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Abstract. Attractor networks are important models for brain functions on a be-
havioral and physiological level, but learning on sparse patterns has not been fully
explained. Here we show that the inclusion of the activity dependent effect of an
inhibitory pool in Hebbian learning can accomplish learning of stable sparse at-
tractors in both, continuous attractor and point attractor neural networks.

1 Introduction

Recurrent attractor neural networks (ANNs) are a fundamental ingredient in many mod-
els of brain functions [1, 2]. Probably best known are point attractor neural networks
(PANNs) which are trained on random patterns with a Hebbian covariance rule, such
as the one popularized by [3]. Another popular type is that of continuous attractor
neural networks (CANNs) where the weight matrix is commonly chosen to be of the
on-center-off-surround type [2, 4]. Such models have been proposed from basic physio-
logical principles [5] as well as from their ability to describe the dynamics of cognitive
functions [6]. While basic Hebbian training has long been described in PANNs [7–9],
training on sparse patterns through activity dependent inhibition in PANNs and training
in CANNs have not been fully addressed. By sparsity we mean that only a small por-
tion of nodes are active in the network when a single memory pattern is retrieved. In
this paper we show that training with inhibition can stabilize sparse network activity in
both PANNs and CANNs.

2 Learning in CANNs

We consider a simple CANN model, as used in [2]. The nodes are uniformly distributed
in a feature space of range (−π, π] with periodic conditions. The neuronal states take on
binary values of 0 and 1, and the memory patterns, µ, are sparse attractors of localized
activity packets (bumps) in the sense that in each pattern d ¿ 2π consecutive nodes are
activated. We further consider that the network holds a continuous family of memory
patterns uniformly distributed in the feature space. Conventional studies (e.g.[2]) often
assume this form of the recurrent interactions. Here, we derive the recurrent interaction
structure based on a properly modified Hebbian learning rule.

We propose a general Hebbian covariance learning rule which is augmented with
an additional inhibition constant, C, describing the effect of inhibitory internodes,

wi,j =
2π

M

M∑
m=1

(µm
i − < µi >)(µm

j − < µj >)− C, (1)



where M denotes the number of training patterns, and the average activity of the ith
node over all patterns is < µi >=

∑
mµm

i /M = d/(2π).
Since the neural field is translation invariant, the interaction between two nodes is

determined by their distance in feature space. Without loss of generality, we can thus
calculate the interaction between nodes at locations 0 and x. Under the continuous field
approximation, M →∞ with pattern density is ρ = M/(2π), the weight is given by

w(x) =
∫ π

−π

µy
0µ

y
xdy − C − d2/2π, (2)

with µy
x = 1 when y ≤ x ≤ y + d and µy

x = 0 otherwise. We get:

– when 0 < |x| < d: w(x) = d− |x| − C − d2/(2π)
– when d < |x| < π: w(x) = −C − d2/(2π)

Thus, the weight profile describes short-range excitatory and long-range inhibitory in-
teractions as demanded by the center-surround neural field theory [2, 4].

2.1 Stability under the network dynamics

We denote the network states at time t with S(t) = {Si(t)}. Under the continuous field
approximation, the network dynamics can be written as:

S(x) = Θ[
∫ π

−π

w(x− z)S(z)dz], (3)

where Θ(x) is a threshold function. We can check the stability of a memory pattern, µ,
of a bump at location [0, d], under the network dynamics. This requires:

µ(x) = Θ[
∫ π

−π

w(x− z)µ(z)dz. (4)

Since the inputs received by nodes in the middle of the bump are always larger than that
at the boundaries (due to short-range excitation and long-range inhibition), it is adequate
to only check the stability of the boundary points. The recurrent input received by the
boundary point, 0, is given by

h(0) =
∫ d

0

w(z)dz =
∫ d

0

(d− z − C − d2/(2π))dz = d2/2− Cd− d3/(2π). (5)

The activity packet (bump) is stable when h(0) = 0. From the above equation we see
that in case of a pure covariance rule (C = 0) the size of the bump can only be d = π.
That is, the memory patterns are not sparse. In order to hold sparse patterns, a inhibition
of C 6= 0 is required.

In the following, we absorb the constant term from the covariance learning rule (the
third term on the right-hand side of eq. 5) in a revised inhibition constant C. Then, the
condition for stabilizing sparse patterns of size d in CANNs is C = d/2. It is straight-
forward to check that this is also the sufficient condition: consider the network state



starts from a bump larger than d, then it will shrink due to the recurrent interactions,
and if the initial state is smaller than d, it will enlarge.

For training patterns with width d we can modulate the retrieval width d̃ < d with
different inhibition values:

– d̃ < d: h(0) =
∫ d̃

0
(d− z − C)dz = d̃(d− d̃/2− C).

Thus, the bump width, obtained by h(0) = 0, is d̃ = 2(d − C). From the require-
ment 0 < d̃ < d, this implies d/2 < C < d.

– d̃ > d: h(0) =
∫ d

0
(d− z − C)dz − ∫ d̃−d

d
Cdz = d2/2− Cd̃.

The bump width is therefore d̃ = d2/(2C). From the condition d̃ > d, we have
C > d/2.

These analytic solutions are compared to simulations in Figure 1A.
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Fig. 1. The effect of inhibition on learning in attractor networks. (A) The solid line represents
the simulations of a CANN model and shows the ratio of active nodes after 10 iterations from
an initial memory pattern. The results compare well with the analytic results (dashed line) for
appropriate values of C. Too small or too large inhibition leads to a loss of the memory states.
(B) Average retrieval sparseness, aret, and Hamming distance between network state and memory
pattern for a point attractor network for different inhibition constants, C. Due to the attractor
dynamics, a range of inhibition values around the analytic solution can support sparse memory
states.

3 Learning in PANNs

Learning sparse representations in the point attractor networks (PANNs) can also be
solved with global inhibition. Again, we consider the Hebbian learning rule with global
inhibition,

wi,j =
1√
M

∑
m

(µm
i − a)(µm

j − a)− C, (6)

where a denotes the sparseness of patterns which is the probability for a node to be
active in each pattern (the ratio between the number of active nodes and the total number
of nodes). The commonly used network update rule [7] is given by:

Si = Θ[hi] = Θ[

√
M

N

N∑

j=1

wijSj ], (7)



so that the activity of the ith node is determined by the sign of the input, hi. In the limit
of many patterns, and under the condition that the network is homogenous, hi becomes
Gaussian distributed with mean and variance given by:

< hi >= −Ca, σ2 =< h2
i >= a3(1− a)2. (8)

Thus, the probability of the ith node to be active is P (hi > 0) and to be inactive is
P (hi < 0). On the other hand, the probability for the ith node to be active is also equal
to a. Thus, under the self-consistent requirement, it must hold that

P (hi > 0)
P (hi < 0)

=
a

1− a
, (9)

from which the relationship between the inhibition, C, and the sparseness, a, can be
derived:

a =
1
2
− erf(

Ca√
2σ

). (10)

From this condition, we see that when C = 0, a = 0.5, that is, the retrieved patterns
are not sparse. However, patterns with the correct retrieval sparseness aret = a can be
maintained for a range of inhibition values as shown in Figure 1B.

4 Conclusion

We showed here that sparse attractor networks can be trained with Hebbian learning if
inhibition is taken into account, and we calculated how the spareness of retrieved states
is related to the inhibition constant.
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