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Abstract. Advances in high frequency sonar have provided increasing resolution
of sea bottom objects, providing higher fidelity sonar data for automated target
recognition tools. Here we investigate if advanced techniques in the field of vi-
sual object recognition and machine learning can be applied to classify mine-like
objects from such sonar data. In particular, we investigate if the recently popular
Scale-Invariant Feature Transform (SIFT) can be applied for such high-resolution
sonar data. We also follow up our previous approach in applying the unsupervised
learning of deep belief networks, and advance our methods by applying a convo-
lutional Restricted Boltzmann Machine (cRBM). Finally, we now use Support
Vector Machine (SVM) classifiers on these learned features for final classifica-
tion. We find that the cRBM-SVM combination slightly outperformed the SIFT
features and yielded encouraging performance in comparison to state-of-the-art,
highly engineered template matching methods.

1 Introduction

Naval mine detection and classification is a difficult, resource intensive task. Mine de-
tection and classification is dependent on the training and skill level of the human op-
erator, the resolution and design of the sonar, and the environmental conditions that the
mines are detected in. Research has occured over the last 25 years into both sensor de-
velopment and processing of sonar data. Although the sensors and capability of mine
countermeasures platforms have improved in this time, the issue of operator overload
and fatigue have caused the duty cycles of mine detection and classification to be short,
therefore diminishing the effectiveness of Mine Counter Measures (MCM) platforms.

Recent research focuses on development of computer aided tools for detection and
classification of bottom objects [1,2,3]. This typically takes the form of a detection
phase where mine like objects are selected from the seabed image, and a classification
phase where the objects are fitted to a multi-class set of potential mines. This detection
and classification process has typically been implemented using a set of image process-
ing tools (Z-test, matched filter), feature extraction, and template-based classification



[1,2,3]. These techniques are effective at finding mines, but are sensitive to tuning the
parameters for the processing method, and the sea bottom environment under test [2,3].

Learning algorithms, such as Artificial Neural Networks, have been examined for
the mine problem, however success has been limited, and these methods have required
the training sets to closely reflect the sea bottom environment of the area where the
system will be tested. Earlier work includes using a deep belief network (DBN)[4]
which is a stack of multiple Restricted Boltzmann Machines (RBM)[5], to learn to
extract features from side scan sonar data. This technique was sucessful in detecting
mines with comparable performace to the traditional methods [4].

The RBM learning method is effective, however the Scale-invariant feature trans-
form (SIFT) [6] has been very influential recently in vision and image processing, and
has been applied to numerous image processing and feature extraction tasks sucess-
fully. At the same time, while the original work on RBM/DBN structures for feature
learning and classification has shown the power of the DBN for feature extraction, no
consideration was given to recent developments with the DBN model including sparse-
ness constraints and a convolutional variation [4]. Imposing sparsity on the RBM reg-
ularizes the leaned model by decreasing the weights of nodes whose activity exceeds a
prescribed sparsity, therefore simplifying the model it learns and providing a more com-
pact representation of the input. The convolutional approach allows the model to scale
to high-resolution imagery and further regularizes the model by reducing the parameter
space.

This paper compares feature extraction using SIFT versus a convolutional RBM
(cRBM), for the mine classification problem. This also serves to examine how well
SIFT generalizes to application domains analogous to visual wavelength imagery. A
central argument for using learned rather than carefully selected, contrived features is
the ability to apply the model to diverse application domains. This is an interesting
domain to explore in this context, as there is a natural 2D, grayscale representation for
sonar data, and the mine classification task contains most of the same challenges as
generic object recognition: invariance to translation, rotation, luminance, clutter, and
noise.

Both techniques were applied to a series of sonar images to extract features, with
the output fed to a Support Vector Machine (SVM) for training and classification. As
the goal of this effort is to develop a classification system for sonar images of sea bot-
tom objects with comparable performance to highly contrived methods, each technique
is treated as a feature extraction method, with the features being passed to an SVM
for training and classification. The results were compared to state-of-the-art template
matching methods with encouraging results for correct classification of targets.

2 Synthetic Aperature Sonar Imagery

Traditional side scan sonar imagery (e.g. Figure 1a) depicts objects by a strong bright
region (highlight) where it is insonified by sound waves followed by a dark region
(shadow) cast behind it. The size, shape and disposition of such features are important
for both automated and manual methods in mine classification. This imagery may be
littered with background noise coming from natural and artificial sources. In imaging



sonars, range resolution is mostly determined by the bandwidth of the transmit pulse,
while azimuthal resolution is determined by the length of the receiver array. While
bandwidth in modern sonars are sufficient to achieve a high range resolution, azimuthal
resolution is difficult to improve due to the engineering limitations of constructing long
arrays.

Synthetic Aperture Sonar (SAS) is a recent side scan sonar technique being applied
to detecting and classifying mine like objects. This technology is inspired by synthetic
aperture radar, which is commonly used on terrestrial and space based radar sensors.
Synthetic Aperture Sonar is a technique whereby a longer array length is synthesized
by integrating a number of sonar pings in the direction of travel of the sonar, resulting in
improved resolution which is also independent of range (e.g. Figure 1b). This provides a
powerful tool for the mine detection/classification problem, as the higher fidelity images
allow for a richer set of features available for the detection and classification of a sea
bottom object.

Fig. 1. Sonar images of mine-like objects, showing (a) a Side Scan Sonar image from and (b) an
image from the MUSCLE SAS [7] of the same type of object

The data used in this paper was collected by the NATO Undersea Research Center
[7] on the MUSCLE Autonomous Underwater Vehicle (AUV). This vehicle is equipped
with a 300KHz SAS. The SAS gives an 2.5 cm × 2.5 cm resolution, at up to 200 meters
in range.

2.1 Data Preparation

The SAS dataset was collected in the summer of 2008 off Latvia in the Baltic Sea. The
MUSCLE vehicle was used to survey multiple mine-like targets that were deployed
as part of the trial, including multiple sonar passes over each target in the field from
different angles. The targets were three mine-like shapes, including a cylinder (2.0m ×
0.5m), a truncated cone (1.0m base, 0.5m height), and a wedge shape (1.0m × 0.6m
× 0.3m). Clutter included numerous rocks and boulders, geographic features of the
sea bottom, and a specific rock which was chosen due to its similarity in shape with
the truncated cone. The dataset was composed of 65 cylinders, 69 truncated cones, 37



wedges, and 2218 non-mine clutter objects, including 47 rock images that are highly
correlated to a target shape.

The raw SAS data can contain as much as ten times the data of a side scan sonar,
and the maximum and minimum values for these samples describe a very large dy-
namic range for the sensor. The data is organized in complex values which describe
the amplitude and phase data from the sonar. Although it is appealing to examine the
phase component of the SAS data, it is beyond the scope of this work, and is considered
in the Outlook section as future work. The data was prepared by removing the phase
component, then re-mapping the amplitude component to a decibel (dB) scale.

3 Feature Extraction

Feature extraction is a difficult and error prone task that typically is performed manu-
ally. This process is done through an analysis of the sonar data, and careful selection
of characteristics which help to describe the class of the object. Modern methods have
looked to reduce this complexity through automatically selecting features from the data
through decomposition (e.g. PCA, SIFT, Wavelet) in order to have a set of features that
uniquely describe the object, and can be used directly for training. Methods such as
SIFT have been effective as an automated method for feature extraction, and has been
applied to both visual and acoustic images to select a set of features for the object.

Learning methods are appealing for feature extraction, specifically generative mod-
els, as they learn the dominant features of the image they are being trained on, and
build an internal representation of what elements the object should be composed of.
This allows for an unsupervised approach where many images are shown to the learning
method, and the learning method determines the features to be selected and modelled.
Furthermore, the generative models have the added advantage that it is possible to see
the feature filters which have been learned, which gives the researcher a measure of the
progress of the learning.

With either method, the goal is the same. We wish to select the most descriptive
features for the class to provide the least ambiguous training set to the SVM, allowing
it to find easily separable classes, and perform effectively as a target classifier compared
to existing manual methods.

3.1 Scale Invariant Feature Transform (SIFT)

SIFT [6] is a method for feature extraction that is invariant to scale, orientation and
distortions. We employ dense SIFT feature extraction and explore window sizes ranging
from 12 to 24 pixels wide (i.e. spatial bins from 3 to 6 pixels), spaced from 4 to 12 pixels
apart.

Similar to our cRBM experiments described later, best results were obtained with
the maximum possible window size for this data (24x24), spanning the full width of
the image. SIFT extracts a 128-dimensional feature vector from each window, which
result in a representation of roughly equal size to that of the cRBM using a spacing of
6 pixels.



3.2 Restricted Boltzmann Machines (RBMs)

The RBM [8] is an energy-based, generative model that can learn to represent the distri-
bution of implicit features of the training data and generate examples thereof. An RBM
consists of two layers of nodes, forming the visible and hidden layers. Each layer is
fully connected to the others, but is restricted in that there are no connections between
nodes within a layer. The energy of the joint configuration of visible and hidden units
given the connections between them (ignoring biases for simplicity) is given by

E(v,h) =−
V

∑
i=1

H

∑
j=1

vih jwi j (1)

where v and h are the states of the visible (input) and hidden units, respectively, and w

is the connection strengths between each visible and each hidden unit.
Stacks of RBMs can be learned in a greedy, layer-wise fashion, with the output

of the previous layer providing the input to the next, forming a Deep Belief Network
(DBN) [8]. This enables higher-layer nodes to learn progressively more abstract regu-
larities in the input.

RBM training is accomplished with the Contrastive Divergence (CD) algorithm [9]
which lowers the energy (i.e., raises the probability) of the data observed on the visible
units and raises the energy of reconstructions of the data produced by the model:

∆wi j ≈ �vih j�data −�vih j�model (2)

Using CD, the RBM learns a generative model of the input in a purely unsupervised
fashion by measuring the discrepency between the data and the model’s reconstructions
then ’correcting’ the system by slightly altering the weights to minimize reconstruction
errors.

We can also regularize the learned model with a sparse representation by decreasing
the weights of nodes whose activity exceeds a prescribed sparsity level, s [10]:

∆w j ≈ s−�h j� (3)

where �h j� is the expected probability of activation which is computed as a decaying
average of the activity of that unit over training examples. This has the added benefit
of increasing the weights of nodes whose activity is below the target threshold, thus
reintegrating nodes whose random initial conditions lead to them being suppressed by
the network (’dead nodes’). While this regularization may lead to greater reconstruction
error by forcing the network to represent the input with a smaller proportion of nodes,
the resulting hidden representation is likely to be more interpretable by subsequent
layers or classifiers.

3.3 Convolutional Restricted Boltzmann Machines (cRBMs)

In the cRBM model [11] each hidden node, rather than being fully connected to every
input element as in a standard RBM, is connected to only a small, localized region of
the image which is defined by the researcher. Furthermore, these connections are shared



by a group of hidden nodes which are collectively connected to every input region. This
architecture enables the computationally efficient convolution operation to be used to
generate each groups’ activation.

If the region of the input image that each node of the cRBM is connected to is signif-
icantly smaller than the total input image, as we expect when the input is high resolution
imagery, then the cRBM requires orders of magnitude fewer parameters for a similar
representation size, since weights are shared by all nodes in a group. This is especially
useful when patterns recur in different regions of the input, since any knowledge learned
about this pattern is automatically transfered to all input regions.

By pooling adjacent hidden activation within groups, either with the commonly
used maximum pooling or the probabilistic maximum pooling method [11], we can
attain a degree of translational invariance while also keeping the size of the hidden
representation within reasonable bounds. If maximum pooling is used, then we calculate
the probability of activation of each node in a pooling window by applying the logistic
function to the feedforward activation. In the probablistic maximum pooling method,
each pooling window is sampled multi-nomially, so that only one hidden node in a
window can be on, and the pooling node is off only if all hidden nodes in its window
are off, according to Eq. (4) and (5):

P(hk

i, j = 1|v) =
exp(I(hk

i, j))

1+∑i�, j�∈Bα exp(I(hk

i�, j�))
(4)

P(p
k

α = 0|v) = 1
1+∑i�, j�∈Bα exp(I(hk

i�, j�))
(5)

where h
k

i, j is a hidden node in pooling window Bα receiving feedforward input I(hk

i, j),
and p

k

α is the pooling node for that window.
The representation of each group of hidden nodes is then convolved with its filter to

get that group’s reconstruction of the input. Summing over all groups’ reconstructions
yields the networks reconstruction of the input used for CD learning.

For the present experiments we restricted ourselves to a single-layer cRBM. The
parameters having the largest impact on classification performance are the filter size and
number of filters. Through experimentation, best representations were obtained using
50 filters with width one less than the image width (i.e.22× 22). After probabilistic
maximum pooling with a 2×2 window size, this filter width results in 50 filters by
36 height representation, with the width collapsed to 1 (1800 dimensional). That is,
the width of the image is collapsed in the cRBM’s representation by the convolution
operation and pooling. This can be seen as a compromise between the conventional and
convolutional approach, with minimal transfer of knowledge horizontally. The dataset
was amenable to this severe reduction in representation width because targets were
centered in the image, with the pooling layer providing sufficient invariance to the small
differences in position.

Based on research by Nair and Hinton using the NORB dataset[8], real-valued im-
ages can be used at the visible layer of the RBM if training speed is decreased. Therefore
a low learning rate of 0.01 for weights and biases was found to be stable for the real
valued images and was sufficiently large that learning peaked after 50 epochs through



the training set of 228 images. The learning rate for sparsity regularization was initial-
ized at the learning rate for weights, and then increased to 10 times this rate linearly
over epochs. This enables the network to explore representations early in learning since
many nodes are active (and thus learning), and then gradually get driven to the desired
sparsity level. The target sparsity giving best results was dependent on the represen-
tation size and thus the number and size of filters employed. For the 50, 22x22 filter
network for which results are reported, a target sparsity of 0.01 in the hidden layer
(0.04 in the final pooled representation) yielded best results through experimentation.

4 Results

The original images were 466×119 pixels, though some images had missing rows to-
ward the bottom of the image which were detected and filled with the image mean
intensity value. Each image was downsampled by a factor of 5 to remove noise, provide
a more computationally tractable representation size, and decrease in-class variation.
Image intensities were then normalized to have zero mean and unit standard deviation.
Normalization was done per image because the dynamic range varied substantially from
one image to the next. Normalizing per pixel across the training set, as is more common,
rendered a significant proportion of images undistinguishable from the background due
to their low dynamic range.

Classification performance was determined via ten-fold cross validation. This method
partitions the training set of data into 10 subsets, where one is retained for the validation
of the classification model, and nine subsets are used for training. This process is re-
peated ten times, where each of the subsets is used once as the validation set. 50 clutter,
10 mine-like rock and 10 of each type of mine was reserved for testing and the model
was trained on the remaining data. The small proportion of available clutter examples
used for training was chosen so the total clutter in the training set approximated the
mean total of the mines.

Classification was performed with an SVM using the libSVM [12] software library.
Grid searches were performed for optimal parameters for both a linear and radial ba-
sis function (RBF) kernels. For both the SIFT and cRBM feature vectors, the linear
kernel gave superior results and was robust over a wide range of the SVM kernel cost
parameter.

4.1 Convolutional RBM

We examined the representation learned by RBMs by the reconstruction of the input and
its learned filters. Figure 2 provides a sample of sonar images and their reconstructions
by one of the cRBMs trained in the course of cross-validation. The reconstructions are
significantly smoothed, but with the smoothing generally respecting object boundaries
as in nonlinear diffusion.

After learning filters from the training set, the activation probabilities of the con-
volutional RBM’s hidden units were generated for both the training and test sets and
passed to the SVM for training and classification. To show not only the correct classi-
fication performance but also the missed classifications, a confusion matrix was com-



Fig. 2. Sample sonar images [7] (top) and reconstructions produced by the convolution RBM
model which resulted in the best classification performance (bottom). The reconstructions are
significantly smoothed and the highlight of the object somewhat filled in.



puted for comparison with SIFT and template matching [13]. Table 1 illustrates the
results.

Table 1. Confusion matrix for SVM trained on cRBM features

CONFUSION clutter cylinder trunc. cone wedge mine-like rock
clutter 0.949±0.013 0.031±0.011 0.006±0.003 0.011±0.003 0.003±0.003

cylinder 0.030±0.048 0.970±0.048 0±0 0±0 0±0
trunc. cone 0.01±0.032 0±0 0.980±0.042 0.010±0.032 0±0

wedge 0±0 0.020±0.042 0.230±0.125 0.740±0.127 0.010±0.032
mine-like rock 0±0 0±0 0.080±0.140 0±0 0.920±0.140

Out of 300 target views (3 types of targets, 10 of each type of target, 10 cross-
validations ), there were 5 false negatives, and out of 21310 views of non-targets, 1035
false positives. This yields a sensitivity to mines of .983± .024 showing a high rate of
correct target classification, and a specificity of .954± .012. While most categories had
this high level of classification accuracy, it is interesting to note that a large proportion
of wedges (23%) were mis-labelled as truncated cone, due to both the similarity of
their appearance in some of the sonar data and the poor representation of wedges in
the dataset (37 wedges vs 69 truncated cones). This led to a poor sensitivity for wedges
specifically but did not impact the sensitivity to mines in general.

4.2 SIFT

As the SIFT method does not require training, the algorithm was applied to each train-
ing image, generating a 128-dimensional feature vector for each 24×24 (overlapping)
window. This served as the input for training and testing the SVM. The following con-
fusion matrix in Table 2 illustrates the correct and incorrect classifications using the
SIFT features.

Table 2. Confusion matrix for SVM trained on dense SIFT features

CONFUSION clutter cylinder trunc. cone wedge mine-like rock
clutter 0.932±0.010 0.011±0.004 0.019±0.006 0.031±0.009 0.008±0.002

cylinder 0.010±0.032 0.980±0.063 0±0 0.010±0.032 0±0
trunc. cone 0±0 0±0 0.950±0.071 0.030±0.068 0.020±0.042

wedge 0.020±0.042 0.030±0.048 0.460±0.158 0.450±0.135 0.040±0.052
mine-like rock 0±0 0.020±0.063 0.040±0.070 0.010±0.032 0.930±0.082

The SIFT features resulted in similar performance to those of the cRBM but with
slightly more false positives. The sensitivity to mines was .970± .025 which shows
strong classification performance and the specificity was .944± .008. The biggest dif-
ference in the performance with respect to the cRBM was that there was significantly



more confusion between truncated cones and wedges. This is an interesting result as it
shows that learned features are in particular outperforming in the cases that are difficult
to classify.

5 Discussion

Overall the results of this work are encouraging and merit further research into the
application of learning methods to sonar imagery and mine classification in particular.
Both the SIFT method and the cRBM methods were comparable in performance, with
the cRBM performing slightly better than the SIFT feature extraction method. As a basis
of comparison, we include below in Table 3 the results from a normalized shadow and
echo template-based cross-correlation method [13] which has proven highly effective
at classifying targets. These templates are designed for a specific sensor and specific
templates are generated for different ranges and therefore are an excellent baseline for
learning methods to be compared against.

Table 3. Confusion matrix for template-matching method [13]

NSEM non-mine cylinder trunc. cone wedge
non-mine 0.94 0.01 0.02 0.03
cylinder 0.03 0.97 0 0

trunc. cone 0.04 0 0.96 0
wedge 0.08 0 0 0.92

As shown in earlier work [4], the RBM/DBN model can effectively extract features
of mine-like targets and classify them using traditional side scan sonar data, however
this method showed poor performance using the higher resolution data from the SAS
sensor (results not shown). We believe that this is caused by the very large dynamic
range in the sensor leading the DBN to learn features of the background (noise) distri-
bution at the expense of modelling the object highlight. Although the increase in reso-
lution in the sensor provides a richer set of detailed features of the object being learned,
it also has the downside that the learning machines have a tendency to try to model and
classify this noise rather than just the object. The cRBM model with enforced sparsity
was beneficial in this regard, as the smaller parameter space and sparsity regularized the
model and thereby limited the modelling of the background features. To illustrate this,
the reconstructions in Figure 2 show a form of smoothing in areas of the image where
no target features were present.

The filter sizes providing best results spanned the full width of the image (minus
1 in the case of the cRBM due to 2× 2 pooling). This results in an architecture more
similar to a conventional network in the horizontal direction but convolutional in the
vertical direction. While there is significant error in the reconstructions (Figure 2), the
hidden representation from which they are produced has a relatively small number of
filters (50) given the large filter size, as well as sparse activation, which proves more in-
terpretable for the classifier. Using smaller filters has the benefit of being able to model



finer features and transfer this learning horizontally, however it results in a significantly
larger representation which the classifier had greater difficulty interpreting. In general,
cRBM parameterizations which allow more accurate models of the data in the sense
of reconstruction error, either by having smaller filters, more filters, or less sparsity,
decrease classification performance since they naturally resulted in more complex rep-
resentations which are more difficult to model with the SVM.

In comparison to the template matching method, the two methods examined in this
paper showed comparable performance, with the exception of the wedge shapes, where
both methods suffered in comparison to the template based method. Since the high-
light of many wedges and truncated cones was little more than a strip of light in many
instances, these two classes were confused, with the SVM opting to classify most as
truncated cones due to their greater prevalence in the dataset. However, the cRBM dis-
tinguished them significantly better than SIFT. Examining the raw data, it was observed
that a subset of wedges had some of the brightest highlights in the dataset. This feature,
which may have been an artifact of this particular dataset, was likely captured by the
the RBM representation but removed by SIFT in its attempt to create an illumination
invariant representation. This would explain the cRBM’s better performance in distin-
guishing the wedges and truncated cones whose shape representation was very similar
in the sonar image. This effect highlights the benefit of using learned filters rather than
engineered features from neighbouring application domains, since features which may
be uninformative in one domain (in this case, the illumination of a particular feature)
may be informative in the other.

6 Outlook

The results from both the cRBM and SIFT models were encouraging, but also highlight
the need for further research. Distinguishing wedges from truncated cones, in partic-
ular, proved challenging for our models and demands further attention. In general, the
detection and classification of objects from sonar imagery could potentially benefit from
additional pre-processing or extensions to the two models, as described below.

6.1 Extraction of features from phase data

As noted in the data preparation section, the raw SAS data is organized as a set of
complex numbers that describe both the amplitude and phase of the reflected sound
intensities. For the purposes of this paper, the phase element was removed, and just
the raw amplitudes considered. Although this phase element is stripped, it is likely that
there is some coherent features in the phase information, which could help distinguish
non-image related features such as material. If this feature could be extracted, it could
be supplied as another feature for classification, or as a method to limit the false alarms
during detection and classification phases.

6.2 Spatial Pyramid Matching

In the Spatial Pyramid Matching (SPM) method [14], dense SIFT features are extracted
as in the method we employed. SIFT feature vectors are subsequently vector quantized,



and then histograms at multiple levels of resolution (whole image, quater image, ...). A
histogram intersection (χ2) kernel is then employed to classify the histogram represen-
tation. This has been very successful in object recognition tasks such as Caltech 101
used in [14]. Preliminary experiments with this method offered poor performance on
this dataset, but more work needs to be done in exploring the many parameters of this
model to determine if it can be successfully applied to classification of bottom objects
in SAS imagery.

6.3 Convolutional DBNs

Our experiments with stacked layers of cRBMs yielded poor performance on the clas-
sification task. However, experimentation was hindered by the large computational bur-
den imposed by convolving many filters with many layers of hidden representation. As
we and other groups develop software to transfer the computation of these expensive
operations to graphics processing units (GPU), this architecture will become much eas-
ier to explore and we expect that higher layers will achieve greater invariance to noise
and small intra-class variations, as well as uncover more complex regularities in the
training data.
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