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Abstract— We fit a weight-dependent STDP rule to the classic
data of Bi and Poo (1998), showing that this rule leads to very
slow learning in a simulation with an integrate-and-fire neuron.
The slowness of learning is explained by an inequality between
the range of initial weights in the data and the largest relative
potentiation. We show that slow learning can be overcome with
an increased learning rate, but that this approach leads to
rapid forgetting in the presence of realistic levels of background
spiking. We offer a potential solution to this problem, but
moreover, our study demonstrates that weight-dependent STDP
rules, commonly used in neural simulations, are not supported
by weight-dependent STDP data. We discuss the implications
of this finding for several interpretations of weight-dependent
plasticity and STDP more generally, and recommend directions
for further research.

I. INTRODUCTION

Activity-dependent change in synaptic strength, or synap-
tic plasticity, is widely believed to provide the basis for
learning and memory, as originally proposed by Hebb [1].
Countless physiological data reveal Hebbian plasticity, and
similarly vast numbers of neural simulations show asso-
ciative learning from activity-dependent rules. While early
experiments showed potentiation [2] and depression [3] of
synaptic strength as a function of pre-synaptic firing rates,
more recent experimental methods reveal similar changes
based on the timing of pre- and post-synaptic activity [4], [5],
[6]. Experiments showing spike-time dependent plasticity
(STDP) reveal that the direction (potentiation or depression)
and magnitude of synaptic change depend on the order and
latency of pre- and post-synaptic activity, within a time
window on the order of tens of milliseconds [6], [7].

Weight-dependent STDP rules provide the additional con-
straint that changes in synaptic strength or weight are a
function of the initial strength of a synapse. Such rules
have been widely studied [8], [9], [10], [11], largely because
they provide a cap on synaptic strength while leading to
asymptotic weight distributions that compare favourably with
experimental data [9] and that are believed to preserve the
statistics of input activity [10]. As such, weight-dependent
STDP rules are now commonly used in modelling studies
[12], [13].

While several experimental studies have shown weight-
dependent plasticity [6], [14], [15], [16], only Bi and Poo’s
(1998) study [6] has done so under the STDP pairing
protocol. In recent work [17] we fit a weight-dependent
STDP rule to the data of Bi and Poo. Here, we use this rule in
a neural simulation, showing that self-organisation of weights
and associative learning are achieved, but that learning is
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extremely slow. While an increased learning rate accelerates
the learning process, it also leads to rapid forgetting in the
presence of biologically realistic background spiking.

Our study shows that the common interpretation of
weight-dependent STDP data has biologically unrealistic
consequences. These consequences result because weight-
dependent plasticity rules assume that weights may traverse
the full range of initial values shown in weight-dependent
studies (Bi and Poo’s weight-dependent data are shown in
Figure 1B). This assumption is inconsistent with Bi and
Poo’s data, and also with weight-dependent data resulting
from other plasticity protocols [14], [16]. Given the com-
mon inclusion of weight-dependent terms in learning rules,
this issue is an important one, and poses questions about
experimental methods, data and their interpretation.

II. A WEIGHT-DEPENDENT STDP RULE FIT TO DATA

For simplicity, we assume the weight- and spike-time-
dependencies are independent. The general form of a weight-
dependent STDP rule may be expressed as

∆w{p,d} = kf{p,d}(w)e−c{p,d}∆t, (1)

where ∆w{p,d} is the change in weight (p for potentiation,
d for depression), ∆t = tpost − tpre is the time between
pre- and post-synaptic firing, c captures the timescale of the
STDP window, and k is a learning rate.

A log-linear fit to Bi and Poo’s weight-dependent STDP
data, hypothesized by Bi and Poo and reproduced in Figure
1B, yields the following form of f(w):

f{p,d}(w) = (a{p,d} − b{p,d} log w)w θ(w),

where θ(w) is the Heaviside function, keeping weights posi-
tive, and the parameters a and b are different for potentiation
and depression.

Bi and Poo controlled spike timing in their weight-
dependent experiment by limiting their spike latencies ∆t.
We used the midpoints of these latencies in our weight-
dependent fit (∆tp = 10, ∆td = 17.5) and assumed that for
a given ∆t, the largest absolute values for ∆w/w represent
synapses with the smallest initial weights. We therefor assign
an initial weight w = 30pA to the largest STDP data
(open symbols in Figure 1A) and only include these data
in our spike-time fit for c. The resulting parameter values
are a{p,d} = {208,−54}, b{p,d} = {26.4, 3.5}, c{p,d} =
{0.054, 0.042}. Because these parameters were fit to data
expressed in percentage terms, and because we make the
common assumption that each of the 60 pairings in Bi and
Poo’s experiment contributed equally to synaptic change [9],
we use a learning rate of k = 1/6000.
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Fig. 1. (A) Reproduction of Bi and Poo’s (1998) spike-time dependent
data. Circles and squares represent estimates of w = 30 for potentiation and
depression respectively. (B) Log-linear fit to Bi and Poo’s weight-dependent
STDP data, imposing a maximum weight where the upper solid line meets
the x-axis.

III. STDP AND SPIKE INTERACTIONS

STDP rules are fit to data from experiments in which pair-
ings of pre- and post-synaptic spikes occur at low frequency,
typically 0.5-5Hz. The long inter-spike intervals (ISI’s) of
these spike trains effectively isolate spike pairings from the
effects of previous and subsequent spikes. How to apply
STDP rules to spike trains more realistic than temporally
isolated pairings of pre- and post-synaptic spikes is the
subject of great research interest [20], [21], [22], [23], [16],
[24]. Here, we use a model we call closest pair interactions,
where only the pair of pre-synaptic spikes closest to the
surrounding post-synaptic spikes contributes to plasticity, as
shown in Figure 2.

This model is equivalent to the nearest neighbour model
suggested in [23] when exactly one pre-synaptic spike falls
between two post-synaptic spikes. These two interaction
models are depicted in Figure 2. Because the analysis in
[23] does not consider spike trains beyond this simplified
case, we compare asymptotic weights calculated with their
analytical method to asymptotic weights from simulations
under closest-pair interactions.

To this end, we numerically approximate the means of
equilibrium weight distributions (equilibrium weights w∗) for
closest pair interactions, comparing them to analytic values
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Fig. 2. Cartoons depict spike interaction models described in the text. It is
unclear how the nearest neighbour model extends to the case where multiple
pre-synaptic spikes fall between two post-synaptic spikes. We define the
closest pair model for this case.
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Fig. 3. The relative difference between mean weights w∗ under nearest
neighbour (analytic) and closest pair (numeric) spike interactions (see text).
There is a very small (but significant) relative difference at high rate. Error
bars show standard deviations.

for the nearest neighbour case.
In the simulations, post-synaptic spikes were time-

locked to Poisson-distributed pre-synaptic spikes at ∆t =
4ms. Weights were averaged over 5000 pairings fol-
lowing 5000 equilibrating pairings at spike rates r =
{1, 2, 4, 8, 16, 32, 64, 128}Hz. Analytic calculations for the
nearest neighbour case with the same spiking statistics were
calculated in [17]. The relative difference between numeric
and analytic asymptotic weights for these spike interaction
models is shown in Figure 3. There is a systematic difference
that increases with increasing spike rate, but the relative
difference is very small.

IV. SIMULATIONS WITH A NEURON

To test the effectiveness of Equation 1 for associative
learning, we drive an integrate-and-fire (IF) node with two
groups of synapses. Before learning, synchronous input from
one group is strong enough to sporadically drive the node in
combination with background activity from all synapses. The
other group cannot drive the node. We test whether repeated
synchronous activation of the high-strength group allows
self-organisation of these weights, and whether synchronous
activation of both groups (following self-organisation) is
sufficient for the low-strength group to ‘piggyback’ the
high-strength group. If so, the low-strength group will have
learned to drive the node by associativity.



A. Model and parameters
The membrane potential of the IF node is described by

τm
dv(t)
dt

= Vrest − v(t) + Ge(Ve − v(t)) + Gi(Vi − v(t))

with membrane time constant τm = 20 ms and reversal
potentials Vrest = −70mV, Ve = 0mV and Vi = −70mV
where subscripts e and i refer to excitatory and inhibitory
potentials respectively. When the membrane potential crosses
threshold Θ, it is reset to −60mV with an absolute refractory
period of 2mS. A relative refractory period is implemented
by increasing Θ = −54mV by γ = 20mV when the neuron
fires, after which γ decays exponentially with half width
10mS. Excitatory and inhibitory conductances Ge and Gi

are described (as in [25]) by

τe
dGe(t)

dt
= −Ge(t) + τeΣj gj δ(t− tfj )

and
τi

dGi(t)
dt

= −Gi(t) + τiΣj gj δ(t− tfj ),

where τe = τi = 5ms, δ refers to the Dirac delta function and
tfj is the time of firing of inputs mediated by conductance
synapses gj (excitatory for Ge and inhibitory for Gi).

EPSC’s as conductances: There is no obvious way to
translate Bi and Poo’s EPSC measurements to synaptic con-
ductances. To begin with, we do not know the amplitudes of
corresponding EPSP’s and so cannot determine conductances
with Ohm’s law. More problematic is the variation in these
data (∼ 25 − 2500pA) and the size of the larger EPSC’s.
Because our objective is to study the implications these data
for STDP rules, we cannot simply ignore the larger currents.
Rather than use current synapses (independent of v), we
use a linear transformation, allowing a range of 30-3000pA
to correspond to 10-150pS. A maximum conductance of
150pS is used in [25]. Inhibitory synapses are not subject to
plasticity and are uniformly allocated conductances of 500pS
(also from [25]).

The simulation was run with 1000 excitatory synapses
and 200 inhibitory synapses. Poisson background firing with
mean 10Hz was mediated by all synapses throughout the
simulation, and synchronous inputs were given a uniformly
distributed random jitter of 1-5ms, superimposed on the
Poisson activity. We initialised the high-strength synapses
(trainers) to uniformly distributed random values between
800 and 1200pA. The low-strength synapses (piggybackers)
were initialised to 50pA, providing sub-threshold input. All
other excitatory synapses were given uniformly distributed
random values between 500 and 900pA. Under our trans-
formation to conductances, these weights are too weak for
background activity to drive the node, but are able to elicit
occasional firing when large populations fire synchronously
on top of background activity. Axonal delays AD were
assigned uniformly distributed random values (to the nearest
integer) from AD = 4 − 17ms for excitatory synapses and
AD = 3 − 6ms for inhibitory synapses. Equation 1 was
applied under the closest-pair spike interaction model.

B. Associative learning under Equation 1

The IF node was first driven by Poisson activity alone,
establishing a baseline membrane potential. This activity
was followed by a period of self-organisation by the trainer
synapses, driven by periodic synchronous activity at 10Hz.
Periodic 10Hz activity provides a sufficiently long ISI to
isolate neural activity in each cycle from the effects of the
previous cycle. Following this activity, the piggybackers were
simultaneously activated with the trainers for the associative
task, again at 10Hz. The node was subsequently driven
by Poisson activity for comparison with the pre-training
response to noise.

Figure 4A shows the trajectories of three trainer synapses
and three piggyback synapses over the course of the simu-
lation. The lower solid curve depicts a fast trainer synapse
with a small initial weight [AD = 4ms, w(t = 0) = 800pA],
the upper solid curve shows a slow trainer with a large
initial weight [AD = 17ms, w(t = 0) = 1200pA] and
the middle curve shows an intermediate case [AD = 9ms,
w(t = 0) = 1000pA]. Early during self-organisation, the
trainer group is not strong enough to regularly fire the node,
but in combination with background activity, input synchrony
generates enough post-synaptic firing for weights to increase
until the group regularly drives the node.

Post-synaptic firing during early and late self-organisation
is depicted by the upper and lower insets of the figure
respectively. All three weights initially increase because they
all contribute to post-synaptic activity. As faster weights gain
in strength, EPSC onset of slower weights occurs after post-
synaptic firing, subjecting them to LTD. As expected, this
effect is first exhibited by the slow synapse and later the by
mid-latency synapse. The former is effectively inactivated,
with final value w(t = 4 · 105ms) = 2.4pA. The latter
assumes an intermediate value [w(t = 4 ·105ms) = 1009pA]
determined by an ongoing cycle of ‘promotion’ and ‘rele-
gation’ to and from the effective input group. This cycle
is governed by the interaction of background firing and
post-synaptic activity, and the overlap between the jitter in
synchronous input and axonal delay. The fast synapse reaches
an asymptotic value close to the log rule cut-off.

The dashed curves in Figure 4A show the trajectories
of three piggyback synapses. The arrow at the top of the
figure shows onset of associative learning. At this point, these
small synapses are climbing toward equilibrium weights
determined by their background firing and the now-periodic
post-synaptic firing generated by the trainer group. With
the onset of associative activity, the fast piggyback synapse
follows the fast trainer synapse toward an asymptotic weight,
the mid-latency synapse assumes a value similar to that of the
mid-latency trainer synapse, and the slow piggyback synapse
is effectively inactivated.

Learning is extremely slow under Equation 1: Self-
organisation and associativity have been achieved, as syn-
chronous input by either group consistently drives the node.
Furthermore, Equation 1 has selected the fastest weights
within the groups and shown the ability to recruit and discard
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Fig. 4. (A) Self-organisation and associativity under Equation 1 with an integrate-and-fire node. Curves show weights over time for three synapses with
large initial weights (trainers, see text) and three synapses with small initial weights (piggybackers, see text). Curves to the left of the arrows show weights
as the trainers self-organise during periodic synchronous activity (10Hz, uniform-distributed random jitter 1-5ms) on top of Poisson background activity
(mean 10Hz). Arrows depict the onset of associative learning when the piggyback synapses fire synchronously with the trainers, also at 10Hz. A range of
30-3000pA is linearly compressed to 10-150pS for use by the node (see text). The upper solid curves show the weights of three trainers with axonal delays
of AD = 17, AD = 9 and AD = 4ms respectively, top to bottom on the left of the figures. During self-organisation, all synapses increase in weight
until the faster trainers drive the node without the slower ones, rendering slower synapses subject to depression. The same effect is seen for the piggyback
synapses during associative learning. Self organisation and associativity are achieved, but learning is very slow with learning rate k = 1/6000. The Fast
(AD = 4ms) piggyback synapse is still converging to the log rule cut-off after 200,000ms (2000 pairings). (B) An increased learning rate (k = 1/200)
accelerates learning, but background noise soon causes forgetting.

slower weights as and when needed, as shown in [25].
The mean membrane potential v̄ in response to background
noise has increased from v̄ = −62.7mV (standard deviation
sd = 1.1) before learning to v̄ = −60.7mV (sd = 1.2) after
learning, rendering the node more responsive to the timing
of its inputs.

Unfortunately, the figure also shows that learning is ex-
tremely slow. The fast synapses are still experiencing net
potentiation after 400,000ms. This interval accounts for ∼
3000 pre-post pairings for the trainers and 2000 for the
piggybackers. The slowness of learning highlights a major
problem for weight-dependent STDP rules. Bi and Poo’s
data show that no synapse increases in strength by more
than ∼ 100%, but weight-dependent STDP rules assume that
synaptic strengths can span the full range of initial weights,
a percentage increase of ∼ 10, 000%.

C. Fast learning implies fast forgetting under weight-
dependent STDP

To combat the slowness of learning shown in Figure 4A we
raise k from k = 1/6000 to k = 1/200. With this learning
rate, weights begin to asymptote after around 60 pre- and
post-synaptic pairings, the same number of pairings used in
Bi and Poo’s experiments [6]. It is unclear what a learning
rate k 6= 1/6000 represents, but an accelerated learning rate

is required due to the large variation in synaptic strength
in Bi and Poo’s weight-dependent data (Figure 1), allowing
weights to make the transition from low to high values in a
reasonable period of time.

Figure 4B shows the weight of a synapse mediating the
same pre-synaptic spike statistics as the trainers did in the
learning task, but over a much shorter timespan (10,000ms).
The post-synaptic response is time-locked to ∆t = 2ms
after pre-synaptic activity, again superimposed on Poisson
spiking at 10Hz. Learning is stopped at time t = 10, 000ms
(top arrow), after which pre- and post-synaptic spike trains
are given independent Poisson distributions at 10Hz. The
synapse forgets the learned association within 10s.

V. DISCUSSION AND CONCLUSIONS

It is possible to parameterize weight-dependent STDP
rules and/or model neurons to accomplish various learn-
ing tasks, but our study shows unwanted consequences of
these rules. The main consequence is due to the range of
initial weights in the only weight dependent STDP data
available [6], shown in Figure 1B. Weight-dependent STDP
rules implicitly assume that a synapse can span this entire
range of values, suggesting changes in synaptic efficacy
around 10, 000%. No synapse in these experiments, however,



changed in strength by more than around 100% (see Figure
1A,B).

This issue suggests several possibilities. One possibility
concerns the standard computational interpretation of weight-
dependent plasticity, in which there is an implicit assumption
that weight-dependent data do not reflect saturated synapses.
As an example, consider a synapse in Bi and Poo’s weight-
dependent experiment with an initial strength of 25pA.
According to their data, this synapse would not have been
potentiated by more than around 100% of control following
their potentiation protocol. It would therefor be no larger than
around 50pA after 60 pairings, much less than their largest
initial weights. If all synapses have the same maximum, then
for all but the largest synapses, an additional 60 pairings in Bi
and Poo’s experiment would have lead to weight changes on
the same order as the 60 pairings they performed. The con-
sequences of this assumption are far reaching. For instance,
STDP data typically suggest a gradient of weight changes in
either direction as a function of the time between pre- and
post-synaptic spikes [6], [22]. In the case of potentiation, the
standard interpretation dictates that given enough pairings,
all weights will reach the same maximum, regardless of the
latency between pre- and post-synaptic spikes.

A second possibility is that Bi and Poo’s weight-dependent
STDP data have been misinterpreted. Their potentiation data
may reflect saturated synapses. If so, to be consistent with the
data, weight-dependent STDP rules must implement intrinsic
synaptic maxima rather than a global maximum. For instance,
a synapse with an initial weight of around 25pA should have
an intrinsic limit of around 50pA, regardless of the size of
larger synapses. We are unaware of any weight-dependent
Hebbian rule that operates under this premise, and the utility
of such a rule is unclear. Certainly, large and small synapses
would have different roles under this scheme.

These possibilities suggest that weight-dependent learning
rules with a global maximum should be supported by weight-
dependent data in which the largest relative change in weight
is roughly equal to the relative difference between the largest
and smallest initial weights. We may express this relationship
as

max(
wfin

i − winit
i

winit
i

) ≈ winit
max − winit

min

winit
min

, (2)

where winit
i and wfin

i represent the weight of a synapse
i before and after potentiation respectively, and winit

max and
winit

min are the largest and smallest initial weights respectively.
The data of Montgomery et al. (2001) [15] are roughly
consistent with this equation for synapses with initial weights
less than 50pA using a (non-STDP) pairing protocol.

The weight-dependent data of Debanne et al. (1999) [14]
are intriguing in this regard. These authors paired pre-
synaptic spikes with post-synaptic bursts in organotypic hip-
pocampal slice cultures. Their CA3-CA1 data are reminiscent
of Bi and Poo’s in that the relative difference in initial
weights is much greater than the normalized weight change,
suggesting (as above) that these synapses have widely vary-

ing instrinsic maxima or that they have not reached satura-
tion. Their CA3-CA3 synapses, however, appear to show the
opposite effect (the left side of Equation 2 is greater than the
right). Their combined data fit roughly with Equation 2. The
degree to which plasticity data from different protocols may
be related under computational rules is an open question and
is currently receiving considerable attention [26], [23], [?].

We show in Section IV-B that a weight-dependent STDP
rule fit to weight-dependent STDP data leads to very slow
learning. As shown in Section IV-C, speeding up learning
with an increased learning rate leads to rapid forgetting in
the presence of noise, a problem previously discussed by
Senn [27]. A solution to this problem may be grounded
in pre- and post-synaptic mechanisms if we (quite happily)
abandon the assumption that the effects of spike pairings
sum linearly. Consider the insertion [28], [29] and removal
[30], [31] of AMPA receptors (AMPAR’s) in the post-
synaptic membrane, correlated with plasticity in hippocampal
regions CA1 and CA3 [32]. It seems likely that potentiation
should be harder to initiate as the number of AMPAR’s
increases. Pre-synaptically, plasticity is expressed at least
in part by changes in the probability of transmitter release
[33]. Weight-dependence is implicit in such a mechanism,
where synapses with a low probability of release have greater
scope for potentiation, and synapses with a high probability
of release have greater scope for depression. A convolution
of pre- and post-synaptic plasticity mechanisms could protect
learned associations if pre-synaptic plasticity were to precede
post-synaptic plasticity in both directions. Under such a
scheme, AMPAR’s may not be inserted in the post-synaptic
density until a sufficiently high probability of release has
been achieved, providing an initial resistance to post-synaptic
learning. In reverse, AMPAR’s may not be removed from
the post-synaptic density until the probability of release is
sufficiently low, providing initial resistance to forgetting.
Such a scheme requires further study.

Finally, there is another possibility regarding weight-
dependent plasticity data. Our recent work [17] provides an
alternative interpretation of Bi and Poo’s weight-dependent
data, showing that under several sets of assumptions, their
data may reflect (non-weight dependent) plasticity among
populations of synapses. This possibility suggests that tis-
sue preparations and stimulation methods must be carefully
considered when interpreting experimental data. Extracellular
stimulation is commonly used to mimic pre-synaptic activity
in STDP paradigms [7], but this method may stimulate hun-
dreds if not thousands of synapses [34]. While intracellular
stimulation of pre-synaptic neurons (used in Bi and Poo’s
experiments) eliminates the potential involvement of multiple
pre-synaptic cells, neurons in culture (also used in Bi and
Poo’s experiments) typically make multiple contacts with
the post-synaptic cell [35]. It is safe to say that single
synapses do not mediate currents on the order of Bi and
Poo’s larger data (∼ 2500pA). This issue overlaps with
debates concerning pre- and post-synaptic contributions to
plasticity [36], [37] and the degree to which plasticity is



a graded phenomenon [18], [32], [34]. Varying the number
of pairings in STDP experiments would directly address the
latter. STDP protocols are clearly promising for the inves-
tigation of weight-dependent plasticity, but the potentially
confounding effects of populations of synapses must be
carefully addressed.
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