
1 Introduction

1.1 The basic idea behind supervised Machine Learning

Machine Learning is literally about building machines that can learn and after learning
perform specific tasks. We will encounter several forms of learning, but for the most
part we consider supervised learning. In supervised learning we show a variety of
examples together with the desired response of a specific task to a learning machine
from which the machine should learn to perform an appropriate response for new
examples. Thus, we are trying to solve problems with computers without explicitly
programming them for a specific tasks. This is desirable specifically for tasks that
would be difficult to program. A typical example of applications is object recognition,
and some related tasks are shown in Figure 1.1.

Fig. 1.1 Typical examples where deep learning has been instrumental in practical applications
such as letter and object recognition, and image restorations. Figure from NVIDIA DLI teaching
kit.

We will still need to program the learning machine, but this is somewhat more
general than coding logic for a specific problem. Machine Learning might sound like a
niche area in science and you might wonder why there is now so much interest in this
discipline, both academically and in industry. The reason is that Machine Learning is

Introduction2 |

really about modelling data. Modelling is the basis for advanced object recognition,
data mining, and ultimately intelligent systems. Machine Learning is the analytic
engine in areas such as data science, big data, data analytics and to some extend to
science in general in the sense of building quantitative models.

Machine Learning has a long history with traces far back in time. Alan Turing
was probably one of the earliest thinkers in the field of AI. One of the first recognized
exciting realizations of the promise of learning machines came in the late 1950s and
early 1960s with work like Arthur Samuel’s self-learning checkers program and Frank
Rosenblatt’s perceptron. Arthur Samuel devised a program with some form of rein-
forcement learning that ultimately learned to outperform its creator. Frank Rosenblatt
set much of the foundation of neural networks and even started to build neural network
computers, the Mark I Perceptron. Neural networks have been popularized again in
the 1980s with a strong influence by David Rumelhart. Many leading figures in Deep
learning have started in this era, including Geoffrey Hinton, Yoshua Bengio, Yann
LeCun, Jürgen Schmidthuber to name a few. We will discuss how we are now in an era
of ‘Deep Learning’ with important recent developments that are mostly the reason for
the popularity of Machine Learning today. However, much of the progress of machine
learning and their scientific embedding is due to probabilistic methods and statistical
learning theories, for which we need to mention some pioneers like Vladislaw Vapnik
and Judea Pearl. Indeed, the development of statistical machine learning and Bayesian
networks has influenced the field strongly in the last 20 years and has been essential
in much of its progress as well as in the deeper understanding of machine learning.
This course will hence introduce these more general ideas for a more thorough theo-
retical underpinning. Finally, we will also discuss the important area of reinforcement
learning where Richard Bellman has contributed important work already in the mid
1950s.

Fig. 1.2 Some pioneers of Ai and Machine Learning. From top-left to right bottom: Alan Turing,
Arthur Samuel, Richard Bellman, Frank Rosenblatt, David Rumelhart, and Judea Pearl.

| 3The basic idea behind supervised Machine Learning

We will discuss how basic supervised learning resembles statistical regression.
However, there are several aspects of machine learning that go beyond the scope of
this traditional statistical approach. In particular, machine learning is usually concerned
with high dimensional problems where many factors have to be incorporated into a
model. Furthermore, a lot of emphasis is given to methods that can handle nonlinear
data. Also, there are other forms of Machine Learning such as unsupervised learning
in which the machines have to find some structure in the data. We will discuss later how
unsupervised learning has been a central factor in the development of deep networks
and which also underlies important application areas of machine learning such as some
form of cluster analysis and dimensionality reduction.

Also, there is the area of reinforcement learning in which the machine has to find
appropriate actions based only on some form of feedback on the value of a state reached
by a series of actions. A great example of the recent progress in reinforcement learning
is the ability of a computer to learn to play video games. Video games from the old
Atari platform have indeed become a useful paradigm for a new class of benchmarks
that go beyond classical data sets for machine learning from the UCI machine learning
repository that have dominated the benchmarks in the past. Atari games are somewhat
slightly simplified worlds but resemble more learning in environments that humans
have to figure out. In these benchmarks only visual input is given made up of the
computer frames of the video game, and feedback is only provided with how well
the player did in the game. Success in this areas was also made very visible when
Google DeepMind challenged the best players of the Chinese board game Go. Go was
considered to be a real challenge for AI systems as it is considered to rely a lot on
‘gut feelings’ rather quantifiable strategies. It was hence a huge success that computers
which only reached levels of an advanced beginner a few years ago would win the
world championship in the spring of 2016.

There are several aspects of deep learning that make this area very exciting. One
aspect is that it enables so called representational learning, which can be seen as
the foundation of much of the recent progress. A good summary of the evolution of
machine learning is shown in Fig. 1.3. While traditional rule based artificial intelligence
relied on hand-designed programs such as programming specific rules for inference,
classic machine learning tries to find (learn) the mapping between an input and desired
output. A smart feature selection and good hand-crafted representations were essential
at this time for good results and much of a machine learning course would talk about
this. However, we are now seeing increasingly the emphasis on end-to-end solutions
where a whole tasks are learned from sensory information which includes the discovery
of appropriate hierarchical representations.

Deep learning is now a very important part of machine learning which we will
focus on after introducing the basis of machine learning in more general terms. A
deeper understanding of machine learning requires, to some extend, an understanding
of data modelling in a wider context. This includes the importance of a probabilistic
framework to formulate the problems and solutions. A course on machine learning
also needs to include an overview of some traditional methods such as support vector
machines, classification trees, and clustering methods. Applying machine learning
methods is often easy in principle and difficult in practice. That is, there are now many
tools available with which Machine Learning implementation can be programmed in

Introduction4 |

Fig. 1.3 Evolution of machine learning systems (from Goodfellow, Bengio, Courville 2015).

a few lines of code. However, the correct application of these methods in practice
requires some care, experience, and a deeper understanding of the underlying issues.
Therefore, our approach will be to explain some of the basic ideas of supervised
learning below in this chapter. This includes the introduction of some basic concepts
such as knowing what a training and validation set is, and how cross-validation can be
used to optimize hyperparameters.

In the second chapter we learn how to apply such methods with some program-
ming frameworks. Fig. 1.4 list some of the common Machine Learning frameworks.
We will be using the Python programing language together with some machine learn-
ing libraries, in particular sklearn and tensorflow. The next several chapters explore
the principle behind supervised learning in the form of regression and classifications.
We thereby switch frequently between a functional and a probabilistic framework.
A refresher on the basic probability formalism is included in the third chapter. The
following chapters outline some of the fundamental ideas behind probabilistic ma-
chine learning and some important Machine Learning algorithm including supervised
and unsupervised learning, and issues beyond regression and classification such as
dimensionality reduction and variable selection. The second half of the course is ded-
icated to neural networks and deep learning. This includes convolutional networks,

| 5Mathematical formulation of the supervised learning problem

Fig. 1.4 Supervised Learning Frameworks.

autoencoders, and various recurrent networks. These subjects will be discussed with
the tensorflow framework. The last section will be dedicated to (deep) reinforcement
learning.

1.2 Mathematical formulation of the supervised learning
problem

Much of what is currently most associated with the success of Machine Learning
is supervised learning, sometimes also called predictive learning. The basic task of
supervised learning is that of taking a collection of input datax, such as the pixel values
of an image, some measured medical data, or robotic sensor data, and predicting an
output value y such as the name of an object in an image, the state of a patient’s health,
or the location of obstacles. It is common that each input has many components, such
as many millions of pixel values in an image, and it is useful to collect these values in a
mathematical structure such as a vectors in one dimension, a matrix in two dimensions,
or generally in a tensor for higher dimensions. We often refer to Machine Learning
problems as high-dimensional which refers in this context to the large number of
components and not the dimension of the input tensor.

At this time we use the mathematical terms of a vector, matrix and tensor mainly
to signify a data structure. In a programming context these are more commonly de-
scribed as 1, 2 or 3-dimensional arrays. The difference between arrays and tensors (a
vector and matrix is in some sense a special form of a tensor) is, however, that the
mathematical definitions also include rules how to calculate with these data structures.
This manuscript is not a course on mathematics; we are only users of mathematical
notations and methods. Mathematical notation help us enormously to keep the text
short while being precise. We follow here a common notation of denoting a vector,
matrix or tensor with bold faced letters, whereas we use regular fonts for scalars. We
usually call the input vector a feature vector as the components of this are typically a
set feature values of an object. The output could also be a multi-dimensional object
such as a vector or tensor itself. Mathematically we can denote the relations between
the input and the output as a function

y = f(x). (1.1)

Introduction6 |

We consider the function above as a description of the true underlying world, and
our task in science or engineering is to find this relation. In the above formula we
considered a single output value and several input values for illustration purposes,
although we see later that we can extend this readily to multiple output values.

The challenge for machine learning is to find this function or at least to approximate
it sufficiently. Machine learning has several approaches to deal with this. One approach
that we will predominantly follow for much of the course is to define a general
parameterized function

ŷ =

ˆ

f(x;w). (1.2)

This formula describes that we make a parameterized hypothesis in which we specified
a function ˆ

f that depends on parameters w to approximate the desired input-output
relation. This function is called a model:

A model is an approximation of a system to study specific aspects of the system

and to predict novel behaviour

This often means that not all of the underlying world has to be captured in depth.
For example, a building engineer might make a model of a bridge to tests its static
without including the ascetic aspects that an architect might emphasize in a model. In
our context the word model is synonymous with approximation. Note that we have
indicated that this model is an approximation of the desired relation by using a hat
symbol above the y and the f . However, we frequently drop the hat symbol when the
relation is clear from the context.

In the context of machine learning, a model typically includes parameters so that
their presence is synonymous with a model. The parameters are specified in this
function by including the parameters, which we often specify as vector w, behind
a semicolon in the function arguments. A more appropriate mathematical statement
would be that the formula defines a set of functions in the parameter space. Learning
is the challenge to find the values for the parameters that best describe the data. Finding
these parameters is usually done with a learning algorithm. A common way of such
a learning algorithm is to define a function that describes our goal of learning, such
as minimizing the number of wrong classifications. We will call this function the
loss function L, although other terms are sometimes used in the literature such as
objective function, error function, or risk. A common algorithm to minimize such a
loss function is to use an algorithm called gradient descent that is an iterative method
over the training data and that changes the parameters along the gradient 5L of the
loss function,

w

i

 w

i

� ✏rL (1.3)

where ✏ is called the learning rate and r is the Nabla operator which signifies the
gradient. This is a typical learning algorithm to find the parameters of a model based
an example data. We elaborate on this algorithm later.

While the gradient descent can find parameters to minimize the loss of the training
data, our real goal is to find the values ofw that best predicts data that has not been seen
before. Just describing the training data is somewhat more like a memory, but being
able to generalize is the main goal of machine learning. Hence, a good solution of the
machine (model) learning problem is represented by a point in the parameter space that
approximates best the true underlying world. However, since we usually don’t know

| 7Mathematical formulation of the supervised learning problem

the true underlying world we estimate how good this model is by evaluating how good
new predictions are.

In some applications of supervised learning we want to predict a continuous output
variable. For example, we might want to predict the price of a house from the size
information. This is called regression. In contrast, sometimes we want to predict dis-
crete values such as the categories of object in a picture. This is called classification.
The output variable y in classification is often called a label. It is now common to refer
generally to the output of the supervised learner as label, even in the regression case
where we have a continuous "label". We will see later that regression and classification
are anyhow closely related; for example, binary classification can be seen as a regres-
sion problems with a discrete function f(x) such as a sign function which would give
us two labels, positive and negative.

We will later go one important step further by considering the more general case
when we might not be able to predict an exact value but at least the probability that
a certain value will occur. It is quite common that the process under investigation
includes stochastic (random) factors or unknown factors that can also be treated with
probabilistic methods. The true underlying world model is thus better described by a
probability density function

p(Y = y|x). (1.4)

Formulating Machine Learning in a probabilistic (stochastic) context has been most
useful and provides us with the formalization that created the most insight into this
field. In the probabilistic framework we are then modelling a density function

p(

ˆ

Y = ŷ|x;w). (1.5)

Function approximation is in some sense a special case of density function approxima-
tion. A probabilistic framework also leads to a more general formulation of learning
in that learning can be described as finding the most likely parameters given the data,

w

⇤
= argmax

w

p(w|y,x) (1.6)

Of course, we still need to find the specific form of the probability function p(w|y,x),
but we can then derive learning rules from this principle. The point here is to illustrate
how important and useful a probabilistic formalism is in machine learning as it includes
uncertainty right from the outset.

Formulating specific probabilistic models for problems with many stochastic fac-
tors is demanding. However, there is the important area of causal learning that tries
to provide specific probabilistic models of the components that provide the necessary
foundations of the inference engine. Inference here means that the system can be used
to ‘argue’ about a solution in a probabilistic sense. Such systems fall generally in the
domain of Bayesian networks, and we will include some introduction to this important
domain in this course. Figure 1.5 shows a famous example form Judea Pearl, one of
the inventors of this important modelling framework. We will also give an example of
a modelling tool in this domain.

Introduction8 |

Fig. 1.5 An example of a graphical representation of a causal model.

1.3 Applied Learning: Training, validating and testing

A linear model in low dimensions is excellent way to demonstrate the principle mech-
anisms of machine learning. In the following example we consider at first only one
input feature x. Supervised machine learning in this example is equivalent to linear
regression, and area that has been studied for centuries. What makes machine learning
different today is that we are usually considering high-dimensional non-linear prob-
lems, and that we have computers (machines) to help us with this task. For now we will
follow the function approximation formalization, but we will return to the probabilistic
framework later.

Coming up with the right parameterized approximation function is the hard problem
in machine learning, and we will later discuss several choices. There are also meth-
ods to systematically develop the approximation function from the data, generally
called non-parametric methods. At this point we assume that we have a parameterized
approximation function. To illustrate this with we chose here an example where we
assume we have a single input feature, x, and we hypotheses that the output y is linearly
related to x. Mathematically we write this linear model as

ŷ = ax+ b, (1.7)

where a is the slope of the linear function and b is the y-axis intercept or bias of
this function. Using the training data to determine good parameters is called linear
regression.

The question is then how we determine good parameters. This is where the learning
process comes in. In supervised learning we must be given some examples of input-
output relation from which we learn. We can think about these examples as given by
a teacher. The teacher data called the training set are used to directly determine the
parameters of the model. We can denote this training set as

{x(i)

, y

(i)}, (1.8)

where the superscript i labels the specific training example. These indices are enclosed
in brackets to not confuse them with exponents. An example of a training set with 4
example points are shown in the left table in Fir. 1.6.

There are several possible training algorithm to determine the parameters of a
model. One way to determine the two parameters in this example is to use some

| 9Applied Learning: Training, validating and testing

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

2

4

6

8

10

12

14

16

y

x y

0 1.80

1 6.72

2 7.56

3 10.15

Fig. 1.6 A form of linear regression of data and cross-validation.

training data to analytically calculate the two unknowns. As we have a linear equation
with only two unknowns, we only need two data points to determine their values.
Using the two first data points as training set, we get

a =

y

(2) � y

(1)

x

(2) � x

(1)

= 4.9 (1.9)

b = y

(1) � ax

(1)

= 1.8 (1.10)

This regression line is shown as blue dotted line in Fig. 1.6. To quantify the goodness of
fit we need to define an evaluation function that is commonly called the loss function
or error function E. We chose here to evaluate the goodness of the model with the
mean square error (MSE) function,

E =

1

2N

NX

i=1

(ŷ � y)

2

, (1.11)

where N is the number of data points used to calculate the loss. If we use the training
data themselves to calculate the training error results in a zero loss, E

training

= 0.
We will later use more general applicable learning rules that do not always lead to zero
training error with limited training, but we need to keep in mind that the training error
can typically be made small and even zero. In this specific example this happens when
the number of parameters in the model is large compared to the number of training data.
Hence, the training error is not always a good indicator of the performance of the model.
What is more telling, and our principle aim in supervised learning, is how the models
performs in predicting labels of new data points. Data that has not been used in any
way in the learning process is called the testing set. There are sometimes competition
for machine learning algorithms, and testing data for these competitions are usually
withheld from the participants so that they cannot be used to develop the model. Also,
it is common that some data from the training set are withheld by the model developer
to ‘test’ the model. The test on data that have not been used in the learning process can
give us an estimate about the expected performance on unseen data. If we calculate
the error function from the test data we call this the generalization error E

g

since
this measure gives us an indication of how the model prediction performs to unseen
data. The generalization error of the model with parameters calculated from the first
two points in the training set is

Introduction10 |

E

g

(x

(1)

, y

(1)

, x

(2)

, y

(2)

) = 21.8. (1.12)

Of course, it would be much better to have more test data so that we can not only
give a better estimate on the mean, but even provide an estimate of the range such as a
variance, or in general the distribution of the generalization error. We will discuss this
point further on examples later in this course.

At this point we want to ask if the choice of using the first two points was good
or if we should have used to other points to build the model. Indeed, if we use the last
two data points for training we get the following parameter values,

a =

y

(4) � y

(3)

x

(4) � x

(3)

= 2.6 (1.13)

b = y

(3) � ax

(3)

= 2.4, (1.14)

which is shown as red dotted line in Fig. 1.6. So which one is better, the blue dotted
line or the red dotted line? It seems that the second fits better all the points, though
it also becomes now handy that we quantified the goodness of the fit with the loss
function on the test data, which gives in this case the value

E

g

(x

(3)

, y

(3)

, x

(4)

, y

(4)

) = 1.7 (1.15)

We can even check how well different pairs of training data can predict the other
data not used in training. Using different data from the original data set for training
and testing is called cross-validation. If we calculate the generalization error of the
different training/test sets we can choose as our predictive model the parameters with
the smallest cross-validation error. What we did here is that we used the originally
withheld data to ultimately tune a parameter of an algorithm, here the algorithm which
tells us which data points to use in the training set. This is again a form of training,
we determine some parameters from example data. We will call these parameters
hyperparameters and denote them here with the symbol ✓. We will later encounter
different algorithm parameters such as learning rates, momentum terms or maximum
number of iterations, or which data points to use in the training set to determine w as
in the above example.

If we are using the original test data to tune or train the hyperparameters, than
this data that we originally called the test set is really the training set for the hyperpa-
rameter. To distinguish them we call this specific training set that is used to validate
the w training in order to train the hyperparameters the validation set. This can be
sometimes confusing and some literature even uses the term validation set and cross
validation in situations of testing. In principle we could view the complete proce-
dure, our mathematical model together with the training procedures as the hypermodel
f(x;w, ✓). If we want to test this hypermodel then we need to hold out data that are
neither used in the determination of w nor ✓. Hence in this case we need really three
data sets, the training set to determine w, the validation set to determine ✓, and the
test set to evaluate the resulting model. It is of utmost importance not to use data in
any learning process if we want to estimate the performance of the model on unseen
data. Using test data in training, or even any derived information of test data in training
can lead to a drastic underestimation of the generalization error. This is sometimes

| 11Applied Learning: Training, validating and testing

called information contamination, and information contamination can completely
invalidate the results.

Note that the generalization error is still only an estimate of the true error which we
usually never really know. However, since I was the one who generated the example
data I can tell you how I chose them. I actually derived them from the world model

y = 2x+ 3 + ⌘, (1.16)

where ⌘ is a normal distributed random variable. I added this random number to the
perfect linear model to include a typical challenge in machine learning, that of having
imprecise measurements and hence noisy training data. The other way to interpret the
model is actually to accept the ‘world’ as stochastic and hence we are considering a
stochastic model. In any case, from this model we chose some data points by sampling,
though the true parameters of the world model are a = 2 and b = 3.

1.3.1 Performance measures

We used above an objective function to evaluate the performance of the model, specif-
ically in this case the MSE. This is often a start to look at this measure, but this should
not be where your investigations ends for several reasons. We will discuss later that
the MSE is not always appropriate and we will learn that this should really only be
used with linear models that contain Gaussian noise. Secondly, when using a test set it
can be very useful and informative to look beyond this average measure and see how
individual examples do or at least what the distribution of performances is. This is
specifically useful when tuning the hyperparameters as this can give us some pointers
to potential problems.

While we mentioned above that we deem the MSE as not always appropriate, it
is also important to acknowledge important that the loss function is ultimately the
choice of the user. The loss function specifies what the user wants to achieve, and this
is ultimately a personal choice. However, there are generally some guidelines that this
function must obey, and some others that are useful to observe. Since a loss function
measures the distance between a desired point in the parameter space, let’s call this a
and the point described by the current model in the parameter space, let’s call this b,
it should be based on an appropriate distance measure. That is, a loss function should
be zero if these points are the same, and strictly larger and monotonously increasing
otherwise,

E(a,b) =

⇢
= 0 for a 6= b

> 0 else (1.17)

This still leaves a lot of options, such as the absolute function, or a logarithmic function.

A lot of performance measures have been defined and are frequently reported in
machine learning papers. In binary classification it is common to report the confusion
matrix. In binary classification it is common to call one class ‘positive’ and the other
the ‘negative’. This nomenclature comes from diagnostics such as trying to decide if
a person has some disease based on some clinical tests. We can then define define the
following four performance indicators,

• True Positive Rate (TP): Correctly identified example of positive class

Introduction12 |

Fig. 1.7 Figure from NVIDIA DLI teaching kit.

• True Negative (TN): Correctly identified as example of negatove class
• False Positive (FP): Incorrectly identified example of positive class
• False Negative (FN): Incorrectly identified example of negative class

A graphical illustration of the meaning of these measures is give in Fig. ??. From
these it is common define the True positive rate or precision as the percentage of true
positive among the positive labeled examples, and recall as the percentage of positive
examples that are correctly labeled,

Precision =

True Positives
True Positives + # False Positives

(1.18)

Recall =
True Positives

True Positives + # False Negative
(1.19)

These quantities are useful to characterize the performance in a way that is relevant for
some application. In particular, most algorithms have a hyperparameter which tunes
the decision point, such as a decision threshold. The algorithm can thus be tuned to
implement a certain form of trade-off between how reliable a prediction of the positive
class is (precision), also called the true positive rate TPR, versus how many positive
examples are wrongly predicted, called the false positive rate FPR. This trade-off is
often visualized as a Receiver Operating Characteristic (ROC) curve. An example
is shown in Fig. 1.8a. Ideally we want the TPR to be one and the FPR to be zero,
which corresponds to a point in the upper left corner. While this is not typically not
always possible, the next best is that the TPR is as close to one for all possible values
of FPR. In contrast a random binary classification corresponds to the diagonal in this
plot, which has a value of 0.5 as the area under this curve. Hence, when comparing
two algorithm we generally prefer an algorithm that has a larger area under the ROC
curve, or an area that is close to one. For many applications we have curves that are
somewhere in between.

While focusing on a positive class is common in diagnostics, we sometimes are
equally interested in classifying different classes, in which case we use an accuracy

| 13Non-linear regression and high-dimensionalility

measure that averages over all classes, or the positive and negative predictions in the
case of binary classification,

Accuracy =

#True Positives +#True Negatives
#Samples

(1.20)

This measure is useful when we place equal weight on the prediction of all classes.
There are many more measures defined in the literature such as placing different weight
to specific prediction. A summary of some of the definitions are shown in Fig. 1.8b.
Note that the application of these measures encapsulate the importance that a user
places onto specific characteristics. This is similar of discussing which car is better.
Some might find that larger horsepowers are good, while others want a car to consume
as little gas as possible. Hence, there is not a simple best measure.

Fig. 1.8 a) Example of ROC curve. The ideal classifier is in the upper left corner. b) ummary of
evaluation measures for binary classification (from Wikipedia)

1.4 Non-linear regression and high-dimensionalility

Above we have discussed a case where we assumed a linear function, but regression
with more general non-linear functions brings another level of challenges. An example

Introduction14 |

of data that do not follow a linear trend is shown in Fig.1.9A. There, the number of
transistors of microprocessors is plotted against the year each processor was introduced.
This plot includes a line showing a linear regression, which is of course not very good.
It is however interesting to note that this linear approximation shows some systematic
deviation in some regional under and over estimation of the data. This systematic
deviation or bias suggest that we have to take more complex functions into account.
Finding the right function is one of the most difficult tasks, and there is not a simple
algorithm that can give us the answer. This task is therefore an important area where
experience, a good understanding of the problem domain, and a good understanding
of scientific methods are required.

1970 1980 1990 2000 2010−0.5

0

0.5

1

1.5

2

2.5 x 109

Year of introduction

lo
g(

N
um

be
r o

f t
ra

ns
is

to
rs

)

1970 1980 1990 2000 20105

10

15

20

25

Year of introduction

lo
g(

N
um

be
r o

f t
ra

ns
is

to
rs

) slope=0.35

A. Processor data B. Logarithm of processor data

n=10

n=2
n=4

Fig. 1.9 Data showing the number of transistors in microprocessors plotted against the year they
were introduced. (A) Data and some linear and polynomial fits of the data. (B) Logarithm of the
data and linear fit of these data.

It is often a good idea to visualize data in various ways since the human mind
seems good in ‘seeing’ trends and patterns. Domain-knowledge can also be valuable
as specialists in the area from which the data are collected can give important advice
or they might have specific hypothesis that can be investigated. It is often helpful to
know common mechanisms that might influence processes. For example, the rate of
change in basic growth processes is often proportional to the size of the system itself.
Such an situation leads to exponential growth. (Think about why this is the case).
Such situations can be revealed by plotting the functions on a logarithmic scale or
the logarithm of the function as shown in Fig.1.9B. A linear fit of the logarithmic
values is also shown, confirming that the average growth of the number of transistors
in microprocessors is exponential, which is known as Moore’s law.

But how about more general functions. For example, we can consider a polynomial
of order n, that can be written as

y = w

0

x

0

+w

1

x

1

+w

2

x

2

+ ...+w

n

x

n

. (1.21)

We would usually even consider different offsets for each term which we neglected for
simplicity. Given this new hypothesis in the form of a non-linear parametric function,
we can again use a regression method to determine the parameters from the data by
minimizing the LMS error function between the hypothesis and the data. The LMS

| 15Non-linear regression and high-dimensionalility

regression of the transistor data to polynomials for orders n = 2, 4, 10 are shown in
Fig.1.9A as dashed lines.

Using a polynomial as a nonlinear function is only one possible choice of many.
We will later consider mainly functions that that have been termed Artificial Neural
Networks. These functions can be represented graphically as shown in Fig.1.10. Each
node in such a graph is also called a neuron as it resembles to some extend the basic
functionality of a biological neuron in the brain. Such an artificial neuron weights
each individual input with an adjustable parameter, sums this weighted input, and then
applies a nonlinear function such as a tanh function on this summed input. The output
of each node is hence,

y

j

= tanh(

X

i

w

ji

x

i

). (1.22)

This output can be the input to another node, and we can in such a way build elaborate
functions with graphs of such nodes as shown in Fig.1.10B. We will later elaborate on
specific network architectures that represent specific classes of non-linear functions
that will be useful for specific applications. We will specifically explore how networks
with many layers of neurons have advanced the capabilities of learning machines
considerably which is now known as deep learning.

Fig. 1.10 Basic elements of an Artificial Neural Network (ANN). Each node represents an opera-
tion of summing weighted inputs and applying an nonlinear transfer functions f to this net input.
The output of each node can become the input of another node or represent the output of the
networks.

A major question when fitting data with fairly general non-linear functions is the
complexity of the function in terms of the number of parameters such as the order
of the polynomial or the number of nodes. The polynomial of order n = 4 seem to
somewhat fit the transistor data also shown in Fig.1.9B. However, notice there are
systematic deviations between the curve and the data points. For example, all the data
between years 1980 and 1995 are below the fitted curve, while earlier data are all
above the fitted curve. Such a systematic bias is typical when the order of the model is
too low. However when we increase the order, then we usually get large fluctuations,
or variance, in the curves. This fact is also called overfitting the data since we have
typically too many parameters compared to the number of data points so that our model
starts describing individual data points with their fluctuations that we earlier assumed
to be due to some noise in the system. This difficulty to find the right balance between
these two effects is also called the bias-variance trade-off.

Introduction16 |

The bias-variance trade-off is quite important in practical applications of machine
learning because the complexity of the underlying problem is often not know. It then
becomes quite important to study the performance of the learned solutions in some
detail. A schematic figure showing the bias-variance trade-off is shown in Fig.1.11.
The plot shows the error rate as evaluated by the training data (dashed line) and
validation curve (solid line) when considering models with different complexities.
When the model complexity is lower than the true complexity of the problem, then it
is common to have a large error both in the training set and in the evaluation due to
some systematic bias. In the case when the complexity of the model is larger than the
generative model of the data, then it is common to have a small error on the training
data but a large error on the generalization data since the predictions are becoming too
much focused on the individual examples. Thus varying the complexity of the data,
and performing experiments such as training the system on different number of data
sets or for different training parameters or iterations can reveal some of the problems
of the models.

Fig. 1.11 Illustration of bias-variance trade-off.

Deep neural networks are a form of high dimensional non-linear fitting function,
and preventing overfitting is therefore a very important component in deep learning.
Deep networks have many free parameters, and large data sets (big data) has therefor
been important for the recent progress in this area in combination with other techniques
to prevent such as a technique called dropout that we will discuss later. In general one
can think about techniques to prevent overfitting by restricting the possible range of the
parameters. Indeed, learning from data already represents providing information about
the values of the parameters, and restricting such ranges further is a key element in
machine learning. This area is generally discussed under the heading of regularization.
In a probabilistic framework this can be incorporated with a prior, a probability density
function of our prior belief or restrictions in the parameters.

In the next section we will see that basic implementation of Machine learning meth-
ods are not difficult when using application programs that implement these techniques.
This is good news. However, a deeper understanding of the methods is necessary to
make these applications and their conclusion appropriate. The machine learning al-
gorithms will come up with some predictions, but if these predictions are sensible is

| 17Non-linear regression and high-dimensionalility

important to comprehend and evaluate. Machine learning education needs therefore to
go beyond learning how to run an application program, and this course aims to find a
balance between practical applications and their theoretical foundation.

