
4 Probabilistic regression and maximum
likelihood

4.1 Probabilistic motion models

We are now ready for formalize supervised learning and to demonstrate this with
a probabilistic motion model. In supervised learning we consider training data that
consist of example inputs and corresponding labels, that is, pairs of values (x(i)y(i)

),
where the index i = 1, ...,m labels each of m training example. As an example, let us
consider the estimation of the motion model for the tribot. To automate the collection
of data we can use the ultrasonic sensor to measure the distance to a wall while driving
the tribot for different amount of time forward and backward. In Fig. 4.1A we show
several measurements of the distance traveled.
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Fig. 4.1 (A) Measurements of distance travelled by the tribot when running the motor for different
number of milliseconds with constant motor power. (B) Same as (A) with random motor power.
(C,D) Corresponding histogram of differences between data and hypothesis.

The data clearly reveal some systematic relation between the time of running the
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motor and the distance traveled, the general trend being that the traveled distance
increases with increasing running time of the motors. While there seems to be some
noise in the data, the outliers and the noise can not hide a linear trend for most of the
data. This hypothesis can be quantified as a parameterized function,

h(x; ✓) = ✓
0

+ ✓
1

x. (4.1)

This notation means that the hypothesis h is a function of the quantity x, and the
hypothesis includes all possible straight lines, where each line can have a different
offset ✓

0

(intercept with the y-axis), and slope ✓
1

.
We typically collect parameters in a parameter vector ✓. We only considered

one input variable x above, but we can easily generalize this to higher dimensional
problems where more input attributes are given. For example, we could not only vary
the time the motor is running, let us label this attribute now with x

1

, but also push
the robot forward by hand for a certain time, labeled with x

2

. As the effects of these
manipulations are independent on the results, we can independently add the effects
of higher dimensions to our hypothesis. To compress our notations further we also
introduce here the convention that we consider a constant input, x

0

= 1 as the first
component of the input vector, so that the corresponding parameter encodes the offset
of the function. The state vector can then be written as,

x =

0

@
x
0

x
1

x
2

1

A . (4.2)

With this convention we can write the hypothesis as

h(x; ✓) = ✓
0

x
0

+ ✓
1

x
1

+ ✓
2

x
2

. (4.3)

It is then even easy to write a linear hypothesis with n attributes as

h(x; ✓) = ✓
0

x
0

+ ....+ ✓
n

x
n

=

X

i

✓
i

x
i

= ✓Tx, (4.4)

where the superscript T indicates the transpose of a vector.
Another factor that influences the distance traveled is the power setting of the

motor. Of course, the distance traveled within a certain time does depend on the power
and is not just an independent additive effect on the travelled distance. Results of the
experiment for different power settings and different travel times are show in Fig. 4.2.
Fig. 4.2A also includes a fit to Eq. 4.3. However, these data are better described by a
bilinear hypothesis,

h(x; ✓) = ✓
0

x
0

+ ✓
1

x
1

x
2

. (4.5)

The corresponding fit of the same data is shown in Figure 4.2B. How to perform these
fits is discussed further below.

While we had to make a good guess for the functional form of the trend in the
data, the actual parameters have so far not been specified. Thus, we made a hypothesis
in the form of a parameterized function, h(x; ✓), and the learning part boils down to
determining appropriate values for the parameters from the sample data. After learning
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Fig. 4.2 (A) Measurements of distance travelled by the tribot when running the motor for different
number of milliseconds and various power settings. Fit according to equation 4.3 (B) Same as (A)
with fit according to equation 4.5. (C,D) Corresponding histogram of differences between data and
hypothesis.

these parameters we can then use this function to predict specific reactions of a plant
even for motor commands for which no training examples were given. The remaining
question is how we find appropriate values for the parameters. However, before we do
this we need to be more faithful to the data and acknowledge fluctuation around our
initial hypothesis.

So far, we have only modelled the trend of the data, and we should investigate more
the fluctuations around this trend. Of course, we expect several sources of noise such
as the accuracy of the ultrasonic sensor and the tendency of the tribot to sometimes turn
due to wheel slippage. Indeed, while gathering these data we have fixed the follower
wheel to minimize turning when moving forward and backward. We also started new
trials when the robot went too much off track. Thus, we already try to minimize error
due to a careful setup of the experiment to gather the data.

However, what I did not tell you is that I run the experiment in Figure 4.1A with
different powers of the motor between 40 and 60. Such hidden information can also
contribute to uncertainties in the environment. Data for doing the same experiment as
before but with a fixed motor power of 50 is shown in Figure 4.1B. These data vary
less but are still noisy due other sources of uncertainty.
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Figures 4.2C and D are plots of the histogram of the differences between the actual
data and the hypothesis regression line. The histogram of plots of Figures 4.2C and D
look a bit Gaussian, which according to the central limit theorem is a likely finding for
additive and independent noise sources. In any case, we should revise our hypothesis
by acknowledging the stochastic nature of the data and writing a down a specific
functional form of a conditional density function for the quantity y given some input
values x. Similar to before, we also allow this probabilistic hypothesis to depend on
some parameters,

p(y|x; ✓). (4.6)

For our specific example of the tribot we assume here that the data follow our previous
deterministic hypothesis h(x; ✓) with additive Gaussian noise, or with other words,
that the data in Figure 4.1B are Gaussian distributed with a mean µ = h(x) depends
linearly on the value of x,

p(y|x; ✓,�) = N(µ = h(x),�) (4.7)

=

1p
2⇡�

exp

✓
� (y � ✓Tx)2

2�2

◆
(4.8)

This functions specifies the probability of values for y, given an input x and the
parameters ✓ = (µ,�)T .

Specifying a model with a density function is an important step in modern mod-
elling and machine learning. In this type of thinking, we treat data from the outset as
fundamentally stochastic, that is, data can be different even in situations that we deem
identical. This randomness may come from an irreducible indeterminacy, that is,
true randomness in the world that can not be penetrated by further knowledge, or this
noise might represent epistemological limitations such as the lack of knowledge of
hidden processes or limitations in observing states directly. The only important fact for
us is that we have to live with these limitations. This acknowledgement together with
the corresponding language of probability theory has helped to make large progress in
the machine learning area.

4.2 Parameter estimates

4.2.1 Maximum A Posteriori (MAP)

Coming up with a (probabilistic) hypothesis in form of an appropriate parameterized
(density) function is the hard problem in machine learning, and one that we have to
discuss further. However, for now we assume that we have a parameterized hypothesis,
and what is left is simply to use the data to estimate the parameters. More specifically,
we want to know the probability of the parameters, given the data. That is

p(✓|x, y) (4.9)

However, as we have seen before, we usually make the hypothesis in the form of a
probability function for the data given the parameters,

p(x, y|✓) (4.10)
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Of course, these are related by Bayes’ rule

p(✓|x, y) = p(x, y|✓)p(✓)
p(x, y)

, (4.11)

The rule considers the likelihood of the data given specific parameters, p(x, y|✓).
Each of these likelihoods should be weighted (multiplied) by our initial, or prior,
knowledge of the possible parameter, p(✓). And of course, this product needs to be
proper normalized by the probability of having the data, p(x, y) to yield a proper
probability.

Now. let us consider that we have a certain prior for the parameters, p(✓). The
prior is in this situation sometimes called the regularizer, restricting possible values
in a specific domain. And let us also consider a specific model p(x, y|✓). We are
still missing an expression for the marginal probability of having the data, p(x, y).
However, this denominator does not depend on the parameters ✓ and the most probable
values for the parameters can thus be calculated without this term. This maximum a
posteriori (MAP) estimate is given by,

✓MAP

= argmax

✓

p(x, y|✓)p(✓). (4.12)

This is, in a Bayesian sense, the most likely value for the parameters.
Note that the MAP is a point estimate, a single answer of the most likely values

of the parameters. This is often useful as a first guess and is commonly used to
make decisions about which actions to take. However, it is possible that other sets
of parameters values might have only a little smaller likelihood value, and should
therefore also be considered. Thus, one limit of the estimation methods discussed here
is that they do not take distribution of answers into account.

4.2.2 Maximum Likelihood Estimate (MLE)

Let us make the procedure of estimating the parameters of a model even more concrete
by discussing a further special case of MAP and also by considering the specific
example our model 4.7. It is common that we do not have any prior knowledge of the
parameters in which case it is common to consider all possible values of the parameters
as equally likely. The MAP estimate in this case is then given simply by maximizing
the likelihood

✓ML

= argmax

✓

p(x, y|✓). (4.13)

We will now demonstrate how to use data to make an estimate of the likelihood and
thus can make a concrete estimate for the parameters of the model.

Let us now consider that the training data a provided as input-output pairs. Thus,
the training set is given by {(x(i), y(i)); i = 1...m}. Note that the quantities x(i)

and y(i) represent specific values. We are asking now which parameters would make
the specific set of samples most likely, assuming that these are typical (unbiased) data
from the assumed distribution. To do this we need first to write down the corresponding
model for m random variable. We assume that the observations are independent so
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that we can write the joint probability of several observations as the product of the
individual probabilities,

p(y
1

, y
2

, ...., y
m

|x
1

, x
2

, ..., x
m

; ✓) = ⇧

m

i

p(y
i

|x
i

; ✓). (4.14)

Note that y
i

are random variables at this point, not the observations). We now use
our training examples as specific observations for each of these random variables, and
introduce the Likelihood function

L(✓) = ⇧

m

i

p(✓;x(i), y(i)). (4.15)

The p on the right hand side is now not a density function, but it is a regular function
of the parameters ✓ for the given values y(i) and x(i). The form of this function is the
same as the density function for the likelihood, but the notation should make it clear
that the ✓ is now a regular variable and that x(i) and y(i) are specific values.

Instead of evaluating the Likelihood function which is a large product, it is common
to use the logarithm of the likelihood function, so that we can use the sum over the
training examples,

l(✓) = logL(✓) =

mX

i

log(p(✓;x(i), y(i))). (4.16)

Since the log function increases monotonically, the maximum ofL is also the maximum
of l. The maximum (log-)likelihood can thus be calculated from the examples as

✓MLE

= argmax

✓

l(✓). (4.17)

We might be able to calculate this analytically or use one of the search algorithms to
find a maximum from this function.

Let us apply this to the model of a Gaussian model with linear mean discussed
above (eq. 4.7). The log-likelihood function for this example is

l(✓) = log⇧

m

i=1

1p
2⇡�

exp

✓
� (y(i) � ✓Tx(i)

)

2

2�2

◆
(4.18)

=

mX

i=1

✓
log

1p
2⇡�

� (y(i) � ✓Tx(i)

)

2

2�2

◆
(4.19)

= �m

2

log 2⇡� �
mX

i=1

(y(i) � ✓Tx(i)

)

2

2�2

. (4.20)

Thus, the log was chosen so that we can use the sum in the estimate instead of dealing
with big numbers based on the product of the examples.

Let us now consider the special case in which we assume that the constant �, the
variance of the data, is the same for all x and thus has a fixed value given to us. We
can thus concentrate on the estimation of the other parameters ✓. Since the first term in
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the expression 4.20, �m

2

log 2⇡�, is independent of ✓, maximizing the log-likelihood
function is equivalent to minimizing a quadratic error term

E =

1

2

(y � h(x; ✓))
2 () p(y|x; ✓) = 1p

2⇡
exp(� (y � h(x; ✓))

2

2

) (4.21)

This error function or cost function was a frequently used criteria called Least Mean
Square (LMS) regression for parameters estimation when considering deterministic
hypothesis. In terms of our probabilistic view, the LMS regression is equivalent to
maximum likelihood estimate (MLE) for Gaussian data with constant variance. When
the variance is a free parameter, then we need to minimize equation 4.20. instead.

We have discussed Gaussian distributed data in most of this section, but one can
similarly find corresponding error functions for other distributions. For example, a
polynomial error function correspond more generally to a density model of the form

E =

1

p
||y � h(x; ✓)||p () p(y|x; ✓) = 1

2�(1/p)
exp(�||y � h(x; ✓)||p). (4.22)

Later we will specifically discuss and use the ✏-insensitive error function, where
errors less than a constant ✏ do not contribute to the error measure, only errors above
this value,

E = ||y � h(x; ✓)||
✏

() p(y|x; ✓) = p

2(1� ✏)
exp(�||y � h(x; ✓)||

✏

). (4.23)

Since we already acknowledged that we do expect that data are noisy, it is somewhat
logical to not count some deviations form the expectation as errors. It also turns out
that this error function is much more robust than other error functions.

The final part that we need to discuss to fully implement probabilistic regression
are methods to find extrema. For this it is also useful to refresh our memory of basic
calculus.

4.3 Basic calculus and minimization

4.3.1 Differences and sums

We are often interested how a variable change with time. Let us consider the quantity
x(t) where we indicated that this quantity depends on time. The change of this variable
from time t to time t0 = t+�t is then

�x = x(t+�t)� x(t). (4.24)

The quantity �t is the finite difference in time. For a continuously changing quantity
we could also think about the instantaneous change value, dx, by considering an
infinitesimally small time step. Formally,

dx = lim

�t!0

�x = lim

�t!0

(x(t+�t)� x(t)). (4.25)

The infinitesimally small time step is often written as dt. Calculating with such in-
finitesimal quantities is covered in the mathematical discipline of calculus, but on the
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computer we have always finite differences and we need to consider very small time
steps to approximate continuous formulation. With discrete time steps, differential
become differences and integrals become sums

dx!�x (4.26)Z
dx! �x

X
(4.27)

Note the factor of �x in front of the summation in the last equation. It is easy to forget
this factor when replacing integrals with sums.

4.3.2 Derivatives

The derivative of a quantity y that depends on x is the slope of the function y(x).
This derivative can be defined as the limiting process equation 4.25 and is commonly
written as dy

dx

or as y0.

0 2 4 6 8 10ï�

ï���

0

���

1

y = sin(x)

y’ = cos(x)

It is useful to know some derivatives of basic functions.

y = ex ! y0 = ex (4.28)

y = sin(x)! y0 = cos(x) (4.29)

y = xn ! y0 = nxn�1 (4.30)

y = log(x)! 1

x
(4.31)

as well as the chain rule

y = f(x)! y0 =
dy

dx
=

dy

df

df

dx
. (4.32)

It is also useful to point out that the slope of a function is zero at an extremum
(minimum or maximum). A minimum of a function f(x) is hence characterized by
df

dx

= 0, and d

2
f

dx

2 > 0. The second requirement, that the change of the slope is positive,
specifies that this is a minimum rather than a maximum at which point this change in
slope would be negative.
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4.3.3 Partial derivative and gradients

A function that depends on more than one variable is a higher dimensional function.
An example is the two-dimensional function z(x, y). The slope of the function in the
direction x (keeping y constant) is defined as @z

@x

and in the direction of y (keeping x

constant) as @z

@y

. The gradient is the vector that point in the direction of the maximal
slope and has a length proportional to the slope,

rz =

✓
@z

@x

@z

@y

◆
. (4.33)

0

10

20

30

40

50

60 0
10

20
30

40

0

0.5

1

Exercise
Calculate the gradient of a two dimensional Gaussian and find the minimum.

4.4 Minimization and gradient descent
We have discussed the important principle of maximum likelihood estimation to learn
parameters from data so that the data are most likely under our hypothesis. This
principle tells us how to use the training examples to come-up with some reasonable
values for the parameters. To execute these principles we have to find the maximize of
a (log)likelihood function.

Let us for now concentrate again on the maximum likelihood estimation of the
parameters ✓ for the mean of the Gaussian data. The maximum likelihood estimate can
the be found by minimizing the mean square error (MSE) function
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E(✓) =
1

2

(y � h(x; ✓))2 (4.34)

⇡ 1

2m

X

i

(y(i) � h(x(i)

; ✓))2. (4.35)

Note that the objective function is a function of the parameters. Also, note that while we
wrote the general form of the objective function in line 4.34, we consider its maximum
likelihood estimation from independent data in line 4.35. With this objective function,
we reduced the learning problem to a search problem of finding the parameter values
that minimize this objective function,

✓ = argmin

✓

E(✓) (4.36)

We will demonstrate practical solutions to this search problem with three important
methods. The first method is an analytical one. You might remember from section 4.3.2
that finding a minimum of a function f(x) is characterized by df

dx

= 0, and d

2
f

dx

2 > 0.
Here we have a vector function since the cost function depends on several parameters.
The derivative then becomes a gradient

r
✓

E(✓) =

0

BBBB@

@E

@✓0

.

.

.
@E

@✓

n

1

CCCCA
. (4.37)

It is useful to collect the training data in a large matrix for the x values, and a vector
for the y values,

X =

⇣
x(1)... x(m)

⌘
Y =

⇣
y(1)... y(m)

⌘
. (4.38)

Now let us use again the specific linear hypothesis of the data above. We can then write
the cost function as

E(✓) =
1

2m
(Y �X✓)(Y �X✓)T . (4.39)

Some straight forward calculation will then provide the parameters for which the
gradient is zero,

✓ = (XXT

)

�1XY T , (4.40)

which is also known as the normal equation. We have still to make sure these
parameters are the minimum and not a maximum value, but this can easily be done
and is also obvious when plotting the result. This analytic methods is optimal in the
requirement of computational time. However, it requires that we can analytically solve
an equation system. This was easy in the linear case but fails in general for more
complex functions. The next methods are more widely applicable.

The second method I want to mention here is random search, which is included
mainly for illustrative purposes and to have a baseline to compare different algorithms.
In this algorithm, new random values for the parameters are tried, and these new
parameters replace the old ones if the new values result in a smaller error value (see
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Table 4.1 Program randomSearch.m

%% Linear regression with random search
clear; clf; hold on;

load healthData;
E=1000000;
for trial=1:100

thetaNew=[100*rand()+50, 3*rand()];
Enew=0.5*sum((y-(thetaNew(1)+thetaNew(2)*x)).^2);
if Enew<E; E=Enew; theta=thetaNew; end

end

plot(x,y,’*’)
plot(120:260,theta(1)+theta(2)*(120:260))
xlabel(’weight (pounds)’)
ylabel(’time of one-mile run (seconds)’)
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Fig. 4.3 Health data with linear least-mean-square (LMS) regression from random search.

Matlab code in Tab.4.3). The benefit of this method is that it can be applied to any
function. Indeed, this methods is even guarantied to find a solution, but in most of our
applications it usually takes too long to find a solution in reasonable time.

The final method discussed here for finding a minimum of a function E(✓) is
Gradient Descent. This method will often be used in the following and it will thus be
reviewed here in more detail.

Gradient Descent starts at some initial value for the parameters, ✓, and improves
the values iteratively by making changes to the parameters along the negative gradient
of the cost function,

✓  ✓ � ↵r
✓

E(✓). (4.41)

The constant ↵ is called a learning rate. The principle idea behind this method is
illustrated for a general cost function with one parameter in Fig.4.4.
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E(e)

e

Fig. 4.4 Illustration of error minimization with a gradient descent method on a one-dimensional
error surface E(✓).

The gradient is simple the slope (local derivative) for a function with one variable,
but with functions in higher dimensions (more variables), the gradient is the local
slope along the direction of the steepest accent, and since we are interested here in
minimizing the cost function we make changes along the negative gradient. For large
gradients, this method takes large steps, whereas the effective step-width becomes
smaller near a minimum. Gradient descent works often well for local optimization, but
it can get stuck in local minima. The corresponding update rule in case of the LMS
error function,

E(✓) =
1

2m

mX

i=1

⇣
y(i) � h(x(i)

; ✓)
⌘
2

, (4.42)

with a general hypothesis function h(x(i)

; ✓) is given by

✓
k

 ✓
k

� ↵

m

mX

i=1

(y(i) � h(x(i)

; ✓))
@h(✓)

@✓
k

. (4.43)

For a linear regression function, the update rule for the two parameters ✓
0

and ✓
1

are therefore:

h(x(i)

; ✓) = ✓
0

+ ✓
1

x(i) (4.44)

✓
0

 ✓
0

� ↵
@E(✓)

@✓
0

(4.45)

✓
1

 ✓
1

� ↵
@E(✓)

@✓
1

(4.46)

@E(✓)

@✓
0

=

1

m

mX

i=1

(y(i) � ✓
0

� ✓
1

x(i)

)(�1) (4.47)

@E(✓)

@✓
1

=

1

m

mX

i=1

(y(i) � ✓
0

� ✓
1

x(i)

)(�x(i)

), (4.48)

which lead to the final rule:

✓
0

 ✓
0

+

↵

m

mX

i=1

(y
i

� ✓
0

� ✓
1

x
i

) (4.49)
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✓
1

 ✓
1

+

↵

m

mX

i=1

(y
i

� ✓
0

� ✓
1

x
i

)x
i

. (4.50)

Note that the learning rate ↵ has to be chosen small enough for the algorithm to
converge. An example is show in Fig.4.5, where the dashed line shows the initial
hypothesis, and the solid line the solution after 100 updates.
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Fig. 4.5 Health data with linear least-mean-square (LMS) regression with gradient descent. The
dashed line shows the initial hypothesis, and the solid line the solution after 100 updates.

In the algorithm above we calculate the average gradient over all examples before
updating the parameters. This is called a batch algorithm or synchronous update
since the whole batch of training data is used for each updating step and the update
is only made after seeing all training data. This might be problematic in some appli-
cations as the training examples have to be stored somewhere and have to be recalled
continuously. A much more applicable methods, also thought to be more biological
realistic, is to use each training example when it comes in and disregards it right after.
In this way we do not have to store all the data. Such algorithms are called online algo-
rithms or asynchronous update. Specifically, in the example above, we calculate the
change for each training examples and update the parameters for this training example
before moving to the next example. While we might have to run through the short list
of training examples in this specific example, it can still be considered online since we
need only one training example at each training step and a list could be supplied to us
externally. There are also variations of this algorithms depending on the order we use
the training examples (e.g. random or sequential), although this should not be crucial
for the examples discussed here.

The simple gradient descent as outlined above should highlight the general idea
of gradient-based minimization. There are several problems with this simple approach
when the function to be minimized is strongly non-linear. To illustrate this better, let
us consider the Taylor expansion of a function

f(x+ ✏) = f(x) + ✏Tr
x

f +O(✏2) (4.51)

The simple gradient term is a good approximation if the higher order terms are small.
However, if these are large than we make considerable errors and the method becomes
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unstable. You can experience this when using a large learning rate. Of course, we could
then consider higher order approximations like

f(x+ ✏) = f(x) + ✏Tr
x

f +

1

2

✏TH✏+O(✏3), (4.52)

where H is the Hessian matrix. Minimization based on this second-order term is
called Newton method. While the Newton method converges after much faster than
the simple gradient method, it is often difficult or time consuming to calculate or
approximate the Hessian. There are further methods that are mainly used in practice
such as the Levenberg-Marquardt algorithm or the Natural Gradient. We will not
discuss this here in more detail, but you should consider these algorithms in practical
applications.

4.4.1 LinearRegressionExampleCode

%% Linear regression with gradient descent
clear all; clc; hold on;

load SampleRegressionData; m=50; alpha=0.001;
theta1=rand*100*((rand<0.5)*2-1);
theta2=rand*100*((rand<0.5)*2-1);

for trial=1:50000
sum1 = sum(y - theta1 - theta2 *x);
sum2 = sum((y - theta1 - theta2 *x).* x);
theta1 = theta1 + (2*alpha/m) * sum1;
theta2 = theta2 + (2*alpha/m) * sum2;
sum1 = 0; sum2 = 0;

end

plot(x, y, ’*’);
plot(x, x*theta2+theta1);
hold off;
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4.5 Classification

4.5.1 Logistic regression

We have grounded supervised learning in probabilistic function regression and maxi-
mum likelihood estimation. An important special case of supervised learning is classi-
fication where the possible y-values have only discrete values such as y = {1, 2, 3, }.
We often call the different y-values simply labels.

An important example of classification is that of binary classification which are
data that have only two possible labels such as y = (0, 1). For example, let us consider
the simplest case where the label does not depend on any feature valuex. More formally,
let us consider a random number which takes the value of 1 with probability � and the
value 0 with probability 1 � � (the probability of being either of the two choices has
to be 1.). Thus, out probabilistic model of the data is a Bernoulli distribution

p(y) = �y

(1� �)1�y (4.53)

Tossing a coin is a good example of a process that generates a Bernoulli random
variable, but our data could be from a biased coin that might favour the head to the tail.
We can again use maximum likelihood estimation to estimate the parameter � from
such trials. That is, let us consider m tosses in which h heads have been found. The
log-likelihood of having h heads (y = 1) and m� h tails (y = 0) is

l(�) = log(�h

(1� �)m�h

) (4.54)
= h log(�) + (m� h) log(1� �). (4.55)

To find the maximum with respect to � we set the derivative of l to zero,

dl

d�
=

h

�
� m� h

1� �
= 0 (4.56)
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! � =

h

m
(4.57)

As you might have expected, the maximum likelihood estimate of the parameter � is
the fraction of heads in m trials.

Now let us discuss the case when the probability of observing a head or tail,
the parameter �, depends on an attribute x, as usual in a stochastic (noisy) way. For
example, the data tend to fall into one class when the feature value is below a threshold
✓, or into the other class when above. An example is illustrated in Fig.4.6 with 100
examples plotted with star symbols. The data suggest that it is far more likely that
the class is y = 0 for small values of x and that the class is y = 1 for large values
of x, and the probabilities are more similar in-between. The most difficult situation
for such classification is around the threshold value since small changes in this value
might trigger one versus the other class. It is then appropriate to make a hypothesis for
the probability of p(y = 1|x) which is small for x (x << ✓), around 0.5 for x ⇡ ✓,
and approaching one for large x (x >> ✓). We further suggest that the transition
between the low and high probability region is smooth. We qualify this hypothesis as
parameterized density function known as a logistic (sigmoidal) function

� =

1

1 + exp(�✓Tx) . (4.58)

As before, we can then treat this density function as a function of the parameters ✓ for
the given data values (likelihood function), and use maximum likelihood estimation to
estimate values for the parameters so that the data are most likely.

ï� ï��� � ��� � ��� 2
�

���

���

���

���

�
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y

Fig. 4.6 Binary random numbers (stars) drawn from the density p(y = 1) =

1

1+exp(�✓1x�✓0)

(solid line) with offset ✓
0

= 2 and slope ✓
1

= 4 .

Specifically, let us again consider a pattern with m samples. A density function of
m independent random variables of model 4.58 is

p(y
1

, y
2

, , y
m

|x
1

, x
2

, , x
m

; ✓) =
Y

i

�(x
i

; ✓)yi

(1� �(x
i

; ✓))(1�y

i

) (4.59)

and, using the data, the corresponding log-likelihood function

l(✓) =
X

i

y(i)�(✓, x(i)

) + (1� y(i))(1� �(✓;x(i)

)) (4.60)

To find the maximum of the log-likelihood function we should again calculate the
derivative of this function with respect to the parameters. We will not do this straight
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forward calculation here, but it is useful to note that the derivative of the logistic
function can be expressed again as a function of logistic functions

g(x) =
1

1 + e�x

) @g

@x
= g(x)(1� g(x)) (4.61)

Using this we find the following gradient for each data point,

@l

@�
= (y � �(x, ✓))x. (4.62)

Note that the learning procedure looks equivalent to the linear regression discussed
above, but also note that the probabilistic model is quite different here.

How can we use the knowledge (estimate) of the density function to do classifica-
tion? The obvious choice is to predict the class with the higher probability, given the
input attribute. This bayesian decision point, x

d

, or dividing hyperplane in higher
dimensions, is given by

p(y = 1|x
d

) = p(y = 0|x
d

) = 0.5! x
d

✓Tx
d

= 0. (4.63)

We have here considered binary classification with linear decision boundaries as lo-
gistic regression, and we can also generalize this method to problems with non-linear
decision boundaries by considering hypothesis with different functional forms of the
decision boundary. However, coming up with specific functions for boundaries is of-
ten difficult in practice, and we will discuss much more practical methods for binary
classification later in this chapter.

4.6 Generative models and discriminant analysis
In the previous chapter we have introduced the idea that understanding the world should
be based on a model of the world in a probabilistic sense. That is, building knowledge
about the world really means estimating a large density function about the world. So far
we have used such stochastic model mainly for a recognition model that take feature
values x and make a prediction of an output y. Given the stochastic nature of the
systems we want to model, the models where formulated as parameterized functions
that represent the conditional probability p(y|x; ✓). Of course, learning such models
is a big task. Indeed, we had to assume that we know already the principle form of
the distribution, and we used only simple model with low-dimensional feature vectors.
The learning tasks of humans to be able to function in the real world seems much
more daunting, and even training a robot in more restricted environment seems still
beyond our current ability. While the previous models illustrate the principle problem in
supervised learning, much of the rest of this course discusses more practical methods.

At the end of the last chapter we discussed a classification task where the aim
of the model was to discriminate between classes based on the feature values. Such
models are called discriminative models because they try to discriminate between
possible outcomes based on the input values. Building a discriminative model directly
from example data can be a daunting task as we have to learn how each item is
distinguished from every other possible item. A different strategy, which seems much
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more resembling human learning, is to learn first about the nature of specific classes
and then use this knowledge when faced with a classification task. For example, we
might first learn about chairs, and independently about tables, and when we are shown
pictures with different furnitures we can draw on our knowledge to classify them. Thus,
in this chapter we start discussing generative models of individual classes, given by
p(x|y; ✓).

Generative models can be useful in their own right, and are also important to guide
learning as discussed later, but for now we are mainly interested in using these models
for classification. Thus, we need to ask how we can combine the knowledge about
the different classes to do classification. Of course, the answer is provided by Bayes’
theorem. In order to make a discriminative model from the generative models, we need
to the class priors know, e.g. what the relative frequencies of the classes is, and can
then calculate the probability that an item with features x belong to a class y as

p(y|x; ✓) = p(x|y; ✓)p(y)
p(x)

. (4.64)

We can use this directly in the case of classification. The Bayesian decision criterion
of predicting the class with the largest posterior probability is then:

argmax

y

p(y|x; ✓) = argmax

y

p(x|y; ✓)p(y)
p(x)

(4.65)

= argmax

y

p(x|y; ✓)p(y), (4.66)

where we have used the fact that the denominator does not depend on y and can hence
be ignores. In the case of binary classification, this reads:

argmax

y

p(y|x; ✓) = argmax

y

(p(x|y = 0; ✓)p(y = 0) + p(x|y = 1; ✓)p(y = 1).

(4.67)
While using generative models for classification seem to be much more elaborate, but
we will see later that generative models are attractive for machine learning.

The following example of using generative models in classification goes back
to a paper by R. Fisher in 1936. In the following examples we consider that there
are k classes, and we first assume that each class has members which are Gaussian
distribution over the n feature value. An example for n = 2 is shown in Fig. 4.7A.

Each of the classes have a certain class prior

p(y = k) = �
k

(4.68)

, and each class itself is multivariate Gaussian distributed, generally with different
means, µ

k

and variances, ⌃
k

,

p(x|y = k) =
1

p
2⇡

n

p
|⌃

0

|
e�

1
2 (x�µ

k

)

T

⌃

�1
k

(x�µ

k

) (4.69)

(4.70)

Since we have supervised data with examples for each class, we can use maxi-
mum likelihood estimation to estimate the most likely values for the parameters
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Fig. 4.7 Linear Discriminant analysis on a two class problem with different class distributions.

✓ = (�
k

, µ
k

,⌃
k

). For the class priors, this is simply the relative frequency of the
training data,

�
k

=

1

m

mX

i=1

11(y(i) = k) (4.71)

where the function 11(y(i) = k) = 1 if the ith example belongs to class k, and
11(y(i) = k) = 0 otherwise. The estimates of the means and variances within each
class are given by

µ
k

=

P
m

i=1

11(y(i) = k)x(i)

P
m

i=1

11(y(i) = k)
(4.72)

⌃

k

=

P
m

i=1

11(y(i) = k)(x(i) � µ
y

(i))(x(i) � µ
y

(i))
T

P
m

i=1

11(y(i) = k)
. (4.73)

With these estimates, we can calculate the optimal (in a Bayesian sense) decision
rule, G(x; ✓), as a function of x with parameters ✓, namely

G(x) = argmax

k

p(y = k|x) (4.74)

= argmax

k

[p(x|y = k; ✓)p(y = k)] (4.75)

= argmax

k

[log(p(x|y = k; ✓)p(y = k))] (4.76)

= argmax

k

[�log(
p
2⇡

n

p
|⌃

0

|)� 1

2

(x� µ
k

)

T

⌃

�1

k

(x� µ
k

) + log(�
k

)](4.77)

= argmax

k

[�1

2

xT

⌃

�1

k

x� 1

2

µT

k

⌃

�1

k

µ
k

+ xT

⌃

�1

k

µ
k

+ log(�
k

)], (4.78)

since the first term in equation 4.77 does not depend on k and we can multiply out the
other terms. With the maximum likelihood estimates of the parameters, we have all
we need to make this decision.
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In order to calculate the decision boundary between classes l and k, we make
the common additional assumption that the covariance matrices of the classes are the
same,

⌃

k

=: ⌃. (4.79)
The decision boundary is then

log(
�
k

�
l

)� 1

2

(µ
k

� µ
l

)

T

⌃

�1

(µ
k

� µ
l

)� x⌃�1

(µ
k

� µ
l

) = 0. (4.80)

The first two terms do not depend on x and can be summarized as constant a. We can
also introduce the vector

w = �⌃�1

(µ
k

� µ
l

). (4.81)
With these simplifying notations is it easy to see that this decision boundary is a linear,

a+wx = 0, (4.82)

and this method with the Gaussian class distributions with equal variances is called
Linear Discriminant Analysis (LDA). The vector w is perpendicular to the decision
surface. Examples are shown in Figure 4.7. If we do not make the assumption of equal
variances of the classes, then we have a quadratic equation for the decision boundary,
and the method is then called Quadratic Discriminant Analysis (QDA). With the
assumptions of LDA, we can calculate the contrastive model directly using Bayes rule,

p(y = k|x; ✓) =
�

k

|2⇡⌃|e
� 1

2 (x�µ

k

)
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⌃
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(4.83)

=

1

1 +

�

l

�

k

exp�✓

T

x

, (4.84)

where ✓ is an appropriate function of the parametersµ
k

,µ
l

, and⌃. Thus, the contrastive
model is equivalent to logistic regression discussed in the previous chapter, although
we use parametrisations and the two methods will therefore usual give different results
on specific data sets.

So which method should be used? In LDA we made the assumption that each class
is Gaussian distributed. If this is the case, then LDA is the best method we can use.
Discriminant analysis is also popular since it often works well even when the classes are
not strictly Gaussian. However, as can be seen in Figure 4.7B, it can also produce quite
bad results if the data are multimodal distributed. Logistic regression is somewhat more
general since it does not make the assumption that the class distributions are Gaussian.
However, so far we have mainly looked at linear models and logistic regression would
have also problems with the data shown in Figure 4.7B.

Finally, we should note that Fisher’s original method was slightly more general than
the examples discussed here since he did not assume Gaussian distributions. Instead
considered within-class variances compared to between-class variances, something
which resembles a signal-to-noise ratio. In Fisher discriminant analysis (FDA), the
separating hyperplane is defined as

w = �(⌃
k

+ ⌃

l

)

�1

(µ
k

� µ
l

). (4.85)

which is the same as in LDA in the case of equal covariance matrices.



Probabilistic regression and maximum likelihood92 |

4.7 Non-linear regression and the bias-variance tradeoff

The role of supervised learning is to determine the parameters of a model that param-
eterizes our hypothesis about the relations between data.

change
We have only considered binary models where each Bernoulli variable is char-

acterized by a single parameter �. However, the density function can be much more
complicated and introduce many more parameters. A major problem in practice is thus
to have enough training examples with labels to restrict useful learning appropriately.
This is one important reason for unsupervised learning as we have usually many unla-
belled data that can be used to represent the problem appropriately. But we still need
to understand the relations between free parameters and the number of training data.

We already discussed the bias-variance tradeoff in the first section. Finding the right
function that describe nonlinear data is one of the most difficult tasks in modelling, and
there is not a simple algorithm that can give us the answer. This is why more general
learning machines, which we will discuss in the next section, are quite popular. To
evaluate the generalization performance of a specific model it is useful to split the
training data into a training set, which is used to estimate the parameters of the model,
and a validation set, which is used to study the generalization performance on data
that have not been used during training the model.

A important question is then how many data we should keep to validate versus
train the model. If we use too many data for validation, than we might have too less
data for accurate learning in the first place. On the other hand, if we have to few
data for validation than this might not be very representative. In practice we are often
using some cross-validation techniques to minimize the tradeoff. That is, we use the
majority of the data for training, but we repeat the selection of the validation data
several times to make sure that the validation was not just a result of outliers. The
repeated division of the data into a training set and validation set can be done in
different ways. For example, in random subsampling we just use random subsample
for each set and repeat the procedure with other random samples. More common is
k-fold cross-validation. In this technique we divide the data set into k-subsamples
and use k � 1 subsamples for training and one subsample for validation. In the next
round we use another subsample for validating the training. A common choice for the
number of subsamples is k = 10. By combining the results for the different runs we
can often reduce the variance of our prediction while utilizing most data for learning.

We can sometimes help the learning process further. In many learning examples
it turns out that some data are easy to learn while others are much harder. In some
techniques called boosting, data which are hard to learn are over-sampled in the
learning set so that the learning machine has more opportunities to learn these examples.
A popular implementation of such an algorithm is AdaBoost (adaptive Boosting).

Before proceeding to general non-linear learning machines, I would like to outline
a point that was recently made very eloquently by Doug Tweet in a course module that
we shared last summer in a computational neuroscience course in Kingston, Canada.
As discussed above, supervised learning is best phrased in terms of regression and
that many applications are nonlinear in nature. It is common to make a nonlinear
hypothesis in form of y = h(✓Tx), where ✓ is a parameter vector and h is a nonlinear
hypothesis function. A common example of such a model is an artificial perceptrons



| 93Non-linear regression and the bias-variance tradeoff

with a sigmoidal transfer function such as h(x) = tanh(✓x). However, as nicely
stressed by Doug, there is no reason to make the functions nonlinear in the parameters
which then result in a non-linear optimization problem. Support vector machines that
are reviewed next are a good example where the optimization problem is only quadratic
in the parameters. The corresponding convex optimization has no local minima that
plagued multilayer perceptrons. The different strategies might be summarized with the
following optimization functions:

Linear Perceptron E /
�
y � ✓Tx

�
2

(4.86)

Nonlinear Perceptron E / (y � h(x; ✓))
2 (4.87)

Linear in Parameter (LIP) E /
�
y � ✓T�(x)

�
2

(4.88)

Linear SVM E / ↵
i

↵
j

y
i

y
j

xTx+ constraints (4.89)
nonlinear SVM E / ↵

i

↵
j

y
i

y
j

�(x)T�(x) + constraints (4.90)

The LIP (linear in parameters) model is more general than a linear model in that it
considers functions of the form y = ✓T�(x) with some mapping function �(x). In
light of this review, the transformation �(x) can be seen as re-coding a sensory signal
into a more appropriate form with unsupervised learning methods as discussed above.

———–
From previous version
So far, we have always discussed linear regression which assume that there is a

linear relation between the variables. This is of course not the only possible relations
between data. In Fig.4.8A we plotted the number of transistors of microprocessors
against the year the processors were introduced. The plot also includes a linear fit,
suggesting that we should assume some other functions.
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Fig. 4.8 Data from showing the number of transistors in microprocessors plotted the year that the
processor was introduced. (A) Data and some linear and polynomial fits of the data. (B) Logarithm
of the data and linear fit of these data.

Finding the right function is one of the most difficult tasks, and there is not a
simple algorithm that can give us the answer. This task is therefore an important
area where experience, a good understanding of the problem domain, and a good
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understanding of scientific methods are required. This section does therefore try to
give some recommendations when generalizing regression to the non-linear domain.
These comments are important to understand for applying machine learning techniques
in general.

It is often a good idea to visualize data an various ways since the human mind is
often quite advanced in ‘seeing’ trends and patterns. Domain-knowledge thereby very
valuable as specialists in the area from which the data are collected can give important
advice of or they might have specific hypothesis that can be investigated. It is also
good to know common mechanisms that might influence processes. For example, the
rate of change in basic growth processes is often proportional to the size of the system
itself. Such an situation lead to exponential growth. (Think about why this is the case).
Such situations can be revealed by plotting the functions on a logarithmic scale or
the logarithm of the function as shown in Fig.4.8B. A linear fit of the logarithmic
values is also shown, confirming that the average growth of the number of transistors
in microprocessors is exponential.

But how about more general functions. For example, we can consider a polynomial
of order n, that can be written as

y = ✓
0

x0

+ ✓
1

x1

+ ✓
2

x2

+ ...+ ✓
n

xn (4.91)

We can again use LMS regression to determine the parameters from the data by miniz-
ing the LMS error function between the hypothesis and the data. This is implemented
in Matlab as function polyfit(x,y,n0). The LMS regression of the transistor data
to a polynomials for orders n = 2, 4, 10 are shown in Fig.??A as dashed lines.

A major question when fitting data with fairly general non-linear functions is the
order that we should consider. The polynomial of order n = 4 seem to somewhat fit
the data. However, notice there are systematic deviations between the curve and the
data points. For example, all the data between years 1980 and 1995 are below the
fitted curve, while earlier data are all above the fitted curve. Such a systematic bias is
typical when the order of the model is too low. However when we increase the order,
then we usually get large fluctuations, or variance, in the curves. This fact is also
called overfitting the data since we have typically too many parameters compared to
the number of data points so that our model starts describing individual data points
with their fluctuations that we earlier assumed to be due to some noise in the system.
This difficulty to find the right balance between these two effects is also called the
bias-variance tradeoff.

The bias-variance tradeoff is quite important in practical applications of machine
learning because the complexity of the underlying problem is often not know. It then
becomes quite important to study the performance of the learned solutions in some
detail. For this it is useful to split the data set into training set, which is used to
estimate the parameters of the model, and a validation set that can be used to study
the performance on data that have not been used in the training procedure, that is, how
the machine performs in generalizes. A schematic figure showing the bias-variance
tradeoff is shown in Fig.4.9. The plot shows the error rate as evaluated by the training
data (dashed line) and validation curve (solid line) when considering models with
different complexities. When the model complexity is lower than the true complexity
of the problem, then it is common to have a large error both in the training set and
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in the evaluation due to some systematic bias. In the case when the complexity of the
model is larger than the generative model of the data, then it is common to have a
small error on the training data but a large error on the generalization data since the
predictions are becoming too much focused on the individual examples. Thus varying
the complexity of the data, and performing experiments such as training the system
on different number of data sets or for different training parameters or iterations can
reveal some of the problems of the models.

Error on validation set

Error on test set

Model complexity

Er
ro

r

Fig. 4.9 Illustration of bias-variance tradeoff.

Using some of the data to validate the learning model is essential for many machine
learning methods. A important question is then how many data we should keep to
validate versus train the model. If we use too many data for validation, than we might
have too less data for accurate learning in the first place. On the other end, if we have
to few data for validation than this might not be very representative. In practice we are
often using some cross-validation techniques to minimize the trade-off. That is, we
use the majority of the data for training, but we repeat the selection of the validation
data several times to make sure that the validation was not just a result of outliers.
The repeated division of the data into a training set and validation set can be done in
different ways. For example, in random subsampling we just use random subsample
for each set and repeat the procedure with other random samples. More common is
k-fold cross-validation. In this technique we divide the data set into k-subsamples
samples and use k�1 subsamples for training and one subsample for validation. In the
next round we use another subsample for validating the training. A common choice
for the number of subsamples is k = 10. By combining the results for the different
runs we can often reduce the variance of our prediction while utilizing most data for
learning.

We can sometimes even help the learning process further. In many learning exam-
ples it turns out that some data are easy to learn while others are much harder. In some
techniques called boosting, data which are hard to learn are over-sampled in the learn-
ing set so that the learning machine has more opportunities to learn these examples. A
popular implementation of such an algorithm is AdaBoost (adaptive Boosting).


