
2 Sensing, acting and control

This is a busy chapter where we review some fundamental techniques for robotics.
We will learn how to acquire images from a webcam and to filter the image in order
to look for specific items. We will then explain how to use a Lego NXT with Matlab,
that is, how to send motor commands and how to receive sensor information that we
can then use in our math lab program. We will practice this programming with some
first robotics tasks. Furthermore, we will discuss some basic kinematics models for
some example robots and finally review some basic control theory as it is essential
in robotics applications and it also provides us with a framework to explore machine
learning methods.

2.1 Basic computer Vision

Cameras and other sensors that can sense physical objects in the environment, such
as infrared cameras to sense heat distributions or scanning sonars for underwater
applications, are an important source of sensory information. The main challenge with
such data is how to interpret them as we usually want to extract more meaningful
information from them such as recognizing objects or distances to obstacles. Vision is
a major sensory source for humans and our brain is specialized in interpreting signals
from our eyes. Machine learning has contributed considerably to recent progress in
computer vision including object tracking and object recognition. We will not enter
into this discuss here but rather show how to use a webcam with Matlab and how to
do basic operations on such acquired pictures of videos that typically form the first
stage of more sophisticated vision systems. These techniques will also become handy
in later experiment.

2.1.1 Acquiring data from webcams with Matlab

In order to process video streams, we will use Mathwork’s Image Acquisition Toolbox
in Matlab3. First we make sure the toolbox is installed in your Matlab version and
configured and describe commands to retrieve information of your specific system. To
do so, use the command
imaqhwinfo

ans =

3There are also some alternatives, For example see http://www.mathworks.com/matlabcentral/fileexchange/35554-
simple-video-camera-frame-grabber-toolkit

Sensing, acting and control28 |

InstalledAdaptors: {’dcam’ ’gige’ ’macvideo’}
MATLABVersion: ’8.1 (R2013a)’
ToolboxName: ’Image Acquisition Toolbox’

ToolboxVersion: ’4.5 (R2013a)’

More specific information can be obtained with
>> HD=imaqhwinfo(’macvideo’)

HD =

AdaptorDllName: [1x85 char]
AdaptorDllVersion: ’4.5 (R2013a)’

AdaptorName: ’macvideo’
DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

More specific information of the supported video format and size can be obtained by
inspecting the previously ceated HD object,
HD.DeviceInfo(1)

ans =

DefaultFormat: ’YCbCr422_1280x720’
DeviceFileSupported: 0

DeviceName: ’FaceTime HD Camera (Built-in)’
DeviceID: 1

VideoInputConstructor: ’videoinput(’macvideo’, 1)’
VideoDeviceConstructor: ’imaq.VideoDevice(’macvideo’, 1)’

SupportedFormats: {’YCbCr422_1280x720’}

Now we are ready to show how to create a video stream and to display it in a
Matlab figure window. On a windows system, likely the most common way to achieve
this is

1 stream = videoinput('winvideo', 1);
2 preview(stream);

Under normal circumstances, a new window opens with a preview of the video
stream. Mac and Unix user should replace the string winvideo with macvideo or
unixvideo respectively. The number ofter this string represents the ID of the camera.
The build-in camera has usually ID=1, but you might need to specify another number
when you use an external camera. The string you should use is also specified in the
VideoInputConstructor line from the DeviceInfo command.

In order to process a frame in this video image we need to retrieve a single frame
from the video stream that we created previously. First, we specify the colorspace we
want to obtain, such as RGB, then get a snapshot from the video steam, and finally
display it with the imgshow command,

| 29Basic computer Vision

1 set(stream,'ReturnedColorSpace','rgb');
2 frame = getsnapshot(stream);
3 imshow(frame);

The picture is stored as object frame in the Matlab Workspace. Its size depends on the
resolution of the webcam and the chosen colorspace. With a 720x1280 resolution and
in RGB for example, the obtained frame will be a 720x1280x3 uint8 object. As an
example to process this image directly with Matlab, let us extract the red component
and display this alone with the imshow command

1 frameGrey=frame(:,:,1);
2 imshow(framGrey)
3 \end{verbatim}
4 The reason that this image appears in grey is that the values ...

in the two dimensional matrix are now interpreted as grey ...
values.

5
6 Finally, in order to read continuously from a camera and ...

display the obtained frames in a loop one can use the ...
following program. Press the \textit{q} key to terminate ...
the loop.

7
8 \begin{lstlisting}
9 close all; clear all;

10
11 stream=videoinput('winvideo',1);
12 triggerconfig(stream,'manual');
13
14 VideoLoop=figure;
15 while true
16 frame=getsnapshot(stream);
17 imshow(frame);
18 %retrieves a keyboard interruption
19 key=get(gcf,'currentkey');
20 %if the pressed key is 'q', the loop is interrupted and ...

the figure closes
21 if strcmp(key,'q')
22 close(VideoLoop);
23 break;
24 end
25 end

2.1.2 Image filtering with convolutions

Let us now start manipulating a singe grey image further. As a first example let us
created a new smoothened image Imean by averaging the pixels over a certain region,
say over a region of size 11 by 11 pixels. The value of a pixel at (x, y) of the new
image is then defined by us to be the average pixel values of an 11⇥ 11 image patch,
and we shift around the centre pixel at (x, y),

Imean

(x, y) =
1

121

5X

u=�5

5X

v=�5

I(x� u, y � v). (2.1)

Sensing, acting and control30 |

The new image is a bit smaller than the original as the pixels at the edges don’t
have pixels on one side. We could adjust for this in various ways such as buffering
a surrounding are with with constants pixels or using periodic boundary conditions
where we add pixels from the other side of the matrix. In order to accommodate filters
with even sizes of pixels, we could also assigned the average within a patch of the
image to the upper left corner of this patch, or too any other location within the patch.
The important part is that we are moving a square systematically around the image
and in this way generate a new processed version of this image.

In order to generalize this averaging procedure later to averages with different
weights, we define a matrix k(u, v) with indices u and v. to continue the example
above, both indices could run between the values of -5 and 5. All the elements of this
matrix are set to one, k(u, v) = 1, so that the above equation is equivalent to

Imean

(x, y) =
1

N2

X

u

X

v

I(x� u, y � v)k(u, v), (2.2)

where N = 11 is the number of pixels in the filter.

Fig. 2.1 Original picture on the left and the filtered version with a uniform filter of size 40⇥ 40.

An example of such a procedure is shown in Fig. 2.1. On the left side is the original
image acquired with a webcam with 720⇥ 1280 pixels. On the right is a smoothened
version of it using the procedure just defined. The image is a bit more blurry, but
we will see that this will be useful for some of the applications below such as when
downsampling images or to reduce noise in the image.

The matrix k is called a kernel, and the operation described in eq.2.2 is called a
convolution. For a large number of pixels it is sometimes more convenient to describe
the image as a continuum, so that a convolution can be written as

Imean

(x, y) =

Z

u

Z

v

I(x� u, y � v)k(u, v)dudv. (2.3)

Of course, we can define convolutions in different dimensions, not just in the two
dimensional picture plane described here. By defining different kernel function we
can achieve different effects. For example, it might seem more natural to average an
image more smoothly, given nearby nodes more weight than distant nodes. This can
be achieved with a Gaussian kernel

| 31Basic computer Vision

k(u, v) =
1p
2⇡�

e
�(u,v)2

�

2 . (2.4)

Smoothing with Gaussian kernels is a common technique in computer vision, and the
resulting picture for our test image is shown in Fig. 2.1b. The kernel function also
defines a filter, and a convolution can be seen as a linear filtering operation.

Exercise

An example program that was used to produce the filtered image shown on the right
in Fig. 2.1 is given below. This program uses the build in Matlab function conv2()
to calculate the 2-dimensional convolution. Write a Matlab function that replaces this
function and implements the convolution from scratch. Explain the black border in the
filtered image.

1 original=frame(:,:,1);
2 imshow(original)
3
4 filter=ones(40);
5 filtered=conv2(filter,double(original));
6 filtered=filtered./max(max(filtered))*255;
7 imshow(uint8(filtered))

2.1.3 Linear filtering: Finding a color blob

An easy way to localize some environmental object is by tagging it with some unique
colour and trying to detect this in the image. This will be used later for some exercises
in localization and planing. For the following exercise take some coloured electrical
tape of some other coloured material and attach it to the robot arm. We can first test
it statically, but we will later use it to detect the location of the arm when the arm is
moving.

To detect a certain colour in an image we need to process the colour channels.
We can write a little application that takes an image and in which we could point to a
location in the image to return the values. This program is shown in Table ??. (explain
program)

Once we have RGB value for the target colour we can use them to locate the colour
in a video stream. For this it is useful to take some of the absolute differences between
a video screen colour values and the target values. Small values indicate pixels close
to the target colour. Since the target area corresponds to a cluster of such pixels, we
could use an averaging method such as Gaussian smoothing followed by finding the
minimum to locate the centre of the target area.

An alternative to the colour method for finding the position of the robot arm it
motion segmentation. Segmentation of an image is an important step in building scene
representations, and the following sections talks about some methods that commonly
build the basis of segmentation for still images. The beauty of video streams is that
there is more information in it that we can use for segmentation. In the example with
the robot arm, we assume that only the robot arm is moving. We can therefore use
differences of video captures in consecutive frames to determine the moving object.

Sensing, acting and control32 |

Finally we want to translate the tracking of the robot arm to a number representing
the degrees of rotation of the upper motor of the robot arm. For this we will use machine
learning techniques. The first is to use linear regression on the motion segmented robot
arm. The other is to use the support vector regression to map the (x, y) coordinates
to rotation angles. Note that both cases correspond to supervised learning that require
measurements that we will use as teacher signals.

Exercise

• Write a program to locate a colour blob in a video stream and indicate this target
location with a circle. Similarly, use as an alternative motion segmentation and
compare the location estimation in form of a pixel coordinate between the two
methods.

• Write a program that translates a pixel coordinate to the estimation of the rotation
angle of the motor and compare the location estimation of the two segmentation
methods with the coordinates returned by the motors.

2.1.4 Gradient filters: Edge detection

While Gaussian smoothing is useful for noise reduction, it does not help us much
with the identification of objects. To work towards such a goal we should recognize
that objects are somewhat defined by their extensions, and the borders of objects are
typically characterized by edges in a two-dimensional image. It is hence useful to think
about how to build filters that highlight edges. For example, let us consider an image
with a sharp vertical edge like the one give by the matrix

Iv =

0

BB@

100 100 100 10 10 10

100 100 100 10 10 10

100 100 100 10 10 10

100 100 100 10 10 10

1

CCA

and lets convolve this with the filter k = (1,�1) the resulting image is

Ivedge =

0

BB@

0 0 90 0 0

0 0 90 0 0

0 0 90 0 0

0 0 90 0 0

1

CCA

Similar, let us consider an image with a horizontal edge

Ih =

0

BB@

100 100 100 100 100 100

100 100 100 100 100 100

10 10 10 10 10 10

10 10 10 10 10 10

1

CCA

and the filter k =

✓
1

�1

◆
. The resulting image highlights a horizontal edge

| 33Building and driving a basic Lego NXT robot

Ivedge =

0

@
0 0 0 0 0

90 90 90 90 90

0 0 0 0 0

1

A

Of course, edges in our webcam pictures are never this sharp, and it is hence useful to
smoothen them. A continuous version of edge filters is for example described by Gabor
functions such as the ones shown in Fig. 2.2a and b. A Gabor function is described by
a sinosodally-moduated Gaussian,

k(u, v) = e�
u

2+�v

2

2⇤�2
cos(

2⇡

�
u+ ↵). (2.5)

The example of a 64

2 pixel filter with parameters � = 0.5, � = 10, � = 32, and
↵ = ⇡/2 is shown in Fig. 2.2a. This filter can also be rotated with a rotation matrix

✓
x
y

◆

✓
cos(↵) sin(↵)
� sin(↵) cos(↵)

◆✓
x
y

◆
(2.6)

as shown in Fig. 2.2b for ↵ = ⇡. The figure also includes an example of applying these
filters to an image from a webcam.

A. Gabor function with \phi = \pi/2 B. Rotated version of A

Fig. 2.2 Example of Gabor functions for (a) vertical and (b) horizontal edge detection. (c) Original
image. (d) Filter Image using filters in (a) and (b).

Exercise

Take an image of your choosing and use Gabor filters to filter the image. Show the
resulting image with two different angular parameter.

2.2 Building and driving a basic Lego NXT robot

2.2.1 Arm and Tribot

We will actively use the Lego Mindstorm robotics system in this course. This system
is based on common Lego building blocks that we use for two principle designed

Sensing, acting and control34 |

that we build below. The Lego NXT robotics system includes a microprocessor in a
unit called the brick which can be programmed and used to control the sensors and
actuators. The brick is programmable with a visual programming language provided
by Lego, and there exists a multitude of systems to program the brick with other
common programming languages. We will be using the brick mainly to communicate
with the motors and sensors while implementing the machine learning controllers on
an external computer connected by either USB cable or wireless bluetooth.

We will be using two basic robot designs for the examples in this course. One is
a simple robot arm that is made out of two motors with legs to mount it to a surface
and a pointer as shown in Fig.2.3 A. Our basic robot arm is constructed by attaching
the base of one motor, that we call elbow, to the rotating part of a second motor, that
we call the shoulder, as shown in Fig.2.3A. We also attach a long pointer extension to
elbow that will become useful in some later exercises. Finally, we add some legs that
we can be taped to a table surface in order to stabilize Motor2 to a fixed position. The
precise design is not crucial for most of the exercises as long as it can rotate freely
both motors.

We will also use a basic terrestrial robot called the tribot shown in Fig.2.3B. The
tribot used here is a slight modification of the standard tribot as described in the Lego
NXT robotics kit. A detailed instruction for building the basic tribot is included in the
Lego kits, either in the instruction booklet or the included software package. It is not
crucial that all the parts are the same. The principle idea behind this robot is to have
a base with two motors to propel the tribot. and several sensors attached to it. There
is commonly a third passive wheel that is only used to stabilize the robot, and we
included a way to lock it to a straight position to facilitate cleaner movements along a
straight line. Some versions of Lego kits have tracks that can be used in most of the
exercises. The exact design is not critical and can be altered as seen fit.

2.2.2 NXT Matlab Software Environment

The ‘brain’ of our robots will be implemented on PCs and we will use a Matlab
environment to implement our high-level controllers. Most examples are minimalistic
in order to concentrate on the algorithmic ideas behind machine learning methods
explored in this book. While there are more advanced robotics environments with
more elaborate frameworks such as ROS (Robot Operating System), we want to keep
the overhead small by using only direct methods to communications with actuators
and sensors. This section describes the Matlab environment and packages that we use
in the following.

2.2.3 Mindstorm NXT toolbox installation

We will use some software to control the Lego actuator and gather information from
their sensors within the Matlab programming environment. To enable this we need to
install software developed at the German university called ‘RWTH Aachen’, which in
turn uses some other drivers that we need to install. Most of the software should be
installed in our Lab, but we will outline briefly some of the installation issues in case
you want to install them under your own system or if some problems exists with the
current installation. The following software installation instructions are adapted from

| 35Building and driving a basic Lego NXT robot

A. Robotarm with attached
 dawing pen

B. Tribot with ultrasonic, touch
 and light sensor

Fig. 2.3 (A) A robot arm made out of two motors, shoulder and elbow, a pointer arm, and some
support to tape it to a table surface. This version has also a pen attached to it. (B) Basic Lego
Robot called tribot with the microprocessor, two motors, and three sensors, including a ultrasonic
and touch sensor pointing forward and a light sensor pointing downwards.

Fig. 2.4 Basic Lego Robot with microprocessor, two motors, and a light sensor.

RWTH Aachen University’s NXT Toolbox website:
http://www.mindstorms.rwth-aachen.de/trac/wiki/Download4.03

1. Check NXT Firmware version
Check what version of NXT Firmware is running on the NXT brick by going
to "Settings" > "NXT Version". Firmware version ("FW") should be 1.28. If it
does not, it needs to be updated (Note: The NXT toolbox website claims version
1.26 will work, however it will not)
To update the firmware:

Sensing, acting and control36 |

The Lego Mindstorms Education NXT Programming software is required to
update the firmware. In the NXT Programming software, look under "tools"
> "Update NXT Firmware" > "browse", select the firmware’s directory, click
"download".

2. Install USB (Fantom) Driver (Windows only)
If the Lego Mindstorms Education NXT Programming software is already on
your computer, this should already be installed. Otherwise, download it from:
http://mindstorms.lego.com/support/updates/
If you run into problems with the Fantom Library on windows go to this site for
help. http://bricxcc.sourceforge.net/NXTFantomDriverHelp.pdf
If you have Windows 7 Starter edition the standard setup file will not run properly.
To install the Fantom Driver go into Products and then Lego NXT Driver 32
and run LegoMindstormsNXTdriver32.
The fantom USB driver seem not to work on the Mac, but we will anyhow use
the bluetooth connections.

3. Download the Mindstorms NXT Toolbox 4.03:
Download: http://www.mindstorms.rwth-aachen.de/trac/wiki/Download

• Save and extract the files anywhere, but do not change the directory struc-
ture.

• The folder will appear as "RWTHMindstormsNXT"
4. Install NXT Toolbox into Matlab

In Matlab: "File" > "SetPath" > "Add Folder", and browse and select "RWTH-
MindstormsNXT" - the file you saved in the previous step.

• Also add the "tools" folder, which is a subdirectory of the RWTHMind-
stormsNXT folder.

• Click "save" when finished.
5. Download MotorControl to NXT brick

Go to http://bricxcc.sourceforge.net/utilities.html for the download. Use the USB
cable for this step

Windows: Download NeXTTool.exe to RWTHMindstormsNXT/tools/MotorControl.
Under RWTHMindstormsNXT/tools/MotorControl, double click Trans-
ferMotorControlBinaryToNXT, click "Run", and follow the onscreen in-
structions. If this fails, try using the NBC compiler (download from
http://bricxcc.sourceforge.net/nbc/) instead of the NeXTTool; again save
it under the MotorControl folder.

Mac: Download the NeXTTools for Mac OS X. Run the toolbar and open the
XNT Explorer (the globe in the toolbar). With the arrow key at the top,
transfer the file MotorControl21.rxe to the brick.

6. Setting up a Bluetooth connection

To connect to the NXT via bluetooth you must first turn on the bluetooth in the
NXT and make sure that the visibility is set to on. Then use the bluetooth device
on your computer to search for your specific NXT. By default the name is NXT,
but as a first step we will rename each brick.

| 37Building and driving a basic Lego NXT robot

Create a connection between the computer and the NXT. When you create the
connection between the NXT and the bluetooth device the NXT will ask for a
passkey (usually either 0000 or 1234 on the NXT screen and press the orange
button. The computer will then ask for the same passkey. To test the connec-
tion, type the command COM OpenNXT(’bluetooth.ini’); in the Matlab
command window. The command should run without any red error messages.
If there is an error check to see if the COMPort the Matlab code is looking
for is the same as the one used in the connection made between the blue-
tooth device and the NXT. Also turning the NXT off and back on again can
help. After every failed COM OpenNXT(’bluetooth.ini’); command type
COM CloseNXT(’all’); to close the failed connection for a clean new at-
tempt. To switch on a debug mode enter the command DebugMode on before
entering the command COM OpenNXT(’bluetooth.ini’); . Also, make sure
that the bluetooth.ini file is present. There are sample files for Windows ad Linux
(Mac) in the main RWTH toolbox folder. Also, check if the port name is correct
by typing ls -ltr /dev in a terminal window.

7. Does it work?
In Matlab, enter the commands below into the command window. The command
should execute without error and the NXT should play a sound.
h=COM OpenNXT(’bluetooth.ini’);
COM SetDefaultNXT(h);
NXT PlayTone(400,300);

2.2.4 Basic Matlab NXT commands

The following is a summary of most Matlab commands from the NXT toolbox. The
documentation from the RWTH web site contains always updated information.

2.2.4.1 Startup NXT
The first thing to do is make sure the workspace is clear. Enter:

COM CloseNXT(’all’);
close all;
clear all;

To start, enter:
hNXT=COM OpenNXT; %hNXT is an arbitrary name
COM SetDefaultNXT(hNXT); %sets opened NXT as the

%default handle

2.2.4.2 NXT Motors
Motors are treated as objects. To create one, enter:
motorA = NXTMotor(’a’); %motorA is an arbitrary name, ’a’ is

%the port the motor connected to

This will give:

Sensing, acting and control38 |

Fig. 2.5 Example of calling the COM OpenNXT() command without arguments. The command
returns some information of about the system.

NXTMotor object properties:
Port(s): 0 (A)
Power: 0

SpeedRegulation: 1 (on)
SmoothStart: 0 (off)

TachoLimit: 0 (no limit)
ActionAtTachoLimit: ’Brake’ (brake, turn off when stopped)

Below is a list of these properties and how to change them:

Power
Determines speed of the motor
motorA.Power=50; % value must be between -100 and 100 (negative

% will cause the motor to rotate in reverse)

SpeedRegulation
If the motor encounters some sort of load, the motor will (if possible) increase it power
to keep a constant speed

motorA.SpeedRegulation=true; % either true or false, or
alternatively, 1 for true, 0 for
false

SmoothStart

| 39Building and driving a basic Lego NXT robot

Causes the motor to slowly accelerate and build up to full speed.
Works only if ActionAtTachoLimit is not set to ’coast’ and if TachoLimit>0

motorA.ActionAtTachoLimit= true; % either true or false, or
% 1 for true, 0 for false

ActionAtTachoLimit
Determines how the motor will come to rest after the TachoLimit has been reached.
There are three options:
1. ’brake’: the motor brakes
2. ’Holdbrake’: the motor brakes, and then holds the brakes
3. ’coast’ the motor stops moving, but there is no braking

motorA.ActionAtTachoLimit=’coast’;

TachoLimit
Determines how far the motor will turn

motorA.TachoLimit= 360; % input is in terms of degrees

Alternative Motor Initiation
Motors can also be created this way:

motorA=NXTMotor(’a’, ’Power’, 50, ’TachoLimit’, 360);

SendToNXT
This is required to send the settings of the motor to the robot so the motors will actually
run.

motorA.SendToNXT();

Stop
Stops the motor. There are two ways to do this:
1. ’off’ will turn off the motor, letting it come to rest by coasting.
2. ’brake’ will turn cause the motor to be stopped by braking, however the motors will
need to be turned off after the braking.

motorA.Stop(’off’);

ReadFromNXT();
Returns a list of information pertaining to a motor

motorA.ReadFromNXT();
Entering motorA.ReadFromNXT.Position(); will return the position of the motor
in degrees.

Sensing, acting and control40 |

ResetPosition
Resets the position of the motor back to 0

motorA.ResetPosition();

WaitFor
Program will wait for motor to finish current command. For example:

motorA=(’a’, ’Power’, 30, ’TachoLimit’, 360);
motorA.SendToNXT();
motorA.SendToNXT();

The immediate repetition of the motor command will cause problems as the motor can
only process one command at a time. Instead, the following should be entered:

motorA=(’a’, ’Power’, 30, ’TachoLimit’, 360)
motorA.SendToNXT();
motorA.WaitFor();
motorA.SendToNXT();

The exception to this is if TachoLimit of the motor is set to 0.

2.2.4.3 Using Two Motors At Once
Some operations, for example driving forward and backwards, require the simultaneous

use of two motors. Entering:

B=NXTMotor(’b’, ’Power’, 50, ’TachoLimit’, 360);
C=NXTMotor(’c’, ’Power’, 50, ’TachoLimit’, 360);
B.SendToNXT();
C.SendToNXT();

will start the bot moving, but the signals for both motors to start at will not be sent at
exactly the same time, so the robot will curve a little and fail to drive in a straight line.
Instead, you should enter:

BC=NXTMotor(’bc’, ’Power’, 50, ’TachoLimit’, 360);

OR

BC = NXTMotor(’bc);
BC.Power=50;
BC.TachoLimit=360;

Turning left or right can be achieved by only running one motor at a time, or by moving
both motors, but one slower than the other.

2.2.4.4 Sensors
The following commands are used to open a sensor, plugged into port 1:

| 41Building and driving a basic Lego NXT robot

OpenSwitch(SENSOR 1); % initiates touch sensor
OpenSound(SENSOR 1, ’DB’); % initiates sound sensor, using

% either ’DB’ or ’DBA’
OpenLight(SENSOR 1, ’ACTIVE’); % initiates light sensor as

% either’ACTIVE’ or ’INACTIVE’,
% plugged into Port 1

OpenUltrasonic(SENSOR 1); % initiates ultrasonic sensor
% plugged into Port 1

The following com-

mands are used to get values from the sensor plugged into port 2:

GetSwitch(SENSOR 2); % returns 1 if pressed, 0 if depressed
GetSound(SENSOR 2); % returns a value ranging from 0-1023
GetLight(SENSOR 2); % returns a value ranging from 0 to

% a few thousand
GetUltrasonic(SENSOR 2); % returns a value in cm

To close a sensor, ex. Sensor 1:

CloseSensor(SENSOR 1); %properly closes the sensor

2.2.4.5 Direct NXT Commands
PlayTone
Plays a tone at a specified frequency for a specified amount of time

NXT PlayTone(400,300); % Plays a tone at 400Hz for 300 ms

KeepAlive
Send this command every once in a while to prevent the robot from going into sleep
mode:

NXT SendKeepAlive(’dontreply’);

Send this command to see how long the robot will stay awake, in milliseconds:

[status SleepTimeLimit] = NXT SendKeepAlive(’reply’);

GetBatteryLevel
Returns the voltage left in the battery in millivolts

NXT GetBatteryLevel;

StartProgram/StopProgram
To run programs written on LEGO Mindstorms NXT software, enter:
NXT StartProgram(’MyDemo.rxe’) % the file extension ’.rxe’ can be

% omitted, it will then be automatically
% added

Sensing, acting and control42 |

Entering NXT StopProgram stops the program mid-run

2.2.5 First examples:

Wall avoidance
The following is a simple example of how to drive a robot and use the ultrasonic

sensor. The robot will drive forward until it is around 20 cm away from a barrier (i.e.
a wall), stop, beep, turn right, and continue moving forward. The robot will repeat this
5 times. Attach the Ultrasonic sensor and connect it to port 1. The study and run the
following program.

1 COM\ CloseNXT('all'); &\%cleans up workspace\\
2 close all;\\
3 clear all;\mbox{}\\
4
5 hNXT=COM\ OpenNXT('bluetooth.ini'); &\% initiates NXT, hNXT is ...

an arbitrary name\\
6 COM\ SetDefaultNXT(hNXT);&\%sets default handle\\\mbox{}\\
7
8 OpenUltrasonic(SENSOR\ 1);\\\mbox{}\\
9

10 forward=NXTMotor('BC';); \&\% setting motors B&C to drive forward\\
11 forward.Power=50;\\
12 forward.TachoLimit=0;\\
13 turnRight=NXTMotor('B'); \&\% setting motor B to turn right\\
14 turnRight.Power=50;\\
15 turnRight.TachoLimit=360;\mbox{}\\
16
17 for i= 1:5\\
18 \indent while GetUltrasonic(SENSOR\ 1)>20\\
19 \indent\indent forward.SendToNXT(); &\%sends command for robot ...

to move forward\\
20 \indent\indent &\%TachoLimit=0; no need for a WaitFor() statement\\
21 \indent end \%while\\
22 \indent forward.Stop('brake'); &\%robot brakes from going forward\\
23 \indent NXT\ PlayTone(400,300); &\%plays a note\\
24 \indent turnRight.SendToNXT; &\%sends the command to turn right\\
25 \indent turnRight.WaitFor; &\%TachoLimit is not 0; WaitFor() ...

statement required\\
26 end \%for \mbox{}\\
27
28 turnRight.Stop('off'); &\%properly closes motors\\
29 forward.Stop('off');\\
30 CloseSensor(SENSOR\ 1); &\%properly closes the sensor\\
31 COM\ CloseNXT(hNXT); &\% properly closes the NXT\\
32 close all;\\
33 clear all;

Exercises: Line following

Writing a controller that uses readings from its light sensor to drive the tribot along a
line. You can use electrical tape for the line to follow.

