

CSCI 1108

Project Management

Today's Topics

- The Project:
 - Qualifying Event for Robot Olympics
- Program Planning
 - Strategy
 - Tactics
- Project Management [1]
 - Motivation
 - What's to manage
 - Scheduling tasks
 - Gantt charts
 - Managing risk

[1] <u>https://ocw.mit.edu/courses/mechanical-engineering/2-000-how-and-why-machines-work-spring-2002/tools/management.pdf</u>

Qualifying Event for Robot Olympics

- The event:
 - Line Hurdles

- Your team's Tasks:
 - Write a program for the event
 - Compete in the Qualifying Event
 - Write a report on your project

General Rules

- One program for the event
 - Program cannot be changed once competition begins
- No human interference
 - You may not touch a robot while it is competing
 - Robots may be disqualified if interference occurs
- Robot's performance affects your grades
 - See project specifications for rubric

Line Hurdles

- As quickly as possible
 - Race to the end of the line
 - Go around the green blocks
 - Do not dislodge the blocks
- Robot has three 1-minute attempts

The Project Report

General Information

- Report is aimed at peers, TAs, & instructor
- 5 pages, 11pt (see template)
- The report must
 - Provide sufficient background
 - Describe the program design, strategy, and tactics
 - Justify your design decisions
 - Describe how successful the programs were
 - State overall conclusions
- Rubric in project specification

Recommended Structure

- Title and author information
- Abstract
- Introduction
- Background
- Main Body
 - Line Hurdles
- Results
- Conclusions and Future Work
- References

Deliverables

- One Program
 - Loaded on your robot to compete in the Qualifying event for the Robot Olympics.
 - Must be submitted via csci1108@gmail.com before your presentation period (October 11/12)
- Technical Report in PDF or Word format
 - 5 pages
 - In hard copy (start of the next Lab following the presentation period)
 - Must be submitted via csci1108@gmail.com (October 13/14)

Where Do We Start???

• Situation:

- 2 Labs (+ overtime if need be)
- 1 Program
- 1 Project Report
- 3 to 5 group members
- 1 Robot
- Step 1: Identify the Tasks
 - Develop a program
 - Write a project report

Steps for Developing a Program

- 1. Develop program *strategy*
- 2. Identify *tactics* to implement the strategy
- 3. Model tactics with state transition diagrams
- 4. Implement program based on STDs
- 5. Test your program
- 6. Refine strategy and tactics as necessary
- 7. Repeat

Strategy

- How are we going to solve the problem?
 - Typically there is more than one way
 - Can be described in a couple sentences
- Example: The Line Race
 - Go as quickly as possible, and pay the price of losing the line

Start

Finisł

- Go slow enough and never lose the line

Strategy (cont.)

- Should be able to describe the strategy in a couple of sentences
- Use one strategy per problem
- A strategy is implemented with *tactics*
 - Tasks
 - Ideas
 - Concepts
- Each part of the strategy must be implemented with one or more tactics

Tactics

- Tactics are how you implement the strategy
- Example: Following the line at full speed
 - Implement a good recovery mechanism
 - Make sure your tires have good traction
- Tactics may be composed of multiple simpler tactics
- How do you put it all together?

Program Planning

- Formulate a strategy
 - Convince yourself that you can implement it
 - Identify the tactics you will need
- For each tactic
 - Design a state transition diagram
 - Design corresponding part of the program
- Put the parts together

- How much time will this take?
- How many resources will you need?
- What to do when things go wrong?

How well do You Manage your Project?

- The first project is beginning!
- Do you have enough time for the labs?
- Are you able to get everything done?
- Did you make effective use of your time/resources/money?
- What about dependencies?
- If things go wrong?

Project Management & Team Working

The Problem

- A project consists of many parts
 - Goals and milestones
 - Tasks
 - Resources
 - Dependencies
 - Risks

To complete a project

- Accomplish all goals
- Finish all tasks on time
- Use only the allocated resources
- Satisfy all dependencies
- Adapt to things going wrong

Example: Robotics Project

Goals

- Finish the event by Oct 11/12
- Finish Reports by Oct 13/14
- Tasks
 - Develop a program
 - Write a Report
 - Compete in the event
- Resources
 - One Robot
 - Simulator
 - Three to five people

• Time

- Two 2-hour lab periods
- 7 evenings and nights
- Long weekend
- Dependencies
 - Program must be finished before the Presentation period
 - Report must be completed after the event
 - One Robot?
- Risks? (Plan B)

The Goal of Project Management

• Complete a project on time and on budget

- Identify and schedule tasks
- Allocate resources
- Anticipate and manage risks

Tasks

- A task
 - Is a piece of work that somebody has to do
 - Takes a minimum amount of time to complete
 - Requires specific resources
 - May Require certain other tasks to be completed first
 - May need to be completed before other tasks can begin
 - May take longer than expected due to unanticipated events
- For each task we need to identify
 - What the task is
 - What resources it requires
 - What tasks does it depend on
 - How much time the task will take

Identifying Tasks

- How do we identify all the tasks?
- Idea: Work backwards (reverse engineering)
 - Start with the end goal
 - Ask what task(s) are needed to achieve the goal
 - Ask what resources are needed for the tasks
 - For each task break it down into subtasks and repeat
- Does this sound familiar?

Scheduling Tasks & Allocating Resources

- Problem:
 - There are many tasks
 - There are many resources
 - Each task may have multiple dependencies
- Need to
 - Organize all of them in one place
 - Sort dependencies
 - Check for resource contention (i.e. capabilities)
- Idea: Use a Gantt chart

Gantt Charts

Resource	Period 1	Period 2	Period 3	Period 4	Period 5	Period 6	•••
Resource 1	Task 4						
Resource 2		Tack	1				
Resource 3		Iask	–	Tack	2		
Resource 4				Iask	5		
Resource 5			Task 2				
Resource 6							
Resource 7							
Resource 8	Task 4						

Gantt Chart Rules

- Time is represented horizontally (left to right)
- Resources are denoted vertically
- A task requires both time and resources
 - Represented by one or more rectangles
- If two tasks require the same resource, they cannot overlap
- If task A depends on task B, task A must follow task B
- The minimum amount of time needed to fit in all the tasks is the minimum amount needed for the project

Resource	Period 1	Period 2	Period 3	Period 4	Period 5	Period 6	
Resource 1	Task 4						
Resource 2		Tack	1				
Resource 3		Idsk	1	Tack	2		
Resource 4				IdSK	5		
Resource 5			Task 2				
Resource 6							
Resource 7							
Resource 8	Task 4						

Purpose of Gantt Chart

- Represent all tasks
- Represent resource use
- Represent dependencies
- Represent time of tasks

Resource	Period 1	Period 2	Period 3	Period 4	Period 5	Period 6	
Resource 1	Task 4						
Resource 2		Tack	1				
Resource 3		Idsk	±	Tack	2		
Resource 4				Idsk	5		
Resource 5			Task 2				
Resource 6							
Resource 7							
Resource 8	Task 4						

 Question: How do we know where to place what on the chart?

Three Main Issues

- Dependency chains
- Resource contention
- Risk management

Dependency Chains

- Task A depends on B depends on C depends on D ...
- Time of longest chain is the minimum time of the project
- Place longest chain first
- Then the next longest ...

Resource Contention

- Tasks cannot use a resource at the same time
- A *bottleneck* occurs when many tasks need the same resource
- Solution:
 - Stagger tasks to avoid resource contention
 - Add more resources to contention

Risk Management

- Things will take longer than you think!
 - What happens to our schedule if we cannot find a solution for software bugs?
- How do we accommodate this fact of life?
- Solutions:
 - Schedule tasks as early as possible to provide time to deal with unforeseen events
 - Schedule extra time for each task
 - 10% to 15% extra time per task is not uncommon