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Abstract. Decoding information from a population of noisy neurons can be
achieved efficiently with center-surround recurrent networks. Here we study such
networks with continuing external input and investigate the dynamics of decoding
with varying inhibition strength in the network. We find that the best decoding is
achieved at the onset of the memory regime in such networks.

1 Introduction

In the brain, information is typically represented by a population of neurons. For exam-
ple, while individual neurons in the primary visual cortex respond maximally to specific
orientations of line segments, they also respond to a lesser extend to neighboring ori-
entations. Thus, even with a ‘pure’ image there are many neurons that respond. This is
important as such states are likely to represent probabilities of specific events [1]. Fur-
thermore, cortical neurons are very noisy and their firing rates are low so that decoding
the information from a population becomes crucial for reliable information processing
in the brain.

Mathematically it is well established how to decode information in specific situa-
tions [2]. For example, if we consider Gaussian tuning curves we could fit a Gaussian
through the data points given by the neuron response to achieve a maximum likelihood
(ML) estimate of the stimulus which is optimal with these assumptions. While optimal
decoding is of some theoretical and practical interest, much more important for brain
processing is its efficient implementation. Several researcher have pointed out that ML
estimation in the above mentioned case can be achieved with recurrent networks [3, 4].
This is significant as these networks enable fast computation consistent with the func-
tional mechanisms of the cortex as captured by neural fields theory [5–7]. Furthermore,
while the optimality can be proven in some cases [4], optimality in a statistical sense
is not fundamentally required. Instead, it is possible that this is the principle decoding
mechanism in the brain and this mechanism should therefore be studied in more general
circumstances, such as in the case of multiple inputs.

Decoding mechanisms with neural fields have been studied mainly in a model where
noisy input was applied as initial states of the network and where the asymptotic state
of sustained activity packets (bubbles) are used for optimal decoding. In this paper we
explore the dynamics of decoding when input is sustained for some time, resembling
more closely transient input in the brain. We then explore the regime with strong lateral
inhibition and show that this regime is well suited for fast population decoding.



2 Population decoding with recurrent networks

We consider a standard recurrent rate neural network model with N nodes in which the
time evolution of the internal state ui is given by

τ
dui(t)

dt
= −ui(t) +

∑

j

wijrj(t)∆x + Iext
i (t), (1)

where τ is a time constant, Iext
i is the external input applied to the network and ∆x =

2π/N is a scale factor. The rate ri is related to ui by a sigmoidal gain function g(u) =
1/(1 + exp(−βu)) with a slope parameter β = 0.1. Applications of this model to
population decoding commonly use a gain function with divisive inhibition [8], but
the principal findings reported here do not depend critically on the form of the gain
function. The weight matrix, w, describes center-surround interactions in the network
with a shifted Gaussian profile,

wij = Aw(e−((i−j)∗∆x)2/2σ2
w − C). (2)

This dynamic model exhibits several regimes characterized by different possible
asymptotic states [7]. If the inhibition, C, is low compared to excitation in the network,
then the excitation will spread through the network resulting in runaway activity. In
contrast, if inhibition is dominating, then any activity in the field will decay without
external reinforcement. In an intermediate regime it is possible to have activity packets
where localized activity is stable. We call this mode of the model the memory regime.

The later two regimes are depicted in Figure 1 in the context of population decoding.
In these experiments we supply a static noisy input to the field over 20 timesteps. This
input was chosen as a Gaussian around the middle node (x0 = 50) with additive white
noise of strength nη = 0.5,

Iext = I0 + A(e−((i−j)∗∆x)2/2σ2
+ nηη, (3)

where I0 is a background field and η is a normal distributed random number. When
an inhibition constant of c = 0.05 is used, the field developed into a clean bubble
around the middle node after the input was removed at time t = 20, demonstrating
perfect decoding. The sustained localized activity in the neural field without external
input demonstrates the above mentioned memory regime.

Traces of the noisy input are not apparent in the c = 0.05 case, and it seems one
has to wait until the bubble forms to perform accurate decoding. This is different when
running the same simulation with larger inhibition. Figure 1 shows the case for c =
0.07. Traces of the noisy input are now also visible during the time the external input is
supplied, which is partly enhanced by the fact that a smaller range of values is depicted
by the gray scale in the figure. The inhibition is now too large to sustain an activity
packet after input is removed. However, the increased competition facilitates a cleaning
of the signal even during the time when the signal is applied so that some form of
population decoding is supported. While this might be less accurate than in the previous
case, an advantage would certainly be that the decoding can be achieved much earlier.
This assertion is investigated in the next section.
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Fig. 1. Noisy population decoding with weak and strong inhibition in neural fields. The noisy
input derived from the dashed line on the left is applied until t = 20 to the neural fields shown
on the right

.

3 Quality of decoding with varying inhibition over time

To assess the quality of decoding with time and different inhibition constants we ran
decoding experiments over 100 trials in each condition. While we have used signals
with static noise in Figure 1, we report now on the results when changing the noise
after each unit of time, simulating ongoing fluctuations in the input signal over time.
This represents a more plausible implementation of decoding conditions in the brain
although we found similar results in the static noise case.

To assess the decoding quality we use a center of mass scheme to determine the
prediction of the feature value encoded in the neural field. This was done for the orig-
inal input signal and at each time step during the dynamic decoding in the recurrent
network. An example trace of the decoding error is shown in Figure 2A. For the shown
strength of inhibition, the decoding error continuously decreases even while external
input is supplied. The decoding error only improves slightly after the external input is
removed at t = 20. The decoding error increases with increasing noise level as shown
in Figure 2B, but the decoding error at t = 20 is always much smaller than the center
of mass decoding of the original signal. Finally, a major question motivating this study
was to determine which network regime, in terms of inhibition strength, would be most
suitable for decoding in such networks. The results of these studies are summarized in
Figure 2C which shows the decoding improvement at different time steps for different
inhibition parameters. Early on there is little dependence of the results on the strength
of inhibition, but later there is some advantage for inhibition values around 0.06. Inter-
estingly, this is close to the transition region between the domain of decaying input and
the domain of sustained activity.
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Fig. 2. Temporal aspects and decoding quality with different levels of inhibition
.

4 Conclusion

In this study we analyzed population decoding with recurrent networks with biologi-
cally motivated modifications. We thereby included sustained input, a simplified and
non-global gain function, and different levels of inhibition. We found that population
decoding with such competitive networks is very powerful even when continuously
driven by external input. We also found that inhibition levels at the onset of the memory
regime showed best decoding performances.
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