
8 Unsupervised learning

In the previous learning problems we had training examples with feature vectors x

and labels y. In this chapter we discuss unsupervised learning problems in which no
labels are given. Training on unlabeled examples restricts the type of learning that
can be done, but unsupervised learning has important applications and even can be
an important part in aiding supervised learning. Unsupervised does not mean that the
learning is not guided at all; the learning follows specific principles that are used to
organize the system based on the characteristics provided by the data. We will discuss
several examples in this chapter.

8.1 K-means clustering

The first example is data clustering. In this problem domain we are given unlabelled
data described by a set of features and asked to put them into k categories. In the first
example of such clustering we categorize the data by proximity to a mean value. That
is, we assume a model that specifies a mean feature value of the data and classifies the
data based on the proximity to the mean value. Of course, we do not know this mean
value for each class. The idea of the following algorithm is that we start with a guess
for this mean value and label the data accordingly. We then use the labeled data from
this hypothesis to improve the model by calculating a new mean value, and repeat these
steps until convergence is reached. Such an algorithm usually converges quickly to a
stable solution. More formally, given a training set of data points {x(1), x(2), ..., x(m)}
and a hypothesis of the number of clusters, k, the k-means clustering algorithm is
shown in Table ??. An example is shown in Figure 8.1.
1. Initialize the means µ

1

, ...µ
k

randomly.
2. Repeat until convergence: {

Model prediction:
For each data point i, classify data to class with closest mean

c(i) = argmin

j

||x(i) � µ
j

||
Model refinement:

Calculate new means for each class
µ
j

=

11(c

(i)
=j)x

(i)

11(c

(i)
=j)

} convergence

where the function 11()(c(i) = j) indicates if the i-th example point belongs to class j,

11(c(i) = j) =

⇢
1 if c(i) = j,
0 otherwise. (8.1)

| 73Mixture of Gaussian and the EM algorithm

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

ï� 0 � 4 6 8 10
ï�

ï�

0

1

�

3

4

5

6

7

8

A Unlabeled data B Data with initial centroids C 1st classification

D 2nd classification E 3rd classification F 1st classification

Fig. 8.1 Example of k-means clustering with two clusters.

8.2 Mixture of Gaussian and the EM algorithm
The K-means clustering is an example of unsupervised classification as we calculate
class labels from examples without class labels. The crucial ingredient is however a
"parameterized model" that states in this case that we expect class distributions where
the density depend on the Euclidean distance to a class mean. We can make this a
bit more systematic for any probabilistic generative model, though we will illustrate
the idea with a simple Gaussian model that follows closely our previous supervised
example of linear discriminant analysis. In the case of the linear discriminant analysis,
we assumed that each class is Gaussian distributed, and we used examples with labels
to determine the parameters of the generative models.

The principle idea behind the class of unsupervised learning algorithms call Expec-
tation Maximization (EM) is that we can make some random choice of the parameters
for the generative models and use these specific models to calculate an expected label
(E-step) and then use these predicted labels to maximize likelihood of the parameters
of the models (M-step).

More formally, let us assume we have k Gaussian classes, where each class is
chosen randomly from a multinominal distribution,

p(z(i) = j) / multinomial(�
j

) (8.2)

p(x(i)|z(i) = j) / N(µ
j

,⌃
j

) (8.3)

This is called a Gaussian Mixture Model. The corresponding log-likelihood function
is

l(�, µ,�) =

mX

i=1

log

kX

z

(i)
=1

p(x(i)|z(i);µ,⌃)p(z(i);�). (8.4)

Unsupervised learning74 |

Since we consider here unsupervised learning in which we are given data without
labels, the random variables z(i) are latent variables. This makes the problem hard. If
we would be give the class membership, than the log-likelihood would be

l(�, µ,�) =

mX

i=1

log p(x(i)

; z(i), µ,⌃), (8.5)

which we could use to calculate the maximum likelihood estimates of the parameter
(see equations 7.32-7.34),

�
k

=

1

m

mX

i=1

11(z(i) = j) (8.6)

µ
k

=

P
m

i=1

11(z(i) = j)x(i)

P
m

i=1

11(z(i) = j)
(8.7)

⌃

k

=

P
m

i=1

11(z(i) = j)(x(i) � µ
j

)(x(i) � µ
j

)

T

P
m

i=1

11(y(i) = k)
. (8.8)

While we do not know the class labels, we can follow a similar strategy to the k-
means clustering algorithm and just propose some labels and use them to estimate
the parameters. We can then use the new estimate of the distributions to find better
labels for the data, and repeat this procedure until a stable configuration is reached. In
general, this strategy is called the EM algorithm for expectation-maximization. The
algorithm is outlined in Fig.8.2. In this version we do not hard classify the data into
one or another class, but we take a more soft classification approach that considers the
probability estimate of a data point belonging to each class.

1. Initialize parameters �, µ,⌃ randomly.
2. Repeat until convergence: {

E step:
For each data point i and class j (soft-)classify data as

w
(i)

j

= p(z(i) = j|x(i)

;�, µ,⌃)

M step:
Update the parameters according to

�
j

=

1

m

P
m

i=1

w
(i)

j

µ
j

=

P
m

i=1 w

(i)
j

x

(i)

P
m

i=1 w

(i)
j

⌃

k

=

P
m

i=1 w

(i)
j

(x

(i)�µ

j

)(x

(i)�µ

j

)

T

P
m

i=1 11w

(i)
j

.

} convergence

Fig. 8.2 EM algorithm

An example is shown in Fig. 8.3. In this simple world, data are generated with
equal likelihood from two Gaussian distributions, one with meanµ

1

= �1 and standard
deviation �

1

= 2, the other with mean µ
2

= 4 and standard deviation �
2

= 0.5. These
two distributions are illustrated in Fig. 8.3A with dashed lines. Let us assume that we

| 75Mixture of Gaussian and the EM algorithm

know that the world consists only of data from two Gaussian distributions with equal
likelihood, but that we do not know the specific realizations (parameters) of these
distributions. The pre-knowledge of two Gaussian distributions encodes a specific
hypothesis which makes up this heuristic model. In this simple example, we have
chosen the heuristics to match the actual data-generating system (world), that is, we
have explicitly used some knowledge of the world.

-10 0 100

0.2

0.4

0.6

0.8

1

-10 0 100

0.2

0.4

0.6

0.8

1

-10 0 100

0.2

0.4

0.6

0.8

1

A. Initial condition B. After 3 updates C. After 9 updates

xx x

p(x) p(x)p(x)

Fig. 8.3 Example of the expectation maximization (EM) algorithm for a world model with two
Gaussian distributions. The Gaussian distributions of the world data (input data) are shown with
dashed lines. (A) The generative model, shown with solid lines, is initialized with arbitrary param-
eters. In the EM algorithm, the unlabelled input data are labelled with a recognition model, which
is, in this example, the inverse of the generative model. These labelled data are then used for
parameter estimation of the generative model. The results of learning are shown in (B) after three
iterations, and in (C) after nine iterations .

Learning the parameters of the two Gaussians would be easy if we had access
to the information about which data point was produced by which Gaussian, that is,
which cause produced the specific examples. Unfortunately, we can only observe the
data without a teacher label that could supervise the learning. We choose therefore a
self-supervised strategy, which repeats the following two steps until convergence:

E-step: We make assumptions of training labels from the current model (expectation
step)

M-step: use this hypothesis to update the parameters of the model to maximize the
probability of the observations (maximization step).

Since we do not know appropriate parameters yet, we just choose some arbitrary values
as the starting point. In the example shown in Fig. 8.3A we used µ

1

= 2, µ
2

= �2,
�
1

= �
2

= 1. These distributions are shown with solid lines. Comparing the generated
data with the environmental data corresponds to hypothesis testing.

The results are not yet very satisfactory, but we can use the generative model to
express our expectation of the data. Specifically, we can assign each data point to the
class which produces the larger probability within the current world model. Thus, we
are using our specific hypothesis here as a recognition model. In the example we can
use Bayes’ rule to invert the generative model into a recognition model as detailed in
the simulation section below. If this inversion is not possible, then we can introduce

Unsupervised learning76 |

a separate recognition model, Q, to approximate the inverse of the generative model.
Such a recognition model can be learned with similar methods and interleaved with
the generative model.

Of course, the recognition with the recognition model early in learning is not
expected to be exact, but estimation of new parameters from the recognized data in the
M-step to maximize the expectation can be expected to be better than the model with
the initial arbitrary values. The new model can then be compared to the data again
and, when necessary, be used to generate new expectations from which the model is
refined. This procedure is known as the expectation maximization (EM) algorithm.
The distributions after three and nine such iterations, where we have chosen new data
points in each iteration, are shown in Figs 8.3B and C.

8.3 The Boltzmann machine

8.3.1 General one-layer module

Our last model that uses unsupervised learning is again a general learning machine in-
vented by Geoffrey Hinton and Terrance Sejnowski in the mid 1980 called Boltzmann
machine. This machine is a general form of a recurrent neural network with visible
nodes that receive input or provide output, and hidden notes that are not connected
to the outside world directly. Such a stochastic dynamic network, a recurrent system
with hidden nodes, together with the adjustable connections, provide the system with
enough degrees of freedom to approximate any dynamical system. While this has been
recognized for a long time, finding practical training rules for such systems have been
a major challenge for which there was only recently major progress. These machines
use unsupervised learning to learn hierarchical representations based on the statistics
of the world. Such representations are key to more advanced applications of machine
learning and to human abilities.

The basic building block is a one-layer network with one visible layer and one
hidden layer. An example of such a network is shown in Fig. 8.4. The nodes represent

Hidden
nodes

Visible
nodes

Fig. 8.4 A Boltzmann machine with one visible and one hidden layer.

random variable similar to the Bayesian networks discussed before. We will specifically
consider binary nodes that mimic neuronal states which are either firing or not. The
connections between the have weights w

ij

which specify how much they influence the
on-state of connected nodes. Such systems can be described by an energy function.
The energy between two nodes that are symmetrically connected with strength w

ij

is

| 77The Boltzmann machine

Hnm

= �1

2

X

ij

w
ij

sn
i

sm
j

. (8.9)

The state variables, s, have superscripts n or m which can have values (v) or (h) to
indicate visible and hidden nodes. We consider again the probabilistic update rule,

p(sn
i

= +1) =

1

1 + exp(��
P

j

w
ij

sn
j

)

, (8.10)

with inverse temperature, �, which is called the Glauber dynamics in physics and
describes the competitive interaction between minimizing the energy and the ran-
domizing thermal force. The probability distribution for such a stochastic system is
called the Boltzmann–Gibbs distribution. Following this distribution, the distribution
of visible states, in thermal equilibrium, is given by

p(sv;w) =

1

Z

X

m2h

exp(��Hvm

), (8.11)

where we summed over all hidden states. In other words, this function describes
the distribution of visible states of a Boltzmann machine with specific parame-
ters, w, representing the weights of the recurrent network. The normalization term,
Z =

P
n,m

exp(��Hnm

), is called the partition function, which provides the cor-
rect normalization so that the sum of the probabilities of all states sums to one. These
stochastic networks with symmetrical connections have been termed Boltzmann ma-
chines by Ackley, Hinton and Sejnowski.

Let us consider the case where we have chosen enough hidden nodes so that the
system can, given the right weight values, implement a generative model of a given
world. Thus, by choosing the right weight values, we want this dynamical system to
approximate the probability function, p(sv), of the sensory states (states of visible
nodes) caused by the environment. To derive a learning rule, we need to define an
objective function. In this case, we want to minimize the difference between two
density functions. A common measure for the difference between two probabilistic
distributions is the Kulbach–Leibler divergence (see Appendix 3.7),

KL(p(sv), p(sv;w))=

vX

s

p(sv) log
p(sv)

p(sv;w)

(8.12)

=

vX

s

p(sv) log p(sv)�
vX

s

p(sv) log p(sv;w). (8.13)

To minimize this divergence with a gradient method, we need to calculate the derivative
of this ‘distance measure’ with respect to the weights. The first term in the difference in
eqn 8.13 is the entropy (see Appendix ??) of sensory states, which does not depend on
the weights of the Boltzmann machine. Minimizing the Kulbach–Leibler divergence
is therefore equivalent to maximizing the average log-likelihood function,

l(w) =

vX

s

p(sv) log p(sv;w) = hlog p(sv;w)i. (8.14)

In other words, we treat the probability distribution produced by the Boltzmann ma-
chine as a function of the parameters, w

i

j, and choose the parameters which maximize

Unsupervised learning78 |

the likelihood of the training data (the actual world states). Therefore, the averages of
the model are evaluated over actual visible states generated by the environment. The
log-likelihood of the model increases the better the model approximates the world. A
standard method of maximizing this function is gradient ascent, for which we need
to calculate the derivative of l(w) with respect to the weights. We omit the detailed
derivation here, but we note that the resulting learning rule can be written in the form

�w
ij

= ⌘
@l

@w
ij

= ⌘
�

2

(hs
i

s
j

i
clamped

� hs
i

s
j

i
free

) . (8.15)

The meaning of the terms on the right-hand side is as follows. The term labelled
‘clamped’ is the thermal average of the correlation between two nodes when the states
of the visible nodes are fixed. The termed labelled ‘free’ is the thermal average when
the recurrent system is running freely. The Boltzmann machine can thus be trained,
in principle, to represent any arbitrary density functions, given that the network has a
sufficient number of hidden nodes.

This result is encouraging as it gives as an exact algorithm to train general recurrent
networks to approximate arbitrary density functions. The learning rule looks interesting
since the clamped phase could be associated with a sensory driven agent during an
awake state, whereas the freely running state could be associated with a sleep phase.
Unfortunately, it turns out that this learning rule is too demanding in practice. The
reason for this is that the averages, indicated by the angular brackets in eqn 8.15, have
to be evaluated at thermal equilibrium. Thus, after applying each sensory state, the
system has to run for a long time to minimize the initial transient response of the
system. The same has to be done for the freely running phase. Even when the system
reaches equilibrium, it has to be sampled for a long time to allow sufficient accuracy
of the averages so that the difference of the two terms is meaningful. Further, the
applicability of the gradient method can be questioned since such methods are even
problematic in recurrent systems without hidden states since small changes of system
parameters (weights) can trigger large changes in the dynamics of the dynamical
systems. These problems prevented, until recently, more practical progress in this area.
Recently, Hinton and colleagues developed more practical, and biologically more
plausible, systems which are described next.

8.3.2 The restricted Boltzmann machine and contrastive Hebbian
learning

Training of the Boltzmann machine with the above rule is challenging because the
states of the nodes are always changing. Even with the visible states clamped, the
states of the hidden nodes are continuously changing for two reasons. First, the update
rule is probabilistic, which means that even with constant activity of the visible nodes,
hidden nodes receive variable input. Second, the recurrent connections between hidden
nodes can change the states of the hidden nodes rapidly and generate rich dynamics
in the system. We certainly want to keep the probabilistic update rule since we need
to generate different responses of the system in response to sensory data. However,
we can simplify the system by eliminating recurrent connections within each layer,
although connections between the layers are still bidirectional. While the simplification
of omitting collateral connections is potentially severe, much of the abilities of general

| 79The Boltzmann machine

Hidden
nodes

Visible
nodes

Fig. 8.5 Restricted Boltzmann machine in which recurrences within each later are removed.

recurrent networks with hidden nodes can be recovered through the use of many layers
which bring back indirect recurrencies. A restricted Boltzmann machine (RBM) is
shown in Fig. 8.5.

When applying the learning rule of eqn 8.15 to one layer of an RBM, we can
expect faster convergence of the rule due to the restricted dynamics in the hidden
layer. We can also write the learning rule in a slightly different form by using the
following procedure. A sensory input state is applied to the input layer, which triggers
some probabilistic recognition in the hidden layer. The states of the visible and hidden
nodes can then be used to update the expectation value of the correlation between these
nodes, hsv

i

sh
j

i0, at the initial time step. The pattern in the hidden layer can then be
used to approximately reconstruct the pattern of visible nodes. This alternating Gibbs
sampling is illustrated in Fig. 8.6 for a connection between one visible node and one
hidden node, although this learning can be done in parallel for all connections. The
learning rule can then be written in form,

�w
ij

/ hsv
i

sh
j

i0 � hsv
i

sh
j

i1. (8.16)

t=1 t=2 t=3 t= 8

Fig. 8.6 Alternating Gibbs sampling.

Alternating Gibbs sampling becomes equivalent to the Boltzmann machine learning
rule (eqn 8.15) when repeating this procedure for an infinite number of time steps, at
which point it produces pure fantasies. However, this procedure still requires averaging
over long sequences of simulated network activities, and sufficient evaluations of
thermal averages can still take a long time. Also, the learning rule of eqn 8.16 does
not seem to correspond to biological learning. While developmental learning also
takes some time, it does not seems reasonable that the brain produces and evaluates
long sequences of responses to individual sensory stimulations. Instead, it seems more
reasonable to allow some finite number of alternations between hidden responses and
the reconstruction of sensory states. While this does not formally correspond to the
mathematically derived gradient leaning rule, it is an important step in solving the
learning problem for practical problems, which is a form of contrastive divergence
introduced by Geoffrey Hinton. It is heuristically clear that such a restricted training
procedure can work. In each step we create only a rough approximation of ideal

Unsupervised learning80 |

average fantasies, but the system learns the environment from many examples, so that
it continuously improves its expectations. While it might be reasonable to use initially
longer sequences, as infants might do, Hinton and colleagues showed that learning with
only a few reconstructions is able to self-organize the system. The self-organization,
which is based on input from the environment, is able to form internal representations
that can be used to generate reasonable sensory expectations and which can also be
used to recognize learned and novel sensory patterns.

The basic Bolzmann machine with a visible and hidden layer can easily be com-
bined into hierarchical networks by using the activities of hidden nodes in one layer
as inputs to the next layer. Hinton and colleagues have demonstrated the power of
restricted Boltzmann machines for a number of examples. For example, they ap-
plied layered RBMs as auto-encoders where restricted alternating Gibbs sampling was
used as pre-training to find appropriate initial internal representations that could be
fine-tuned with backpropagation techniques to yield results surpassing support vector
machines. However, for our discussions of brain functions it is not even necessary to
yield perfect solutions in a machine learning sense, and machines can indeed outper-
form humans in some classification tasks solved by machine learning methods. For us,
it is more important to understand how the brain works.

Simulation 1: Hinton

To illustrate the function of an anticipating brain model, we briefly outline a demon-
stration by the Hinton group. The online demonstration can be run in a browser from
http://www.cs.toronto.edu/⇠hinton/adi, and a stand alone version of this
demonstration is available at this book’s resource page. MATLAB source code for
restricted Boltzmann machines are available at Hinton’s home page. An image of the
demonstration program is shown in Fig. 8.7. The model consists of a combination of
restricted Boltzmann machines and a Helmholz machine. The input layer is called the
model retina in the figure, and the system also contains a recognition-readout-and-
stimulation layer. The model retina is used to apply images of handwritten characters
to the system. The recognition-readout-and-stimulation layer is a brain imaging and
stimulation device from and to the uppermost RBM layer. This device is trained by
providing labels as inputs to the RBM for the purpose of ‘reading the mind’ of the
system and to give it high-level instructions. This device learns to recognize patterns
in the uppermost layer and map them to their meaning, as supplied during supervised
learning of this device. This is somewhat analogous to brain–computer interfaces
developed with different brain-imaging devices such as EEG, fMRI, or implanted
electrodes. The advantage of the simulated device is that it can read the activity of
every neuron in the upper RBM layer. The device can also be used with the learned
connections in the opposite direction to stimulate the upper RBM layer with typical
patterns for certain image categories.

The model for this demonstration was trained on images of handwritten numbers
from a large database. Some example images can be seen on the left-hand side. All
layers of this model were first treated as RBMs with symmetrical weights. Specifically,
these were trained by applying images of handwritten characters to the model retina
and using three steps of alternating Gibbs sampling for training the different layers.
The evolving representations in each layer are thus purely unsupervised. After this

| 81The Boltzmann machine

Model retina

RBM layers

Recognition readout and stimulation

Image input

Concept input

RBM/Helm-
holtz layers

Fig. 8.7 Simulation of restricted Boltzmann machine by Geoffrey Hinton and colleagues, available
at www.cs.toronto.edu/⇠hinton/adi.

basic training, the model was allowed, for fine-tuning purposes, to develop different
weight values for the recognition and generative model as in Helmholtz machines with
a wake–sleep training algorithm as mentioned above.

The simulations provided by Hinton demonstrate the ability of the system after
training. The system can be tested in two ways, either by supplying a handwritten
image and asking for recognition, or by asking the system to produce images of a
certain letter. These two modes can be initiated by selecting either an image or by
selecting a letter category on the left-hand side. In the example shown in Fig. 8.7, we
selected an example of an image of the number 4. When running the simulation, this
image triggers response patterns in the layers. These patterns change in every time
step, due to the probabilistic nature of the updating rule. The recognition read-out of
the uppermost layer does, therefore, also fluctuate. In the shown example, the response
of the system is 4, but the letter 9 is also frequently reported. This makes sense, as
this image does also look somewhat like the letter 9. A histogram of responses can be
constructed when counting the responses over time, which, when properly normalized,
corresponds to an estimate of the probability over high-level concepts generated by
this sensory state. Thus, this mode tests the recognition ability of the model.

The stimulation device connected to the upper RBM layer allows us to instruct
the system to ‘visualize’ specific letters, which corresponds to testing the generative
ability of the model. For example, if we ask the system to visualize a letter 4 by
evoking corresponding patterns in the upper layer, the system responds with varying
images on the model retina. There is not a single right answer, and the answers of
the system change with time. In this way, the system produces examples of possible

Unsupervised learning82 |

images of letter 4, proportional to some likelihood that these images are encountered
in the sensory world on which the system was trained. The probabilistic nature of the
system much better resembles human abilities to produce a variety of responses, in
contrast to the neural networks that have been popular in the 1980s, so called multilayer
perceptrons, which were only able to produce single answers for each input.

Simulation 2: Simplified one layer model

A simplified version of the RBM trained on some letters are included in folder RBM
example on the web resource page. The overage reconstruction error and some exam-
ples of reconstructions after training are shown in Fig.8.8.

0 100 200 3000

0.05

0.1

0.15

0.2

0.25

epoch

av
g

er
ro

r

A. Training Error B. Reconstructions

Fig. 8.8 (A) Reconstruction error during training of alphabet letters the letters, and (B) reconstruc-
tions after learning.

8.3.3 Other important unsupervised learning algorithms

We have mainly discussed the unsupervised learning of generative models in this
chapter, but there are a number of unsupervised learning algorithms that are frequently
used in data mining applications. In particular, these include dimensionality reduction
algorithms like PCA, ICA, local embedding methods, self-organizing maps, etc.
We have also discussed deep auto-encoders in the last chapter and have seen that they
too can be thought of a compression (= dimensionality reduction).

We won’t have time to discuss these methods in detail, but sklearn includes im-
plementations of a large variety of these methods and also includes good explanations.
Note that some of these models are a bit heuristic, although they might be quite good
for some applications. In our discussion I tried to emphasize the underlying principles,
that the principle solution of all these problems is to model the density functions of
the data and their causal (conditional) relations.

