the mathematical terms of a vector, matrix and tensor mainly

to signify a data structure. In a programming context these are more commonly de-

scribed as 1, 2 or 3-dimensional arrays. The difference between arrays and tensors (a

vector and matrix is in some sense a special form of a tensor) is, however, that the

mathematical definitions also include rules how to calculate with these data structures.

This manuscript is not a course on mathematics; we are only users of mathematical

notations and methods. Mathematical notation help us enormously to keep the text

short while being precise. We follow here a common notation of denoting a vector,

matrix or tensor with bold faced letters, whereas we use regular fonts for scalars. We

usually call the input vector a feature vector as the components of this are typically

a set feature values of an object. The output could also be a multi-dimensional object

such as a vector or tensor itself. Mathematically we can denote the relations between

the input and the output as a function

y = f(x). (1.1)

We consider the function above as a description of the true underlying world, and

our task in science or engineering is to find this relation. In the above formula we

considered a single output value and several input values for illustration purposes,

although we see later that we can extend this readily to multiple output values.

Before proceeding it is useful to clarify our use of some term feature. These

values, which often represent measured data in machine learning are sometimes called

attributes. The term feature is then usually used in a lightly more general context

as it could also include derived values such as a function of attributes or learned

representations. This strict distinction is usually not necessary for our purpose so that

our use of the term feature includes attributes.

The challenge for machine learning is to find this function or at least to approximate

it sufficiently. Machine learning has several approaches to deal with this. One approach

that we will predominantly follow for much of the course is to define a general

parameterized function

ŷ = f̂(x;w). (1.2)

This formula describes that we make a parameterized hypothesis in which we specified

a function f̂ that depends on parameters w to approximate the desired input-output
relation. This function is called a model:

A model is an approximation of a system to study specific aspects of the system

and to predict novel behaviour

This often means that not all of the underlying world has to be captured in depth.

For example, a building engineer might make a model of a bridge to tests its static

without including the ascetic aspects that an architect might emphasize in a model. In

our context the word model is synonymous with approximation. Note that we have

indicated that this model is an approximation of the desired relation by using a hat

symbol above the y and the f . However, we frequently drop the hat symbol when the

relation is clear from the context.

In the context of machine learning, a model typically includes parameters so that

their presence is synonymous with a model. The parameters are specified in this

function by including the parameters, which we often specify as vector w, behind

a semicolon in the function arguments. A more appropriate mathematical statement



| 7Mathematical formulation of the supervised learning problem

would be that the formula defines a set of functions in the parameter space. Learning

is the challenge to find the values for the parameters that best describe the data. Finding

these parameters is usually done with a learning algorithm. A common way of such

a learning algorithm is to define a function that describes our goal of learning, such

as minimizing the number of wrong classifications. We will call this function the

loss function L, although other terms are sometimes used in the literature such as

objective function, error function, or risk. A common algorithm to minimize such a

loss function is to use an algorithm called gradient descent that is an iterative method

over the training data and that changes the parameters along the gradient �L of the
loss function,

wi ← wi − �∇L (1.3)

where � is called the learning rate and ∇ is the Nabla operator which signifies the

gradient. This is a typical learning algorithm to find the parameters of a model based

an example data. We elaborate on this algorithm later.

While the gradient descent can find parameters to minimize the loss of the training

data, our real goal is to find the values ofw that best predicts data that has not been seen

before. Just describing the training data is somewhat more like a memory, but being

able to generalize is the main goal of machine learning. Hence, a good solution of the

machine (model) learning problem is represented by a point in the parameter space that

approximates best the true underlying world. However, since we usually don’t know

the true underlying world we estimate how good this model is by evaluating how good

new predictions are.

In some applications of supervised learning we want to predict a continuous output

variable. For example, we might want to predict the price of a house from the size

information. This is called regression. In contrast, sometimes we want to predict

discrete values such as the categories of object in a picture. This is called classification.

The output variable y in classification is called a label. It is now common to generally

refer to the output of the supervised learner as label, even in the case of regressionwhere

we have a continuous "label". We will see later that regression and classification are

anyhow closely related; for example, binary classification can be seen as a regression

problems with a discrete function f(x) such as a sign function which would give us
two labels, positive and negative.

An important part if our treatment of machine learning is to consider cases when

we might not be able to predict an exact label or output value. We thus consider

usually the probability that a certain value will occur. This is very important for several

reasons. For example, it is quite common that the process under investigation includes

stochastic (random) factors or unknown factors that can be treated with probabilistic

methods. Thus, we conjecture the the true underlying world model is better described

by a probability density function

p(Y = y|x). (1.4)

This give the probability density, or probability mass in the case of categorical data, of

the label Y having a value y given that we have an input vector x. The arguments of

density functions are provided after the horizontal line |, and wewrite random variables
as upper case letters and specific values a with lowercase letters.



Introduction8 |

Formulating Machine Learning in a probabilistic (stochastic) context has been

most useful and provides us with the formalization that created the most insight into

this field. In the probabilistic framework we are then modelling a density function

p(Ŷ = ŷ|x;w). (1.5)

Density function approximation is in some sense a special case of function approxi-

mation as the density function is atill a function albeit with some constraint such as

a normalization
�

p(y)dy = 1. However, modeling density function is also the more
general case for modeling functions in the sense that they proivide the probabilistic

information of how of how likely label values are given a certain input.

Also, a probabilistic framework can be used for a more general formulation of

learning. Given a parameterized model as written in equation 6.47, we want to know

which paraneters describe data well. This is not necessarily a single solution, and

ideally we would like to know the probability density function of the parameters given

data,

p(w|y,x). (1.6)

However,most applications ofmachine learning use a learning principlewhere learning

can be described as finding the most likely parameters given the data,

w
∗ = argmax

w
p(w|y,x) (1.7)

Such a maximum aposteriori choice, or some point estimates derived from related

principles, are currently the dominating forms of machine learning. Of course, we still

need to find the specific form of the probability function p(w|y,x), but we can then
derive learning rules from this principle. The point here is to illustrate how important

and useful a probabilistic formalism is in machine learning. It is therefore important

to consider uncertainty in machine learning right from the outset.

Formulating specific probabilistic models for problems with many stochastic fac-

tors is demanding. An important and useful way to formulate multifariate probabilistic

models is the area of causal model. Such models provide specific probabilistic models

of the components that provide the necessary foundations of the inference engine.

Inference here means that the system can be used to ‘argue’ about a solution in a prob-

abilistic sense. Such systems are the domain of Bayesian networks, and we will include

some introduction to this important domain in this book as it provides an important

aspect of machine learning. To some extend we will argue that probabilistic models

and deep neural networks represent somewhat a diverse spectrum of machine learning

models, but we will also argue that they can be viewed in a unified way. Fig. 1.5 shows

a famous example form Judea Pearl, one of the inventors of this important modelling

framework.

1.3 Applied Learning: Training, validating and testing

A linear model in low dimensions is excellent way to demonstrate the principle mech-

anisms of machine learning. In the following example we consider at first only one

input feature x. Supervised machine learning in this example is equivalent to linear



| 9Applied Learning: Training, validating and testing

Fig. 1.5 An example of a graphical representation of a causal model.

regression, and area that has been studied for centuries. What makes machine learning

different today is that we are usually considering high-dimensional non-linear prob-

lems, and that we have computers (machines) to help us with this task. For nowwe will

follow the function approximation formalization, but we will return to the probabilistic

framework later.

Coming upwith the right parameterized approximation function is the hard problem

in machine learning, and we will later discuss several choices. There are also meth-

ods to systematically develop the approximation function from the data, generally

called non-parametric methods. At this point we assume that we have a parameterized

approximation function. To illustrate this with we chose here an example where we

assumewe have a single input feature, x, and we hypotheses that the output y is linearly

related to x. Mathematically we write this linear model as

ŷ = ax + b, (1.8)

where a is the slope of the linear function and b is the y-axis intercept or bias of

this function. Using the training data to determine good parameters is called linear

regression.

The question is then howwe determine good parameters. This is where the learning

process comes in. In supervised learning we must be given some examples of input-

output relation from which we learn. We can think about these examples as given by

a teacher. The teacher data called the training set are used to directly determine the

parameters of the model. We can denote this training set as

{x(i), y(i)}, (1.9)

where the superscript i labels the specific training example. These indices are enclosed

in brackets to not confuse them with exponents. An example of a training set with 4

example points are shown in the left table in Fir. 2.1.

There are several possible training algorithm to determine the parameters of a

model. One way to determine the two parameters in this example is to use some

training data to analytically calculate the two unknowns. As we have a linear equation

with only two unknowns, we only need two data points to determine their values.

Using the two first data points as training set, we get

a =
y(2) − y(1)

x(2) − x(1)
= 4.9 (1.10)



Introduction10 |

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

2

4

6

8

10

12

14

16

y

x y

0 1.80

1 6.72

2 7.56

3 10.15

Fig. 1.6 A form of linear regression of data and cross-validation.

b = y(1) − ax(1) = 1.8 (1.11)

This regression line is shown as blue dotted line in Fig. 2.1. To quantify the goodness of

fit we need to define an evaluation function that is commonly called the loss function

or error function E. We chose here to evaluate the goodness of the model with the

mean square error (MSE) function,

E =
1

2N

N�

i=1

(ŷ − y)2, (1.12)

where N is the number of data points used to calculate the loss. If we use the training

data themselves to calculate the training error results in a zero loss, Etraining = 0.
We will later use more general applicable learning rules that do not always lead to

zero training error with limited training, but we need to keep in mind that the training

error can typically be made small and even zero and that this does not mean that the

performance of the model prediction is necessarily good. In this specific example, a

small or even zero training error occurs when the number of parameters in the model

is large compared to the number of training data. What is more telling than the training

error, and our principle aim in supervised learning, is how the models performs in

predicting labels of new data points. Data that has not been used in any way in the

learning process is called the testing set. There are sometimes competition for machine

learning algorithms, and testing data for these competitions are usually withheld from

the participants so that they cannot be used to develop the model. Also, it is common

that some data from the training set are withheld by the model developer to ‘test’

the model. The test on data that have not been used in the learning process can give

us an estimate about the expected performance on unseen data. If we calculate the

error function from the test data we call this the generalization error Eg since this

measure gives us an indication of how the model prediction performs to unseen data.

The generalization error of the model with parameters calculated from the first two

points in the training set is

Eg(x
(1), y(1), x(2), y(2)) = 21.8. (1.13)

Of course, it would be much better to have more test data so that we can not only

give a better estimate on the mean, but even provide an estimate of the range such as a



| 11Applied Learning: Training, validating and testing

variance, or in general the distribution of the generalization error. We will discuss this

point further on examples later in this course.

At this point we want to ask if the choice of using the first two points was good

or if we should have used to other points to build the model. Indeed, if we use the last

two data points for training we get the following parameter values,

a =
y(4) − y(3)

x(4) − x(3)
= 2.6 (1.14)

b = y(3) − ax(3) = 2.4, (1.15)

which is shown as red dotted line in Fig. 2.1. So which one is better, the blue dotted

line or the red dotted line? It seems that the second fits better all the points, though

it also becomes now handy that we quantified the goodness of the fit with the loss

function on the test data, which gives in this case the value

Eg(x
(3), y(3), x(4), y(4)) = 1.7 (1.16)

We can even check how well different pairs of training data can predict the other

data not used in training. Using different data from the original data set for training

and testing is called cross-validation. If we calculate the generalization error of the

different training/test sets we can choose as our predictive model the parameters with

the smallest cross-validation error. What we did here is that we used the originally

withheld data to ultimately tune a parameter of an algorithm, here the algorithm which

tells us which data points to use in the training set. This is again a form of training,

we determine some parameters from example data. We will call these parameters

hyperparameters and denote them here with the symbol θ. We will later encounter

different algorithm parameters such as learning rates, momentum terms or maximum

number of iterations, or which data points to use in the training set to determine w as

in the above example.

If we are using the original test data to tune or train the hyperparameters, than

this data that we originally called the test set is really the training set for the hyperpa-

rameter. To distinguish them we call this specific training set that is used to validate

the w training in order to train the hyperparameters the validation set. This can be

sometimes confusing and some literature even uses the term validation set and cross

validation in situations of testing. In principle we could view the complete proce-

dure, our mathematical model together with the training procedures as the hypermodel

f(x;w, θ). If we want to test this hypermodel then we need to hold out data that are
neither used in the determination of w nor θ. Hence in this case we need really three

data sets, the training set to determine w, the validation set to determine θ, and the

test set to evaluate the resulting model. It is of utmost importance not to use data in

any learning process if we want to estimate the performance of the model on unseen

data. Using test data in training, or even any derived information of test data in training

can lead to a drastic underestimation of the generalization error. This is sometimes

called information contamination, and information contamination can completely

invalidate the results.

Note that the generalization error is still only an estimate of the true error which we

usually never really know. However, since I was the one who generated the example

data I can tell you how I chose them. I actually derived them from the world model



Introduction12 |

y = 2x+ 3 + η, (1.17)

where η is a normal distributed random variable. I added this random number to the

perfect linear model to include a typical challenge in machine learning, that of having

imprecise measurements and hence noisy training data. The other way to interpret the

model is actually to accept the ‘world’ as stochastic and hence we are considering a

stochastic model. In any case, from this model we chose some data points by sampling,

though the true parameters of the world model are a = 2 and b = 3.

1.4 Non-linear regression and high-dimensionality

Above we have discussed a case where we assumed a linear function, but regression

with more general non-linear functions brings another level of challenges. An example

of data that do not follow a linear trend is shown in Fig.1.7A. There, the number of

transistors ofmicroprocessors is plotted against the year each processorwas introduced.

This plot includes a line showing a linear regression, which is of course not very good.

It is however interesting to note that this linear approximation shows some systematic

deviation in some regional under and over estimation of the data. This systematic

deviation or bias suggest that we have to take more complex functions into account.

Finding the right function is one of the most difficult tasks, and there is not a simple

algorithm that can give us the answer. This task is therefore an important area where

experience, a good understanding of the problem domain, and a good understanding

of scientific methods are required.

1970 1980 1990 2000 2010
−0.5

0

0.5

1

1.5

2

2.5
x 10

9

Year of introduction

lo
g

(
N

u
m

b
e

r
 o

f 
tr

a
n

s
is

to
r
s
)

1970 1980 1990 2000 2010
5

10

15

20

25

Year of introduction

lo
g

(
N

u
m

b
e

r
 o

f 
tr

a
n

s
is

to
r
s
)

slope=0.35

A. Processor data B. Logarithm of processor data

n=10

n=2
n=4

Fig. 1.7 Data showing the number of transistors in microprocessors plotted against the year they

were introduced. (A) Data and some linear and polynomial fits of the data. (B) Logarithm of the

data and linear fit of these data.

It is often a good idea to visualize data in various ways since the human mind

seems good in ‘seeing’ trends and patterns. Domain-knowledge can also be valuable

as specialists in the area from which the data are collected can give important advice

or they might have specific hypothesis that can be investigated. It is often helpful to

know common mechanisms that might influence processes. For example, the rate of

change in basic growth processes is often proportional to the size of the system itself.



| 13Non-linear regression and high-dimensionality

Such an situation leads to exponential growth. (Think about why this is the case).

Such situations can be revealed by plotting the functions on a logarithmic scale or

the logarithm of the function as shown in Fig.1.7B. A linear fit of the logarithmic

values is also shown, confirming that the average growth of the number of transistors

in microprocessors is exponential, which is known as Moore’s law.

But how about more general functions. For example, we can consider a polynomial

of order n, that can be written as

y = w0x
0 +w1x

1 +w2x
2 + ...+wnx

n. (1.18)

We would usually even consider different offsets for each term which we neglected for

simplicity. Given this new hypothesis in the form of a non-linear parametric function,

we can again use a regression method to determine the parameters from the data by

minimizing the LMS error function between the hypothesis and the data. The LMS

regression of the transistor data to polynomials for orders n = 2, 4, 10 are shown in
Fig.1.7A as dashed lines.

Using a polynomial as a nonlinear function is only one possible choice of many.

We will later consider mainly functions that that have been termed Artificial Neural

Networks. These functions can be represented graphically as shown in Fig.1.8. Each

node in such a graph is also called a neuron as it resembles to some extend the basic

functionality of a biological neuron in the brain. Such an artificial neuron weights

each individual input with an adjustable parameter, sums this weighted input, and then

applies a nonlinear function such as a tanh function on this summed input. The output
of each node is hence,

yj = tanh(
�

i

wjixi). (1.19)

This output can be the input to another node, and we can in such a way build elaborate

functions with graphs of such nodes as shown in Fig.1.8B. We will later elaborate on

specific network architectures that represent specific classes of non-linear functions

that will be useful for specific applications. We will specifically explore how networks

with many layers of neurons have advanced the capabilities of learning machines

considerably which is now known as deep learning.

Fig. 1.8 Basic elements of an Artificial Neural Network (ANN). Each node represents an operation

of summing weighted inputs and applying an nonlinear transfer functions f to this net input. The

output of each node can become the input of another node or represent the output of the networks.



Introduction14 |

A major question when fitting data with fairly general non-linear functions is the

complexity of the function in terms of the number of parameters such as the order

of the polynomial or the number of nodes. The polynomial of order n = 4 seem to

somewhat fit the transistor data also shown in Fig.1.7B. However, notice there are

systematic deviations between the curve and the data points. For example, all the data

between years 1980 and 1995 are below the fitted curve, while earlier data are all

above the fitted curve. Such a systematic bias is typical when the order of the model is

too low. However when we increase the order, then we usually get large fluctuations,

or variance, in the curves. This fact is also called overfitting the data since we have

typically too many parameters compared to the number of data points so that our model

starts describing individual data points with their fluctuations that we earlier assumed

to be due to some noise in the system. This difficulty to find the right balance between

these two effects is also called the bias-variance trade-off.

The bias-variance trade-off is quite important in practical applications of machine

learning because the complexity of the underlying problem is often not know. It then

becomes quite important to study the performance of the learned solutions in some

detail. A schematic figure showing the bias-variance trade-off is shown in Fig.1.9. The

plot shows the error rate as evaluated by the training data (dashed line) and validation

curve (solid line) when considering models with different complexities. When the

model complexity is lower than the true complexity of the problem, then it is common

to have a large error both in the training set and in the evaluation due to some systematic

bias. In the case when the complexity of the model is larger than the generative model

of the data, then it is common to have a small error on the training data but a large

error on the generalization data since the predictions are becoming too much focused

on the individual examples. Thus varying the complexity of the data, and performing

experiments such as training the system on different number of data sets or for different

training parameters or iterations can reveal some of the problems of the models.

Deep neural networks are a form of high dimensional non-linear fitting function,

and preventing overfitting is therefore a very important component in deep learning.

Deep networks have many free parameters, and large data sets (big data) has therefor

been important for the recent progress in this area in combination with other techniques

to prevent such as a technique called dropout that we will discuss later. In general one

can think about techniques to prevent overfitting by restricting the possible range of the

parameters. Indeed, learning from data already represents providing information about

the values of the parameters, and restricting such ranges further is a key element in

machine learning. This area is generally discussed under the heading of regularization.

In a probabilistic framework this can be incorporatedwith a prior, a probability density

function of our prior belief or restrictions in the parameters.

In the next sectionwewill see that basic implementation ofMachine learningmeth-

ods are not difficult when using application programs that implement these techniques.

This is good news. However, a deeper understanding of the methods is necessary to

make these applications and their conclusion appropriate. The machine learning al-

gorithms will come up with some predictions, but if these predictions are sensible is

important to comprehend and evaluate. Machine learning education needs therefore to

go beyond learning how to run an application program, and this course aims to find a

balance between practical applications and their theoretical foundation.



| 15Deep learning

Fig. 1.9 Illustration of bias-variance trade-off.

1.5 Deep learning

We mentioned above that deep learning is basically about neural networks with many

layers. However, this statement alone does not pay justice to the enormous advancement

and impact deep learning had in recent years. This section outlines this progress and

the reason for new exciting advancements in applications such as image processing

and natural language processing.

It can be shown that a multilayer perceptron with one hidden layer is a universal

function approximator. This means that the error between the network approximation

and the function to be modeled can be made arbitrarily small given enough hidden

nodes. However, this does not mean that the representation with only one hidden layer

is always the most efficient and even appropriate at all. Indeed, it is likely that even

for reasonably complex functions many hidden neurons must be used. Moreover, if

we think of these functions as ways to describe objects, then it does not seem very

useful to base this decision on a large number of low level features. For example, a

table or a chair can be appropriately described by components, such as the legs and

the armrests, and these components can in turn made up of separate components such

as screws and wood. This is where hierarchical structures of describing objects seem

much more appropriate and efficient.

While the idea of a deep network is straightforward, realizing them in computers has

proven tricky. Several factors have been contributing to the difficulty of getting neural

networks with many layers learning sufficiently with gradient-based optimization. One

is that the number of parameters in the model gets much bigger so that overfitting ought

to be a problem. The availability of large datasets with crowed-sourced labels and the

generation of synthetic training data have this been important. Another problem has



Introduction16 |

been that training of deep networks itself is often very slow, as the gradients underlying

the training algorithms can become small. This vanishing gradient problem becomes

more pronounced the deeper the network get. This has particularly been the problem

when using a sigmoidal transfer function, and using piecewise linear functions such

as the rectified linear unit (RELU), f(x) = x for x > 0 and zero otherwise, as

considerable helped with training.

Increasing the number of layers in a neural network will drastically increase the

number of parameters (weights) of the model. Also, the all-to-all connections of

multilayer perceptrons do not seem the right approach for computer vision for the

following reason. Say we have a neuron that recognizes an edge at a specific location

in a visual scene; then this neuron would only specialize to this scene location and

we would have to learn an edge detector for other locations. This seems a waste of

resources; not only do we need many edge detectors, but we have to train them from

examples of edges at all possible locations in a visual scene since edges could be

everywhere. Hence, it seems much better to have one edge detector and to apply this

specific filter to all possible locations in the visual scene. Such an operation is called

a convolution, and convolutional neural networks such as the one shown in Fig. 1.10

are now the workhorse in computer vision.

Fig. 1.10 A typical design of a deep convolutional network for image processing. A convolutional

layer is followed by some pooling layer which compresses the images fopr example by averaging

over some pixels. At the end some fully connected layers as in MLPs are commonly used (adapted

from Krizhevsky et al., 2012).

Another important domain of deep learning are recurrent networks. Such networks

are important for modeling sequences where a value of a sequence at a certain position

should be predicted from previous data points. Many applications are sequences at

discrete times, like the value of the stock market at each hour, and we hence speak

commonly about time instead of sequence position. To do this case we can pass back

the state of the hidden state with a modulation value (weight) of less then one. In this

way we can implement a form of exponentially decaying short term memory. This

way of representing a sequence in neural networks does therefore include feedback

connections, usually called recurrent connections with neural networks. An example

is shown in Figure 8a.

What is interesting in this case compared to the tapped delay line input to a purely

feedforward network is that we introduced a form of weight sharing in the sense that



| 17Deep learning

Fig. 1.11 A) Illustration of a hidden layer of the recurrent network (adapted from Chris Olahâ^s

blog). B) Representation of a gated RNN called LSTM in a similar style to A). C) The more genral

network with an external memory such as the Differential Neural Computer (DNC).

only the relative times of the sequence are important. This assumption is similar to the

position invariant assumption in convolutional networks, and such assumptions enable

much simpler yet larger models through some form of weight sharing. As stated above,

the assumption of a diminishing influence from previous time steps has the form of an

exponential decay which is not always appropriate such as in language processing, but

we will later see how we can amend this architecture to allow more flexible memory

structures. Of course, in order to build a deeper network we have to include non-

linearities. The term ‘recurrent’ comes from the fact that such networks were often

viewed with the analogy of an electric flow in a circuit. Sometimes such an information

flow has been termed ‘re-entry’. Another way to visualize this simple RNN is shown

on the right side of Figure 8 which is an adaptation from the excellent description of

recurrent networks in Chris Olah’s blog at http://colah.github.io. The inputs are now

vectors and the connections represent weight matrices. To train these networks we

have to unfold these networks in time. This is demonstrated for the simplest version in

Figure 9.

Figure 9: Unfolding of a recurrent network in time so that it can be trained with

the error-backpropagation learning algorithm.

So, to this end, what have we gained? We simplified the graph of a feed-forward

network and replaced it with a recursive version, only to unfold it in time again in

order to train it. However, note that we have to do the unfolding only during training

(which is of course bad enough), and that we still have a form of weight sharing that

makes these models much easier than the general ones with which we started.

4b Gated RNNs As mentioned above, the basic recurrent network has a form

of memory that takes earlier states into account. However, the influence of these

states is exponential fading which is not always appropriate. For example, in language

processing it is necessary to take some context into account that might be remotely

relative to words at the current time. Or in other word, some memories should only

‘kick in’ at some appropriate time. It is hence important to gate some of this information

until they are useful at a later state of processing. The first network which has taken

this into consideration is called LSTM which stands for Long Short Term Memory

(Hochreiter and Schmidhuber 1997). This network is illustrated in Figure 10.

Figure 10: A gated recurrent network called Long Short Term memory (LSTM)

that has an internal memory state and corresponding gates to erase, write and read

from this state.

The gated network introduces an explicit cell state C(t), or intrinsic memory state,



Introduction18 |

that can be forwarded to the next time step. This cell state can be modified with two

separate operations, a forgetting gate and a write gate that are indicated with sigmoid

units. The new memory state is updated with these factors and of course the new input.

The interesting thing is that the gating functions are also leaned with corresponding

weight values and a sigmoidal gain function of the logistic variety to scale these terms

with a value between 0 and 1. Finally, the output for this hidden node is calculated from

this internal memory state. A simplified and popular variant of LSTM is the called the

Gated Recurrent Unit (GRU) (Chung et al. 2014).

Figure 12: Differential Neural Computer (DNC) generalizes the architecture of

LSTM to a more general external memory with read, write, and erase functions (called

heads). The architecture is still fully trainable with gradient descent methods as all

operations are differentiable. Gated recurrent networks like LSTM and GRU are im-

portant networks which have gained increasing popularity for temporal processing.

Each processing unit in these networks has some form of gated memory. A further step

is then to take the idea further in the form of an external memory. The first version

of such a model was the neural Turing machine (NTM), which was later refined to

the Differentiable Neural Computer (DNC). An graphical outline of such a model is

illustrated in Figure 12.

1.6 No free lunch and choice of models

Neural networks and other models such as support vector machines and decision trees

are fairly general models in contrast to Bayesian models that seem to specify much

better a causal structure. Such specific models, as long as they faithfully represent

the underlying structure of the world model, should always outperform more general

model. This fact is captured by David Wolpert’s "No free lunch" theorem which basi-

cally states that there is not a single algorithms that covers all applications better than

some other algorithms. Applying machine learning algorithms is therefore somewhat

of an art and requires experience and knowledge of the constraints of the algorithms.

We will see in Chapter 3 writing a program that applies ML algorithms to data

is usually not too difficult. It is common that new algorithms will find their way to

graphical data mining tools, which makes them available to an even larger applica-

tion community. However, applying such algorithms correctly in different application

domains can be challenging and it is well known that some experience is required.

We therefore concentrate in the following in explaining what is behind these algo-

rithms and how different theoretical concepts are explored by the different algorithms.

Some understanding of the algorithms is absolutely necessary to avoid pitfalls in their

application.

The basic first step for the application of ML methods is how to represent the data.

We discussed already above how to convert different type of inputs to numerical vectors

or tensors. However, there are usually many different possibilities to represent the data,

such as a fine grain representation or using some summary statistics. In the past it has

been crucial to work out an appropriate high level data representation. However, the

recent progress in deep learning made it possible to treat this representation itself as

part of the learning problem. Representational learning has thus become an important

part of machine learning.



| 19No free lunch and choice of models

Once the problem has been defined by representing the data and possible goals in

an appropriate way, and once the appropriate ML algorithm has been chosen, it is then

the main challenge to chose good parameters of the algorithms such as the number of

neurons or layers of neurons in neural networks, which kernel to use in support vector

machines, how many training steps to take in gradient descent learning, or how many

data to use for learning versus validation.We call these parameters of the algorithms the

hyperparameters. Choosing the right hyperparameters is commonly a major question

and to make it clear from the start, there is no simple answer. Thinking about how to

approach this question with appropriate experiments and to understand the options and

possible approaches is hence a mayor part of machine learning applications.


