

CSCI 1106 Lecture 4

Using Sensors and Actuators

AG

Announcements

- Quiz #1 is tomorrow in class
- Today's Topics
 - Using Sensors
 - Sampling
 - Debouncing
 - A Menagerie of Sensors and Actuators

Using Sensors

AG-

- A program polls the sensor to get its current value
- It is the program's responsibility to interpret the value, i.e.,
 - Translate the value into a meaningful decision

Using Sensors (cont)

- A sensor will not inform you when a property has changed
- The program must poll the sensor repeatedly to detect change
- Usually a program polls until a threshold is reached

Thresholds

- We are typically not interested in what the value of a measurement is
- We are typically interested
 - when that value changes, or
 - when that value reaches a specific threshold
- A threshold is a fixed constant such that an event is triggered when a measurement from a sensor returns a value that is above (or below) the constant

AG

Examples of Thresholds

- Object too close: if distance < threshold, trigger event
- Loud sound: if sound level > threshold, trigger event
- Light/Dark threshold:
 - If light level > threshold, a light surface is detected
 - if light level < threshold, a dark surface is detected
- But ... How often should we poll?

Polling Frequency

- · Polling frequency depends on
 - The response time of the sensor
 - The frequency of change in the environment
- Response time dictates the maximum useful polling rate
- Frequency of change dictates the minimum rate needed to ensure that no events are missed
- Question: What if the maximum useful rate is less than the minimum required rate?

Polling Frequency vs Response Time

- Observation: There is no point in polling the sensor quickly if its response time is slow
 - Are we there yet? How about now? Now? Now?
- Polling the sensor too quickly does not hurt, but wastes CPU resources
- The Lego sensors have a fast response time (mostly)
- When the response time is slow, our programs need to take this into account

When Response Time Matters

- In Follow-The-Line
 - The angular velocity of the light sensor is quite fast
 - This could cause the sensor to move over the black line too quickly to pick it up
 - What happens if this occurs?
- How do we ensure that we don't miss the line?

Sampling

- Sensors must be polled (sampled) for values
- The *sampling rate* is the frequency of the polls
- A higher rate means we are
 - Less likely to miss a change in inputs
 - Using more CPU time to poll the sensor
- If the rate is too high, there is no time to do anything else

Example: When is the Signal above 4?

Actuators

- Actuators allow the robot to affect the world
- Actuators include:
 - Motors
 - Solenoids
 - Hydraulic mechanisms
 - Lasers
- Actuators are characterized by their parameters and tolerances:
 - Torque, force, and pressure
 - Speed, power, and strength
 - Accuracy and precision
- Parameters are fed into actuators as digital values
- Actuators use the parameters to control the behaviour, e.g.,
 - Turn a motor for 90 degrees at 75% power.

Using Actuators

- Actuators are typically used in two ways:
 - Synchronous use
 - E.g., move forward 1 rotation
 - Asynchronous use
 - · E.g., start moving forward
- Synchronous use:
 - Start operation
 - Wait until the operation completes
 - Continue program
- Asynchronous use:
 - Start operation
 - Continue program
 - Use sensors or poll actuator to determine operation completion

Motors

- · Motors create rotation
- Motors have following parameters:
 - Direction: forward or backward rotation
 - Duration: measured in
 - number of complete rotations
 - degrees (360 degrees = 1 rotation)
 - time (in seconds)
 - unlimited (rotate until stopped)
 - Power: (0 slow) ... (100 full speed)
 - more power implies more forward momentum
 - more power implies less accuracy and precision
 - Brake: use brake or coast after action
- Motors have rotation sensors
 - Reports the duration of rotation

llustration of the motor's inner working http://www.syraweb.org