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Abstract. The field of Reinforcement Learning (RL) in machine learn-
ing relates significantly to the domains of classical and instrumental con-
ditioning in psychology, which give an understanding of biology’s ap-
proach to RL. In recent years, there has been a thrust to correlate some
machine learning RL algorithms with brain structure and function, a
benefit to both fields. Our focus has been on one such structure, the
striatum, from which we have built a general model. In machine learning
terms, this model is equivalent to a value-function approximator (VFA)
that learns according to Temporal Difference error. In keeping with a bio-
logical approach to RL, the present work seeks to evaluate the robustness
of this striatum-based VFA using biological criteria. We selected five clas-
sical conditioning tests to expose the learning accuracy and efficiency of
the VFA for simple state-value associations. Manually setting the VFA’s
many parameters to reasonable values, we characterize it by varying each
parameter independently and repeatedly running the tests. The results
show that this VFA is both capable of performing the selected tests and
is quite robust to changes in parameters. Test results also reveal aspects
of how this VFA encodes reward value.

1 Introduction

Over the last several decades, our understanding of RL has been advanced by
psychology and neuroscience through classical /instrumental conditioning exper-
iments and brain signal recording studies (fMRI, electrophysiological recording,
etc.). Over the same period, the machine learning field has been investigating
potential RL algorithms. There has been some convergence of these fields, no-
tably the discovery that the activity of a group of dopamine neurons in the brain
resembles the Temporal Difference (TD) error in TD learning [1]. One research
focus in machine learning RL is the mapping of expected future reward value to
states (state-value mapping) from as little experience (state-value sampling) as
possible. Living things clearly grapple with this problem, continually updating
their beliefs about expected rewards from their limited experience. Indeed, the
field of classical conditioning, which relies heavily on animal behavioural exper-
iments, has explored a variety of reward-learning scenarios. The obvious need
to acquire value for a rewarding state and the need to generalize this to simi-
lar circumstances is well recognized by both psychology and machine learning.



What is interesting, however, is that there appear to be other useful reward-
learning strategies expressed in classical conditioning phenomena that have not
yet translated into machine learning RL. Just as generalization improves learning
efficiency by spreading learned value to nearby states, the classical conditioning
phenomena of "latent inhibition" and "unovershadowing" appear to improve
learning efficiency in their own right.

At the heart of classical conditioning experiments is the presentation of a
stimulus (eg. a light, tone, etc.) or combination of stimuli followed by a re-
ward outcome (reward, punishment, or none). When a stimulus is repeatedly
presented and there is no change in the reward outcome, latent inhibition [2]
sets in, reducing the associability of the stimulus when the change in reward
outcome eventually occurs. This promotes association to novel stimuli, which
seems appropriate since novel stimuli are more likely to predict a new outcome
than familiar stimuli. Latent inhibition saves the additional experience otherwise
needed to make this distinction clear. Recovery from overshadowing, or "unover-
shadowing" [3] is one of a family of similar strategies. First, overshadowing is the
process of presenting a compound stimulus followed by, say, reward (Sap — R).
Although the compound will learn the full reward value, its constituent stimuli
(S4 and Sp) tested separately will also increase in value, where the most salient
stimulus (say Sp) gains the most value. In unovershadowing, the most salient
stimulus is presented but not rewarded (Sp — 0) and will naturally lose some
of its value. What is surprising, however, is that the absent stimulus (S4) con-
currently increases in value. This allows the animal to not only learn that Sg is
less rewarding than it predicted but, by process of elimination, learns that S4
is more rewarding than it predicted. Unovershadowing saves the need to present
and reward S 4 explicitly to increase its value, taking advantage of implicit logic.
Whether it is generalization, latent inhibition, or unovershadowing, learning the
value-function from fewer experiences will assist the animal in making rewarding
choices sooner.

These and other RL strategies are found in classical conditioning experi-
ments, where subjects maintain an internal value-function, indicating reward-
value based on the rate of their response (eg. lever presses). Since these biological
strategies appear beneficial, a machine learning RL system based on RL struc-
tures in the brain may prove effective. After a brief review of our brain-based
model that does value-function approximation [4], the present work character-
izes this VFA to determine its robustness and effectiveness in several classical
conditioning tests that are especially relevant to VFAs.

2 Striatal model

The striatum, the input stage of the basal ganglia (BG) brain structure, is a key
candidate region on which to base a VFA. The striatum is a convergence point for
inputs from all over the brain (specifically, the neocortex [5]), spanning signals
of sensation to abstract thought. The majority of striatal neurons project to one
another (via axon collaterals) and to other BG nuclei. The synaptic strengths



(i.e. weights) of these projection neurons are modulated by dopamine signals [6]
(or the lack thereof), where dopamine neuron activity has been linked to the
teaching signal of TD learning [1] mentioned earlier. In addition, several neural
recording studies suggest that reward-value is encoded in the striatum [7][8][9],
although it is not the only area of the brain that has been implicated in the
representation of reward-value [10][11][12].

Our striatal model [4] is shown in Figure 1. The excitatory external input
represents a real-world feature (eg. colour wavelength, tonal pitch, etc.) by pro-
viding a Gaussian activation profile surrounding a specific feature value (eg.
Green, 530 nm). This emulates the "tuning curve" input to the striatum from
the neocortex. The model is composed as a one-layer, one-dimensional neural
network of striatal projection neurons, each excited by a subset of the external
inputs and inhibited by a subset of the other projection neurons, as is the case
in the striatum (see [5] and [13]). Each neuron is part of either the direct or in-
direct pathway, the main information processing routes through the BG, where
D1 and D2 are their dominant dopamine receptor subtypes respectively. These
pathways tend to behave in an opposite sense, where one increases BG output
activity while the other decreases it. The output of the model, V'(S), becomes
the expected value of an external input (state/stimuli), computed as the sum
of the direct pathway neuron activity minus the sum of the indirect pathway
neuron activity. Finally, the teaching signal can be formulated in the same way
as TD error, but, for the simple one-step prediction tasks used in this work, it
is only necessary to use the reward prediction error (RPE), the actual reward
minus the expected reward (RPE = R — V(5)). A more formal description of
the model is provided in Appendix A.

An important novel element in our model is the inclusion of modifiable lat-
eral inhibitory connections. Because of these, the neurons compete, partially
suppressing one another. Given an arbitrary combination of external inputs, an
associated subset of neurons will become more active than the others because
their external input weights correlate most with the external input. Many neu-
rons will also be inactive, suppressed below their base activation threshold.

3 Tests, Measures, and Variables

Conventionally, to evaluate a VFA, one might seek to prove that the VFA’s
state-values converge for arbitrary state-value maps or seek to test performance
on a particular RL task (eg. random walk). Instead, we seek to know how effec-
tively this striatum-based VFA employs certain RL strategies found in classical
conditioning to update the value-function. This approach puts value-function up-
date strategy first, after which agent actions can be included and convergence
proofs and specific RL task comparisons pursued. Also, using classical condi-
tioning tests helps to ascertain whether or not the striatum is responsible for
this behaviour. There are a great variety of classical conditioning tests, but to be
practical, we limit this to five: two to evaluate state-value mapping accuracy and
three to evaluate state-value learning efficiency. The striatum-based VFA was
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Fig. 1. Diagram of the striatal model. External input is shaped as a Gaussian activity
profile surrounding a feature value. Probabilistic inputs (finely dashed lines) from ex-
ternal and lateral sources are excitatory (green) and inhibitory (red) respectively, while
the modulatory RPE signal can be either (blue). The direct and indirect pathways are
expressed in the two populations of neurons, D1 and D2 respectively, whose activities
are accumulated to compute the expected value of the input state/stimulus, V(S).

integrated into simulations of these tests, providing results in terms of measures
that are defined for each, as described below. During a test, many trials are run,
where one trial consists of presenting a state/stimulus (external input) together
with its expected reward-value.

The entry level test for a VFA is the acquisition of a state-value. What is
also important, however, is that other state-values outside of a reasonable gener-
alization window (eg. Yellow in Fig. 1) are relatively unaffected. The acquisition
test, then, pairs a state with a reward value, and compares the state-value to a
sample of other state-values. We define the acquisition effectiveness measure as

V(S)— LM V(S;)
V(S)

Ea(S) = (1)

and consider that acquisition is observed when the state-value, V(5), is twice
that of the other sampled state-values, V' (S;), or E4(S) > 0.5. Twenty trials are
run for each acquisition test. Six V'(S;) samples are used for the comparison.
Secondly, it is important that a VFA be able to represent a variety of state-
value mappings. Negative patterning is the classical conditioning equivalent of
the non-trivial "exclusive-OR" problem, where the subject learns to increase the
value of two stimuli, S4 and Sp, while learning zero-value for the compound
stimulus Sap. Here, we will define the negative patterning effectiveness as the
difference between the average constituent value and the compound value, nor-



malized by the average constituent value, which can be expressed as

V(SA) + V(SB) — QV(SAB)
V(Sa)+V(SB)

Enp(Sa,SB,SaB) = (2)
Negative patterning is observed while Enp(Sa,Sp,Sag) > 0, that is, while
the constituents have a higher value than the compound. One-hundred trials of
interleaved presentation of the stimuli and their associated rewards are run for
each test.

In practical situations, no two experiences are identical, making it critical to
generalize state-value learning. Generalization also contributes significantly to
learning efficiency, spreading learned value to nearby states under the assump-
tion that similar states are likely to have similar expected reward value. This
strategy reduces the amount of state-value sampling necessary to achieve rea-
sonable accuracy. For this test, acquisition is performed for a single feature-value
and the reward value computed for 500 equally spaced feature-values. General-
ization effectiveness will describe the spread of the value as a weighted standard
deviation, where feature values are weighted by their associated reward values,

P M Gl = Y \

Generalization will be considered observed when the spread of value is at least
10% of the width of the tuning curve input.

To further enhance learning efficiency, we consider the phenomena of latent
inhibition described earlier. Latent inhibition’s reduction of associability can be
achieved by simply reducing the input salience of the familiar stimulus. Then,
when this reduced salience stimulus is combined with a novel stimulus and fol-
lowed by reward, overshadowing will result. Thus, our test of latent inhibition
becomes a test of overshadowing, where the novel stimulus (S4) overshadows
the reduced (half) salience stimulus (Sp). We define the latent inhibition effec-
tiveness measure as

V(Sa) —V(SB)

Bri(Sa,S8) = g 575

(4)
where the effect is observed when E;(Sa,Sg) > 0. Thirty trials are run for
each test.

Finally, unovershadowing appears to improve learning efficiency by process
of elimination as described previously. There are other similar phenomena (eg.
backward blocking) that raise or lower the value of the absent stimulus, depend-
ing on the scenario. The unovershadowing effectiveness is defined as

AV (S4)
Eyo(Sa,SB) = ——7—= 5
vo(54,55) =~ Jay (5)
where AV (Sx) is the change of value of stimulus Sx from one trial to the
next and observability occurs when Eyo(Sa,Sg) > 0. Here, unovershadowing



is simulated by first performing the process of overshadowing (see above) with
equally salient stimuli, followed by 100 trials of Sp presentation without reward.

Ultimately, we seek to determine the robustness of the simulation of these five
tests to changes in the VFA’s parameters. Because the parameter space is very
large and a full search unnecessary, we found initial values where all tests were
observed and varied the parameters independently through their valid ranges.
This process characterizes the VFA, showing the conditions under which the
tests break down.

Besides parameters associated directly with the VFA there are others ac-
knowledged here that are better associated with the particular RL task to be
solved. To simulate input noise, Gaussian noise is added to the external input
and rectified, where its standard deviation is the parameter varied in the tests.
Since the intensity of stimuli and rewards may vary, the salience of inputs and
rewards are multiplied by parameters varied between 0.01 and 1.

4 Results

Figures 2 and 3 represent the results for all five tests over 17 parameters. Since
the VFA connectivity and initial weights are randomly initialized, each test and
parameter combination was run 20 times to provide uncertainty estimates. The
observability curve (upper panel) for each parameter is a summary of the more
detailed effectiveness curves (lower panel). For each parameter, the observabil-
ity curves from the five tests are multiplied together, giving an "intersection"
of observability. So, wherever observability is zero, it means that at least one
test is not observed for that parameter setting and when observability is one,
all tests are observed. For example, once the lateral learning rate, 8, becomes
negative, unovershadowing effectiveness disappears (goes negative) and unover-
shadowing is no longer observed. So, the summary observability curve is zero
for 8 < 0 because not all of the tests were observed in this range. In constrast,
when 8 > 0, all tests are observed. The effectiveness curves, whose vertical bars
denote standard deviation, are colour coded: acquisition (blue), negative pattern-
ing (green), generalization (red), latent inhibition (cyan), and unovershadowing
(violet). Note that only the effectiveness of observed cases are given. Also, when
part of an effectiveness curve is missing in the graph, this indicates that there
were no cases of the associated parameter values where the effect was observed.
In the effectiveness graphs, a black dotted vertical line indicates that parameter’s
setting while the other parameters were independently varied.

5 Discussion

The results show that this VFA is generally robust to changes in feature val-
ues. There are, however, regions where observability disappears within its valid
parameter range. From the causes of low observability and key trends in effective-
ness curves given in the results, the structural and functional details necessary
to successfully reproduce these five effects are described.
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Fig. 2. Intersection of observability curves (top) with effectiveness curves (bottom)
where error bars represent the standard deviation of effectiveness. Effectiveness curves
are coloured according to test: acquisition (blue), negative patterning (green), gener-
alization (red), latent inhibition (cyan), and unovershadowing (violet).
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Fig. 3. Intersection of observability curves (top) with effectiveness curves (bottom)
where error bars represent the standard deviation of effectiveness. Effectiveness curves
are coloured according to test: acquisition (blue), negative patterning (green), gener-
alization (red), latent inhibition (cyan), and unovershadowing (violet).



Acquisition was prevented in only three cases: high activation threshold (6
in Appendix A), low input salience, and low mean input weight. As the acti-
vation threshold increases, fewer neurons are active because fewer have internal
activations that exceed it. Likewise, internal activations are weak when the input
salience or mean input weight is too low. Since learning only occurs in neurons
that are active (see equations 8 and 9, Appendix A), neither acquisition nor any
other test will learn when neurons are silent. Acquisition was otherwise robust to
varying the VFA parameters. This is not surprising since the Rescorla-Wagner
model [14] of classical conditioning acquires reward value in much the same way,
the key ingredient being that they both learn in proportion to RPE and input
salience.

As different inputs are presented to the system it becomes clear that the
subset of active neurons is input specific, enabling inputs to be represented by
separate populations of neurons. A lateral inhibitory network put forth by Rabi-
novich et al. [15] similarly showed that asymmetric lateral connectivity (imple-
mented in the striatum-based VFA by low connection probability) led to similar
input-specific patterns of activation as well. This form of activity also resembles
that of sparse coarse coding [16], another value-function approximation tech-
nique that uses a state-specific subsets of elements to represent state-value. This
value-encoding strategy is critical for negative patterning because it allows a
compound stimulus (Sap) and its constituent stimuli (S4 and Sg) to be rep-
resented in different (although overlapping) populations. Then S4 and Sp can
have a strong positive value while S4p holds zero value. In the results we see
negative patterning sometimes failing for high lateral connection probabilities.
In this scenario, we find that it becomes difficult to separately represent the
constituent and compound stimuli because there is too much overlap between
their active subsets.

Generalization, like acquisition, is robust, not being eliminated except when
all neurons are silent. In the effectiveness curves, the generalization is always
greater than or equal to the tuning curve width. As the tuning curve width is in-
creased, a proportional increase in generalization effectiveness can be seen as well.
When the generalization effectiveness is greater than the tuning curve width,
closer examination reveals it to be either noise or an average increase/decrease
in the state-values outside a reasonable generalization window. So, the general-
ization present in the VFA is actually due to the activity profile of the input
rather than anything in the VFA per se. The VFA does support this means gen-
eralization, however, in that the amount of subset overlap between two feature
values is proportional to the overlap between their activity profiles. This, too,
accords with the approach taken by sparse coarse coding.

Again, the practical benefit of latent inhibition is its ability to reduce associ-
ation of familiar, ineffectual stimuli with reward outcome. We implemented this
as a test of overshadowing, where the familiar stimulus was half the salience of a
novel stimulus. If reward associations were simply made in proportion to a stim-
ulus’ input salience, as is the case for the Rescorla-Wagner model (not shown),
our tests should return latent inhibition effectiveness values of ~0.6. However, we



see effectiveness values typically between 0.85 and 0.95, which seems to suggest
that the novel stimulus really dominates the association and the familiar stimu-
lus receives disproportionately little association. As mentioned earlier, however,
this lateral inhibitory model of the striatum has competitive properties. It ap-
pears that this makes up the difference in the effectiveness measure, where the
familiar (less salient) stimulus is not very competitive and is overwhelmed by
background activity when presented alone.

Unovershadowing is especially affected by the lateral learning rate. A sharp
increase in unovershadowing observability occurs as the lateral learning rate
becomes positive. In agreement with equations 8 and 9 (Appendix A), this sug-
gests that for unovershadowing to be observed, a neuron’s lateral weights must
increase when its input weights increase, and decrease when they decrease. This
is unusual since, if gradient descent had been used to derive the lateral weight
update equation as was done for the input weight update equation, the lateral
weights would have learned in the opposite sense (i.e. would have increased when
input weights decreased, etc.).

Parameters which show some of the least robustness include the standard de-
viation of input noise, tuning curve width, activation exponent (), and number
of inputs per feature. In all of these cases, we see the neuron activity becoming
too weak or too strong leading either to test incompletion or system instability,
as evidenced by extreme changes in effectiveness measures. If instead of inde-
pendently varying the parameters, the learning rates were also adjusted to lead
to proper activity levels throughout the test, these results would show greater
robustness and better reveal the effects of varying these parameters.

6 Conclusions and Future Work

We have characterized a brain-based VFA in terms of classical conditioning tests
that represent RL strategies for accurate and efficient value-function updates.
This approach is not limited to brain-based VFAs, but may be applied to others
with the assumption that these tests represent RL strategies worth emulating.
Testing the striatum-based VFA for convergence for arbitrary state-value maps
and making specific RL task comparisons are worthwhile and should be investi-
gated.

Systematically varying the VFA parameters led to both assessing the model’s
degree of robustness and helping to determine how the VFA is capable of success-
fully performing the tests. This striatum-based VFA has shown to be generally
robust to changes in the parameters in these tests, supporting the notion that the
striatum may be the seat of general purpose reward-value encoding in the brain.
The VFA’s ability to effectively demonstrate latent inhibition and unovershad-
owing is especially worthy of note, being emergent properties of the competitive
nature and lateral learning in the VFA.
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Appendix A

Formally, the striatum-based neural network can be represented as:

T = —u(z,t) +/wI(x,y)I(y,t)dy—/wL(x,z)r(u(z,t))dz (6)

Yy z

(7)

0 otherwise

r(u):{el(u—€0)92, u>90

where w! and w” are the synaptic weights connecting external input (I(y,t))
and lateral inputs from other neurons respectively. The activation function, r(u),
transforms the internal state (average membrane potential) to an instantaneous
population firing rate. Parameter 6y is the x-intercept, 6; is the slope multiplier,
and 65 is the exponent (r(u) is a threshold-linear activation function when 6y =
1). Neurons only activate if their internal state is greater than the threshold.

Learning in the model happens in two ways. Weights receiving external inputs
learn according to gradient descent, minimizing the squared RPE (J = %RPEQ),
resulting in

w!(z,y) = w'(2,y) + aD(x) RPE 0261 (u(z,t) — 00)%2 11 (y, t)] (8)

where « is the learning rate and D(z) = 1 for direct pathway neurons and —1
for indirect pathway neurons. The weights receiving lateral inputs learn in an a
way that opposes the gradient,

wh(z,z) = w(z, 2) + apD(z)RPE [9291(u(x, t) —00)2 71 Q(u(z, t))] (9)
where 3 is the relative learning rate for the lateral input connections, and Q(u) =
1 for u > 6y and 0 otherwise. Just as for r(u), there is no weight change for either
of these learning equations when u(x,t) < 6.
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