Chapter 2
A Brief Introduction to Probabilistic Machine
Learning and Its Relation to Neuroscience

Thomas P. Trappenberg

Abstract My aim in this chapter is to give a concise summary of what I consider the
most important ideas in modern machine learning, and relate to one another different
approaches, such as support vector machines and Bayesian networks, or reinforce-
ment learning and temporal supervised learning. I begin with general comments on
organizational mechanisms, then focus on unsupervised, supervised and reinforce-
ment learning. I point out the links between these concepts and brain processes such
as synaptic plasticity and models of the basal ganglia. Examples for each of the
three main learning paradigms are also included to allow experimenting with these
concepts.

1 Evolution, Development and Learning

Development and learning are two crucial ingredients for the success of natural
organisms, and applying those concepts to artificial systems might hold the key
to new breakthroughs in science and technology. This chapter is an introduction to
machine learning that illustrates its links with neuroscientific findings. There has been
much progress in this area, in particular by realizing the importance of representing
uncertainties and the corresponding usefulness of a probabilistic framework.

1.1 Organizational Mechanisms

Before focusing on the main learning paradigms that dominate much of our recent
thinking in machine learning, I would like to briefly outline some of my views on

Available at http://projects.cs.dal.ca/hallab/MLreview2013.

T. P. Trappenberg (X))
Dalhousie University, Halifax, Canada
e-mail: tt@cs.dal.ca

T. Kowaliw et al. (eds.), Growing Adaptive Machines, 61
Studies in Computational Intelligence 557, DOI: 10.1007/978-3-642-55337-0_2,
© Springer-Verlag Berlin Heidelberg 2014

http://projects.cs.dal.ca/hallab/MLreview2013

62 T. P. Trappenberg

the close relationships that exist among the organizational mechanisms discussed in
this volume. It seems to me that at least three levels of these mechanisms contribute
to the success of living organisms: evolutionary mechanisms, developmental mech-
anisms and learning mechanisms. Evolutionary mechanisms focus on the long-term
search for suitable architectures. This search takes time, usually many generations,
to establish small modifications that are beneficial for the survival of a species, and
even longer to branch off new species that can exploit niches in the environment. Evo-
lution is by essence adaptive, as it depends on the environment, the physical space,
and other organisms. A good basic organization and good choices by an organism
ultimately determine the survival of the individuals, hence the species in general.

While evolution works on the general architectural level of the population, a
precise architecture has to be realized in individuals, too. This is where development
comes into play. The genetic code is used to grow specific organisms from a mas-
ter plan (the genome) and environmental conditions. Thus, this mechanism is also
adaptive since the environment can influence the specific decoding of the master
plan. For example, the shape and metabolism of the sockeye salmon can change
drastically when environmental conditions allow migration from a freshwater envi-
ronment to the ocean—whereas this fish remains small and adapted to fresh water
if prevented from migrating, or if food sources are sufficient in the river. The ability
to grow specific architectures in response to the environment gives organisms a con-
siderable advantage, and these external stimuli seem to continually influence genetic
expression.

Having grown a specific architecture, the resulting organisms can continue to
respond to environmental conditions by learning about specific situations and how
to take appropriate actions. Learning is another type of adaptation of a specific
architecture that can take several forms. For example, it can be supervised by other
individuals, such as parents teaching their offspring behavioural patterns that they
find advantageous, or the organisms can learn from more general environmental
feedback by receiving reinforcement signals such as food reward or the accuracy
of anticipated outcomes. This chapter will focus for the most part on such learning
mechanisms.

The three different adaptive frameworks outlined above are somewhat abstract
at this level and it is important to be more precise about their meaning by showing
specific implementations. However, this is also when distinctions between these
mechanisms become somewhat blurred. For example, the emergence of receptive
fields (e.g. in the visual cortex) during the critical postnatal period is definitely an
important event at the developmental level, yet we will discuss such mechanisms as
a special form of “learning” in this chapter. For the sake of this volume it might be
useful to think about the learning processes described here as fine-tuning a system to
specific environmental conditions, as they can be experienced by an individual during
its lifetime. Other mechanisms discussed in this volume are aimed at developing
better learning systems in the long term, or growing specific individuals in response
to the environment.

While I will try to draw lines between development and learning, mainly to discuss
approaches from different scientific camps, it is debatable that such distinctions could

2 A Brief Introduction to Probabilistic Machine Learning 63

(a) Linear model (b) Quadratic model (c) 4th-order model

Fig. 1 Examples of underfitting (a) and overfitting (c)

even be made in the first place since, ultimately, all model implementations have to be
reflected by some morphological changes in the system. Thus it is quite appropriate
to bring together the modeling of different biological views into this volume.

1.2 Generalization

The general goal of the learning systems described here is to predict associations, or
“labels”, for future unseen data. The examples given during the learning phase are
used to choose the parameters of a model that represents certain hypotheses so that
a specific realization of this model can later make good predictions. The quality of
generalization from training data depends crucially on the complexity of the model
that is hypothesized to describe the data, as well as the number of training samples.

This is illustrated by Fig. 1. Let us think about describing the six data points shown
there with a linear model: the corresponding regression curve is shown in the left-
hand graph, while the other two graphs show the regression of a quadratic model and
a fourth-order polynomial. Certainly, the linear model seems too low-dimensional
since the data points deviate systematically, with the points in the middle trending
above the curve and the points at both ends laying below the curve. Such a systematic
bias is a clear indication that the model complexity is too low. In contrast, the curve
on the right fits the data perfectly. Indeed, we can always achieve a perfect fit for
a finite number of training points if the number of free parameters (one for each
order of the polynomial, in this example) approaches the number of training points.
But this could be overfitting the data in the light of possible noise. To evaluate
whether we are overfitting, we need additional validation examples. An indication
of overfitting is when the variance of this validation error grows with an increasing
model complexity.

What we just discussed, called the bias-variance tradeoff when choosing between
different potential hypotheses, is summarized in the left-hand graph of Fig.2. Many
advances in machine learning have been made by addressing ways to choose good
models. While the bias-variance tradeoff has been well appreciated in the machine
learning community for some time now [1], many methods are still based on general
learning machines that have a large number of parameters. For such machines it is

64 T. P. Trappenberg

<«— Bias Variance —p>

Error

Generalization

Training examples
Model complexity

Fig. 2 Bias-variance tradeoff and explorative learning. While a training error can always decrease
with increasing model complexity, minimizing the generalization error is what we are seeking. To
find the smallest possible generalization error we need to search in hypothesis space and optimize
in parameter space

now common to use meta-learning methods to address the bias-variance tradeoff,
such as cross-validation where some of the training data is used to evaluate the
generalization ability of the model.

We also need to consider if the model takes into account all the necessary factors
that influence the outcome. How about including new features not previously con-
sidered such as a temporal domain? I believe that genetic and developmental mecha-
nisms can address these issues by exploring a hypothesis space by ways of different
model architectures. Of course, the exploration of a hypothesis space (developmental
learning) must be accompanied by parameter optimization (behavioural learning) to
find the best possible generalization performance. Several of the contributions in this
volume represent good examples of this approach.

In summary, for the discussion in this volume it is useful to draw a distinction
between two main processes:

e Architectural exploration: This process explores the hypothesis space in terms
of global structures, such as what kind of features are relevant to build appropriate
models and what model structures (parameterized functions) can be used.

e Parameter optimization: This process is about finding solutions (appropriate
values of the parameters) within a specific architecture (a parameterized function).

Naturally, these processes are ultimately entwined and can be covered by common
mechanisms. It remains that both aspects need to be included to find good predicitve
systems, as illustrated in the right-hand graph of Fig. 2.

1.3 Learning with Uncertainties

Machine learning has recently revolutionized computer applications such as autono-
mous car driving or information searching. Two major ingredients have contributed
to this recent success. The first was building into the system the ability to adapt

2 A Brief Introduction to Probabilistic Machine Learning 65

to unforeseen events. In other words, we must build “machines that learn”, since
the traditional method of encoding appropriate responses for all future situations is
impossible. Like humans, machines should not be static entities that can only blindly
follow orders, which might be outdated by the time real situations are encountered.
Although learning machines have been studied for at least half a century, often
inspired by human capabilities, the field has matured considerably in recent years
through more rigorous formulations of the systems and the realization of the impor-
tance of predicting previously unseen events rather than only memorizing former
events. Machine learning is now a well established discipline within artificial intel-
ligence.

The second ingredient for the recent breakthroughs was the acknowledgment that
there were uncertainties in the world. Thus, rather than only following the most
likely explanation for a given situation, keeping an open mind and considering other
possible explanations has proven to be essential in systems that have to work in a
real-world environment, in contrast to a controlled lab environment. The language
of describing uncertainty, that of probability theory, has proven to be elegant and
tremendously simplify arguing in such worlds. This chapter is dedicated to an intro-
duction to the probabilistic formulation of machine learning.

In the following sections I outline a contemporary view of learning theories that
includes unsupervised, supervised and reinforcement learning. I begin with unsu-
pervised learning since it is likely less known and relates more closely to certain
developmental aspects of an organism. Then, I briefly review supervised learning in
a probabilistic framework. Finally, I present reinforcement learning as an important
generalization of supervised learning. In addition, I discuss some relations of these
learning theories with biological analogies. This includes the relations of unsuper-
vised learning with the development of filters in early sensory cortical areas, synaptic
plasticity as the physical basis of learning, and research that relates the basal ganglia
to reinforcement learning theories.

I thought important to include supervised, unsupervised and reinforcement
learning in a form that would correspond to an advanced treatment of these top-
ics in a course on machine learning. While there are now many good publications
that focus on specific approaches in machine learning (such as kernel methods or
Bayesian models), my aim is to link together and contrast several popular learning
approaches. Most discussions of machine learning start with supervised learning, but
I opted here for an initial discussion on unsupervised learning instead, as it logically
precedes supervised learning and is generally less known.

1.4 Predictive Learning

Since my main research focus is neuroscience, I would like to first clarify how
machine learning relates to this field. Machine learning can actually help neuro-
science in many ways, one of which certainly concerns data analysis, as learning
methods constitute the foundations of most advanced data mining techniques.
Another application area, and the one examined here, is to understand the main

66 T. P. Trappenberg

Fig. 3 The “anticipating ENVIRONMENT
brain” contains a hierarchical

generative model of concepts Sensation
and a decision system that

guides behavior with the help
of an anticipatory world model

problems and solutions in machine learning that can guide our understanding of
biological learning systems. That is, we can ask what essential methods for solv-
ing learning problems are available, in a way somewhat reminiscent of Marr and
Poggio’s view of a computational, and possibly algorithmic, level of neuroscience.
Similarly, many models discussed here can be construed as models of the brain on
a more abstract level. Within computational neuroscience, there are also models
that represent more mechanistic levels with specific representations and physical
implementations. The implementation of learning via synaptic plasticity, and a more
system-level model of the basal ganglia are a few of the examples mentioned later
in this chapter.

If pressed to summarize what the brain does, I would say that it is an organ
that represents a sophisticated decision system based on an adaptive world model.
The goal of learning as it is described here is anticipation, or prediction. A predictive
model can be used by an organism to make appropriate decisions to reach some goals.
I believe that increasingly complex nervous systems evolved to make increasingly
sophisticated predictions that could give them survival and evolutionary advantages.

A possible architecture of a predictive learning system resembling my high-level
view of the brain is outlined in Fig. 3. An agent must interact with the environment
from which it learns and receives a reward. This interaction has two sides: sensation
and action. The state of the environment is conveyed by sensations that are caused by
specific situations in the environment. A comprehension of these sensations requires
hierarchical processing in deep-learning systems. The hierarchical processes are
bidirectional so that the same structure can be used to generate expectations that
should ultimately yield appropriate actions. These actions have to be guided by a
decision system that itself needs to learn from the environment. This chapter reviews
the principal components of such a learning system.

2 Unsupervised Learning

2.1 Representations

Animportant requirement for a natural or artificial agent is to decide on an appropriate
course of action given specific circumstances, mainly the encountered environment.

2 A Brief Introduction to Probabilistic Machine Learning 67

We can treat the environmental circumstances as cues given to the agent. These
cues are communicated by sensors that specify the values of certain features. Let us
represent these feature values as a vector x. The goal of the agent is then to calculate
an appropriate response

y=fx). (D

In this review we use a probabilistic framework so that we can address uncertainties,
or different possible responses. The corresponding statement of the deterministic
function approximation of Eq. (1) is then to find a probability density function

p(yIx). (2)

A common example is object recognition where the feature values might be RGB
values of pixels in a digital image and the desired response might be the identity of a
person in this image. A learning machine for such a task is a model that is presented
with specific examples of feature vectors x and their corresponding desired labels y.
Learning under these circumstances mainly consists of adjusting the model’s para-
meters based on the given examples. A trained machine should be able to generalize
by predicting the appropriate labels of previously unseen feature vectors, where the
“appropriateness” usually depends on the task. Since this type of learning is based
on specific training examples with known labels, it is called supervised. We discuss
specific algorithms of supervised learning and corresponding models in the next
section. We start here with unsupervised learning since it is a more fundamental task
that precedes supervised learning.

As stated above, the aim of learning is to find a mapping function y = f(x)
or probability density function p(y|x). An important insight that we explore in this
section is that finding such relations is much easier if the representation of the feature
vector is chosen carefully [1]. For example, it is very challenging to use raw pixel
values to infer the content of a digital photo such as the recognition of a face. In con-
trast, if we possess useful descriptions of faces, such as the distance between the eyes
or other landmarks, the hair colour, nose length, and so on, it becomes much easier
to classify photographs into specific target faces. Finding a useful representation of
a problem is key to a successful application. When we use learning techniques for
this task we talk about representational learning. Representational learning mostly
exploits statistical characteristics of the environment without the need for labeled
training examples. This is therefore an important area of unsupervised learning.

Representational learning itself can be viewed as a mapping problem, for example
the mapping from raw pixel values to more direct features of a face. This is illus-
trated in Fig.4: the raw input feature vector X is represented by a layer of nodes at
the bottom, which we will call the input layer, while the feature vector h supporting
higher order representations is represented by nodes in the upper layer of this net-
work, which we will call the representational layer or hidden layer. The connections
between the nodes represent the desired transformation between input layer and hid-
den layer. In line with our probabilistic framework, each node represents a random

68 T. P. Trappenberg

Fig. 4 A restricted Boltz- Representational layer

mann machine is a proba- h O O O O O O O (hidden nodes)
bilistic two-layer network t
@)

with bidirectional symmetric
connections between the input

. Input layer
layer and the representational X =
(hidden) layer O O O O (visible nodes)

Fig. 5 Logistic function with
different slopes and offsets

—_

1
T+vexp(-2x)

<

1
05f 1 1+exp(-2x+3) |

1+exp(-x)

AN

variable. The main idea behind the principle that we will employ to find “useful”
representations is that these representations should be useful inasmuch as they can
help reconstructing the input.

Before we discuss different variants of hidden representations, let us make the
functions of the model more concrete. Specifically, we consider binary random vari-
ables for illustration purposes. Given the values of the input nodes (indexed by j), we
choose to calculate the value of the hidden nodes (indexed by i), or more precisely
their probability of having a certain value, via the logistic function shown in Fig. 5:

1

hi=1x) = ————,
p(1 |) 1+e—%(wix+b?)

3)

where T is a “temperature” parameter controlling the steepness of the curve, w are
the weight values of the connections between the input and hidden layers, and b?
is the offset of the logistic function, also called the bias of the hidden node. In this
model, which is called a “restricted Boltzmann machine” (RBM) [2], there are no
connections among the hidden nodes, so these nodes represent random variables that
are conditionally independent when the inputs are observed. In other words, the joint
density function with fixed inputs factorizes as follows:

plx) =[] p(hilx).)

The connections here are bidirectional and symmetric, meaning that w;; = wj;,
therefore this kind of model also represents an “undirected Bayesian network”, which
is a special case of the Bayesian networks that will be discussed later. Thus the state
of the input nodes can be generated by hidden activities according to

2 A Brief Introduction to Probabilistic Machine Learning 69

. . . Alternating Gibbs Sampling
Fig. 6 Alternating Gibbs

sampling and the approxima-
tion of contrastive divergence

Contrastive Divergence 720

= 1lh) =
p(x] |) _% z[W,/h,-'rb‘//

1
1
1 4 ¢ T 2i Wijhi+b}

1+e

pxih) =]

J

®)

where b} are the biases for each visible (input) node.

The remaining question is: how can we choose the parameters, specifically the
weights and biases of the model? Since our aim is to reconstruct the observed world,
we can formulate the answer in a probabilistic framework by minimizing the distance
between the world’s distribution (the density function of the visible nodes when set
to unlabeled examples from the environment) and the generated model of the world
when sampled from hidden activities. The difference between distributions is often
measured by the Kullbach-Leibler divergence, denoted by Dxp , and minimizing this
objective function with a gradient method leads to a Hebbian-type learning rule:

dDkL _ 1
ow;j _772T

((hivj>clamped - (hivj)free)- (6)

The angular brackets (.) denote sample averages, either in the clamped mode where
the inputs are fixed or in the free running mode where the input nodes’ activities
are determined by the hidden nodes. Unfortunately, in practice this learning rule
suffers from the long time it takes to produce an unbiased average from sequentially
sampled time series. However, it turns out that learning still works for a few steps in
the Gibbs sampling as illustrated in Fig. 6. This learning rule, which has finally made
Boltzmann machines applicable, is called contrastive divergence [3] (see also [4]).

An example of a basic restricted Boltzmann machine is given in Table 1. This
RBM has np = 100 hidden nodes and is trained for nepochs = 150 epochs, where one
epoch consists of presenting all images once. The network is trained with contrastive
divergence in the next block of code. The training curve, which shows the average
error of recall of patterns, is shown on the left in Fig. 7. After training, 20 % of the
bits of the training patterns are flipped and presented as input to the network, then the
program plots the patterns after repeated reconstructions as displayed on the right
side of Fig. 7. Only the first 5 letters are shown here, but this number can be increased
to inspect more letters.

70 T. P. Trappenberg

Table 1 Basic restricted Boltzmann machine for learning letter patterns

clear; nh = 100; nepochs = 150; lrate = 0.01;

%$load data from text file and rearrange into matrix

load patternl.txt;

letters = permute (reshape (patternl, [12 26 13]), [1 3 2]);

%train rbm for nepochs presentations of the 26 letters
input = reshape (letters, [12%13 26]
vb = zeros(12%13, 1); hb = zeros(nh, 1); w = .lxrandn(nh, 12x13);

figure; hold on;
xlabel ’epoch’; ylabel ’error’; xlim([0 nepochs]);
for epoch = 1l:nepochs;
err = 0;
for i = 1:26
$sample hidden units given input, then reconstruct
v = input (:, 1);

h=1./(1 + exp(-(w v + hb))); %sigmoidal activation

hs = h > rand(nh, 1); %probabilistic sampling

vr = 1./(1 + exp(—(w’+hs + vb))); %$input reconstruction
hr = 1./(1 + exp(—(w *vr + hb))); %$hidden reconstruction

$contrastive divergence rule: dw = h*v - hr*vr
dw = lratex (hxv’-hrxvr’); w = w + dw;
dvb = lratex(v - vr); vb = vb + dvb;

dhb = lratex(h - hr); hb = hb + dhb;
err = err + sum((v-vr). 2); S%reconstruction error
end
plot (epoch, err/(12x13x26), '.’); drawnow; %$figure output

end

%plot reconstructions of noisy letters
r = randomFlipMatrix (round(.2%x12%13)); %$(20% of bits flipped)
noisy_letters = abs(letters - reshape(r, [12 13 26]));

recon = reshape (noisy_letters, 12%13, 26); %put data in matrix
recon = recon(:, 1:5); %plot only first 10

figure; set(gcf, ’'Position’, get (0, ’screensize’));

for 1 = 0:3
for j = 1:5
subplot (3 + 1, 5, 1i%5 + Jj);
imagesc (reshape (recon(:, Jj), [12 13])); S%plot
colormap gray; axis off; axis image;

h=1./(1 + exp(-(w xrecon(:, Jj) + hb))); %compute hidden
hs = h > rand(nh, 1); %$sample hidden
(:
(:

recon(:, j) = 1./(1 + exp(—(w’*hs + vb))); %compute visible
recon(:, Jj) = recon(:, Jj) > rand(l2x13, 1); %$sample visible
end

end

function r = randomFlipMatrix(n);

$return matrix with components 1 at n random positions
r = zeros (156, 26);

for 1 = 1:26

x = randperm(156);
r(x(l:n), i) = 1;
end

This network is used to learn digitized letters of the alphabet that are provided in the file
patternl. txt at http://www.cs.dal.ca/~/repository/MLintro2012 together with the other pro-
grams of this chapter

http://www.cs.dal.ca/~/repository/MLintro2012

2 A Brief Introduction to Probabilistic Machine Learning 71

o FaY 0 W #
ARk ICION
SN AN WHE-

e A L IE

epoch 10

Fig. 7 Output of the example program for a restricted Boltzmann machine. Left learning curve
showing the evolution of the average reconstruction error. Right reconstructions of noisy patterns
after training

2.2 Sparse and Topographic Representations

In the previous section we reviewed a basic probabilistic network that implements
representational learning based on the reconstruction of inputs. There are many
other unsupervised algorithms that can achieve representational learning, such as
non-probabilistic recurrent networks (for example, see Rebecchi et al. in this vol-
ume). Also, many other representational learning algorithms originate from signal
processing, such as Fourier transform, wavelet analysis, or independent component
analysis (ICA). Indeed, most advanced signal processing methods include steps to
re-represent or decompose a signal into basis functions. For example, the Fourier
transform decomposes a signal into sine waves with different amplitudes and phases.
The original signal can then be reconstructed from the sum of individual sine waves
weighted by their amplitude parameters. An example is shown in Fig. 8. The signal
in the upper left is made out of three sine waves as revealed by the power spectrum
on the right, which plots the square of the corresponding coefficients.

The Fourier transform has been very useful in describing periodic signals, but
one problem with this representation is that an infinite number of basis functions are
needed to represent a signal that is localized in time. An example of a square signal
localized in time is shown in the lower left panel of Fig.8 together with its power
spectrum on the right. In the case of the time-localized signal, the power spectrum
shows that a continuous interval of frequencies is necessary to accurately represent the
original signal. Thus, a better choice for applications with localized features would be
basis functions that are localized in time. Examples are wavelet transforms [5] or the
Huang-Hilbert transform [6]. The usefulness of a specific transformation depends of
course on the nature of the signals. Periodic signals with few frequency components,
such as the rhythm of the heart or yearly fluctuations of natural events, are well
represented by Fourier transforms, while signals with localized features, such as
objects in a visual scene, are often well represented with wavelets. The main reason
for calling a representation “useful” is that the original signal can be represented with

72 T. P. Trappenberg

6
4 3x10
2 2
0 1
o 2 |
S - ' 5 0
= 0 50 100 150 g 0 5
o (o]
£ T 30
<
20
0.5
10
0 ' ' 0
0 50 100 150 0 5
Time Frequency

Fig. 8 Decomposition of signals into sine waves. The example signals are shown on the left side,
and the corresponding description of the power spectrum on the right. The power spectrum shows
the square of the amplitude for each contributing sine wave with specified frequency

only a small number of basis functions—in other words, when only a small number
of coefficients have significantly large values. Therefore, even if the dictionary is
large, each example of a signal from the specific environment can be represented
with a small number of components. Such representations are called sparse.

The importance of sparse representations in the visual system has long been
pointed out by Horace Barlow [7], and one of the best and probably first examples
that demonstrate such mechanisms was give by his student Peter Foldidk [8] (see
also [9]). Another very influential article by Olshausen and Field [10] demonstrated
that sparseness constraints are essential in learning basis functions that resemble
receptive fields in the primary visual cortex, and similar concepts should also hold
for higher-order representations in deep-belief networks [11]. It is now argued that
such unsupervised mechanisms resemble receptive fields of simple cells.

The major question is then how to find good (sparse) representations for specific
environments. One solution is to learn representations by unsupervised training as
demonstrated above with the example of a Boltzmann machine. To learn sparse
representations we now add additional constraints that force the learning of specific
basis functions. In order to do this we can keep track of the mean activation of the
hidden nodes by setting

qi(1) = (1 = N)gi(t — 1) + Ah; (1), (7

where parameter A determines the averaging window. We then add to the learning
rule the constraint of minimizing the difference between the desired sparseness p
and the actual sparseness q, expressed by

Awij < vi(hi +p — qi) —v;-hf. (8)

This works well in practice and has the extra advantage of preventing dead nodes [4].

2 A Brief Introduction to Probabilistic Machine Learning 73

=

Fig. 9 Examples of learned receptive fields of a RBM without (left) and with (right) sparse and
topographic constraints

In addition to the typical form of receptive fields, many brain areas show some
topographic organization in that neurons with adjacent features of receptive fields are
located in adjacent tissues. An example of unsupervised topographic representations
are “self-organizing projections” [12, 13] or “self-organizing maps” (SOMs) [14].
Topographic self-organization can be triggered by lateral interactions with local
facilitation and distant competition, as can be implemented with pairwise local exci-
tation and distant inhibition between neurons. Such interactions also promote sparse
representations. Along these lines, my student Paul Hollensen together with my col-
laborator Pitoyo Hartono and myself proposed to include lateral interactions within
the hidden layer [15] as follows:

plhilvy =" Aij plhjlv), ©)
J

where i, j both represent hidden units here, and .4;; is a kernel such as a shifted
Gaussian or a Mexican-hat function centered on hidden node i. For binary hidden
units the natural measure of the difference in distributions is the cross entropy, for
which the derivative with respect to the weights is simply (hj — hi) - v. Combining
this with the contrastive divergence update yields

Awij o vihi =ik} +vj(h; — hi) = vihi — V3. (10)

Figure 9 presents examples of receptive fields learned with (right) and without (left)
sparse topographic learning.

While purely bottom-up driven SOMs have dominated the thinking in this field,
it is also important to consider models with top-down guidance of self-organized
feature representations. An excellent example is the Adaptive Resonance Theory

74 T. P. Trappenberg

(ART) of Stephen Grossberg [13, 16], which is most relevant in a biological context
and even addresses the stability-plasticity dilemma. Further aspects of top-down
control in SOMs are discussed in [17].

2.3 Hierarchical Representations and Deep Learning

Before leaving our discussion about representational learning, I would like to mention
at least briefly the importance of hierarchical representations. So far we have only
considered one layer of internal representations that we called the hidden layer.
However, it is widely believed that representations that allow abstractions at different
levels are essential to enable the cognitive abilities displayed by humans.

An obvious example consists of stacking Boltzman machines so that the hid-
den layer of one Boltzman machine becomes the input layer to the next Boltzman
machine. This already has the advantage that more complex filters can be built from
filters learned in previous levels. For example, if a first layer represents edges in a
visual scene, a higher level could represent corners or more elaborate combinations
of edges.

However, just obtaining more elaborate filters might not be the only advantage
derived from hierarchical representations. In order to enable more advanced cognitive
abilities, such as exploiting more general concepts or making higher-level plans,
we need to enable more abstract representations of concepts. Such deep learning
algorithms are the subject of much recent research in machine learning, and the
chapter by Joshua Bengio is an excellent discussion of some of the challenges in this
area.

Deep learning structures also resemble better the situation of the brain as a learning
machine. We have mentioned above that filters in the early sensory areas and higher
levels of the cortex, such as neurons in the inferotemporal cortex [18], are known
to respond to more complex patterns. But it is also known that the prefrontal cortex
contributes to high-level cognition functions such as planning and other executive
functions that are often based on abstract concepts.

3 Supervised Learning

3.1 Regression

Representational learning is about learning a mapping function that transforms a
signal (input vector) into a new signal (hidden vector):

fnix — h (given unlabeled examples and constraints). (11

2 A Brief Introduction to Probabilistic Machine Learning 75

500 %
Weight Time of one-mile run % * * * *
(in pounds) (in seconds) 8
o 450 *
@
217 481 o * x
141 202 c *
152 338 S 400 x X ok
153 357 2 * i *
180 396 £ 350 LT
: [0} * *
c
2 *ok
; 5 300 %
245 469 ® "
141 252 £ * %
177 338 = 250 £ . . ,
100 150 200 250 300

weight (pounds)

Fig. 10 Health data

The unsupervised learning of this mapping function typically exploits statistical reg-
ularities in the signals, and therefore depends on the nature of the input signals. This
learning process is also guided by principles such as good reconstruction abilities,
sparseness and topography. Supervised learning, on the other hand, is about learning
an unknown mapping function from labeled examples:

fy'h — y (given labeled examples). (12)

‘We have indicated in the formula above that supervised learning takes the hidden rep-
resentation of examples, h and maps them to a desired output vector y. This assumes
that representational learning is somewhat completed during a developmental learn-
ing phase, which is then followed by supervised learning with a teacher that supplies
desired labels (output values) for given examples. It may be argued that in natural
learning systems these learning phases are not as strictly separated as discussed here,
but for the purpose of this tutorial it is useful to make a distinction between these
two major learning components.

In our discussion of strictly supervised learning for this section, let us follow
the common nomenclature in denoting input values by x and output values by y. In
supervised learning we consider training data that consists of example inputs and
corresponding labels, that is, pairs of values (x(“>, y(e)), where e = 1, ..., m indexes
the m training examples. For instance, Fig. 10 presents a partial list and plot of the
running records of 30 employees who were regular members of a company’s health
club [19]. Specifically, the data shows the relationship between the weight of these
persons and their time in a one-mile run.

Looking at the plot seems to reveal a systematic relation between the weights and
running times, with a trend for heavier individuals to be slower at running, although
this is not true for everyone. Moreover, the trend appears linear. This hypothesis can
be quantified as a parameterized function

h(x; 0) = 0 + O1x. (13)

76 T. P. Trappenberg

This notation means that hypothesis 4 is a family of functions of the quantity x
that includes all possible straight lines, where each line can have a different offset
6o (intercept with the y-axis) and slope 8;. We typically collect parameters in a
parameter vector denoted by 8. We only considered a single input feature x above,
but we can easily generalize this to higher-dimensional problems where more input
attributes are given. For example, there might be the amount of exercising each week
that might impact the results of running times. If we make the hypothesis that this
additional variable has also a linear influence on the running time, independently from
the other attribute that adds or reduces the time, we can express this new hypothesis
with

h(x; 0) = 6y + 01x1 + O2x3. (14)

A useful trick to enable a compact notation in higher dimension with » attributes is
to introduce xg = 1. We can then write the linear equations as

h(x; 0) = 60x0 + ... + Xy = D _0;x; =0"x. (15)
j

where vector @7 is the transpose of vector 6.

At this point it would be common to fit the unknown parameters # with methods
such as a least mean squares (LMS) regression. However, I would like to frame
this problem right away in a more modern probabilistic framework. The data already
shows that the relations between the weight and the running time is not strictly linear,
thus the main question is how we should interpret the differences. We could introduce
a more complicated nonlinear hypothesis to obtain a better fit. However, this could
lead to conclusions such as: increasing your weight from 180 to 200 pounds will make
you run faster. While we might wish this conclusion were true, it is most certainly
unwarranted. Thus, instead of making the hypothesis function more complex, we
should consider other possible sources that influence this data. One is certainly that
the ability to run does not only depend on the weight of a person but also on other
physiological factors. However, this data does not include information about such
other factors, and the best we can do (other than collecting more information) is to
treat these deviations as uncertainties.

There are many possible sources of uncertainties such as irreducible indetermi-
nacy or epistemological limitations. Irreducible indeterminacy might be called “true
noise”, as it comes from system limitations such as time constraints on measurements,
other sensors’ limitations, or simply laziness for collecting more information. For
us, it is actually not important where these uncertainties originate; rather, we must
only acknowledge the uncertain nature of the data. In this type of thinking, we treat
sampled data from the outset as fundamentally stochastic, that is, sensory data can
be different even in situations that we deem identical.

To model the uncertainties in this data, we look at the deviations from the mean.
Figure 11 shows a histogram of the differences between the actual data and the
hypothesized regression line. This histogram looks a bit like one sampled from

2 A Brief Introduction to Probabilistic Machine Learning 77

Fig. 11 Histogram of the
differences between the data
points and the fitted hypothe-
sis, (y — 6p — 01x)

Numbers in bin

0
-100 -50 0 50 100
Remainder

Gaussian data, which is a frequent finding in many situations though not neces-
sarily the only one. In any case, let us just make this additional assumption that
there is noise in the data. With this conjecture, we should revise our hypothesis in
a probabilistic framework. More precisely, we acknowledge that we can only give
a probability of finding certain values. Specifically, we assume here that the data
follows a certain trend A (x; #) with an additive noise denoted 1,

p(yIx;0) = h(x;0) +n, (16)

where the random variable 1 comes from a Gaussian (normal) distribution .4 in the
above example, i.e.,

p(m) = A (u, o). (17)

We can then also write the probabilistic hypothesis in the above example as a Gaussian
model with a mean that depends on the variable x:

pyIx;0) = A (u=h(x;0),0)

1 (y —6Tx)?
oo exp(—T) (18)

This function defines the probability of an y value, given an input x and parameters 6.
We have here treated the variance o2 as given, although it, too, could be part of the
model parameters that need to be estimated. Specifying a model with a density
function is an important step in modern modeling and machine learning.

We have thus far made a parameterized hypothesis underlying the nature of the
data. We now need to estimate values for the parameters to make real predictions.
Therefore, let us consider again the examples of input-output pairs, i.e. our training set
{(x@, y©): e =1, ..., m} (in 1D). The important principle that we will follow now
is to choose the parameter 6 so that the examples we have are most likely covered by

78 T. P. Trappenberg

the model. This is called maximum likelihood estimation. To formalize this principle,
we need to think about how to combine probabilities for several observations. If the
observations are independent, then the joint probability of several observations is the
product of the individual probabilities:

m
P(Y1, Ya, o Yl X1, Xa, ooy X3 0) = [| p(YelXe3 0). (19)

e=1

Note that the Y;’s are still random variables in the above formula. We now use our
training examples as specific observations (point estimates) for each of these random
variables, and introduce the likelihood function

L©) =[] p®; v, x). (20)

e=1

Here, on the right-hand side, p is not a density function but a regular function of
parameter 6 (with the same functional form as our parameterized hypothesis p) for
the given values y© and x(©. Instead of evaluating this large product, however, it is
common to use the logarithm of the likelihood function, so that we can use the sum
over the training examples:

1©) =log L(®) = D log(p©; ¥, x)). 1)

e=1

Since the log function is strictly monotonically increasing, the maximum of L is also
the maximum of /. The maximum (log-)likelihood estimate (MLE) of the parameter
can thus be calculated from the examples by

OMLE — arg max /(6). (22)

In some cases, we can calculate this analytically or we can use a search algorithm to
find an approximation.

Let us now apply this strategy to the regression of a linear function with Gaussian
noise as discussed above. The log-likelihood function for this example is given by

A 1 (v — 6x)?
@; y9 x9) = ——exp| ———s 55—
PRy o271 P 202

m 2
m (y© —6x(©)
= 1(0) = —310g2m7 - ZT

e=1

(23)

2 A Brief Introduction to Probabilistic Machine Learning 79

Since the first term on the right-hand side of Eq. (23) is independent of 6, and since
we considered here a model with a given variance o> for the data, maximizing the
log-likelihood function is equivalent to minimizing a quadratic error term

_ 1 a2 a1 (v — h(x; 8))*
E=30-hkx0) < p(y|x,0)—Eexp(—f) (24)

(switching the notation back to the multidimensional case). Thus, the MLE of a
Gaussian dataset corresponds to minimizing a quadratic cost function, as it was
commonly used in LMS regression. LMS regression is well motivated for Gaussian
data, but our derivation also shows that data with non-Gaussian noise should be fitted
with different cost functions. For example, a polynomial error function corresponds
more generally to a density model of the form

1
E= ;Ily—h(x; O < pOIx;0) = exp(—|ly — h(x; 0)[|7). (25)

1
2r(1/p)

Later we will mention the e-insensitive error function, where errors less than a
constant & do not contribute to the error measure:

p

E=|ly—-hx0)]. & P(y|x§0)=m

exp(—|ly — h(x; D)]ls). (26)

Since we already acknowledged that we expected noisy data, it is logical not to count
some amount of deviation from the expectation as error. It also turns out that this last
error function is often more robust than other error functions, especially for datasets
that contain outliers.

3.2 Classification as a Logistic Regression

We have grounded supervised learning in probabilistic function regression and
maximum likelihood estimation. An important special instance of supervised learn-
ing is classification, and the simplest case is binary classification which corresponds
to data that has only two possible labels, such as y € {0, 1}.

More formally, let us consider arandom number that takes value 1 with probability
¢ and value O with probability 1 — ¢. Such a random variable is called a Bernoulli
distribution. Tossing a coin is a good example of a process that generates a Bernoulli
random variable, and we can use maximum likelihood estimation to estimate the
parameter ¢ from such trials. For example, if we consider m tosses of a coin, the
log-likelihood of finding 4 heads (y = 1) and m — A tails (y = 0) is

1(¢) = log(¢" (1 —)™
= hlog(¢) + (m — h)log(1 — ¢). (27)

80 T. P. Trappenberg

1 * * k| RRoHiKk HOROk K K X

0.8

0.6

>

0.4f

0.2r
0 Hef—H————f——
-1 -0.5 0 0.5 1 1.5 2

X

Fig.12 Binary random numbers (stars) drawn fromthe density p(y = 1) = 1/(14+exp(—6p—61x))
(solid line) with offset 69 = —2 and slope) = 4

To find the maximum of / with respect to ¢, we set the derivative of / to zero:

(28)

As you might have expected, the MLE of parameter ¢ is the fraction of heads in m
trials.

Let us now discuss the case when the probability of observing a head or tail, the
parameter ¢, depends on some attribute x, as usual in a stochastic way. An example
is illustrated in Fig. 12 with 100 examples plotted as star symbols. The data suggests
that it is far more likely that the class is y = 0 for smaller (possibly negative) values
of x, and y = 1 for larger values of x. They also show that the transition between
the low and high probability region is smooth. We can qualify this hypothesis by a
parameterized density function p known as a logistic (sigmoidal) function:

1

S 29
1 4 exp(—0Tx) 29

piy=1=

As before, we can then treat this density as a function of the parameters 6 for the
given data values (likelihood function), and apply MLE to estimate the values of the
parameters for which the data is most likely.

How can we use the knowledge (estimate) of the density function to perform
classification? The obvious choice is to predict the class with the highest probability,
given the input attribute. This Bayesian decision point, denoted by x4, is character-
ized by

p(y =1|xg) = p(y =0[x4) = 0.5
s 0Tx,; =0, (30)

where the last expression is called the dividing hyperplane.

2 A Brief Introduction to Probabilistic Machine Learning 81

We looked here at binary classification with linear decision boundaries as a logistic
regression, but we could also generalize this method to problems where hypotheses
have different functional forms, creating nonlinear decision boundaries. However,
coming up with specific functions for boundaries is often difficult in practice, and
we will discuss more practical methods for binary classification later in this chapter.

3.3 Multivariate Generative Models and Probabilistic Reasoning

We have so far only considered very simple hypotheses appropriate for the low
dimensional data given in the above examples. An important issue that has to be
considered in machine learning is generalizing to more complex nonlinear data in
high-dimension, that is, when many factors interact in a complicated way. This topic
is probably one of the most important when applying machine learning to real world
data. This section discusses a useful way of formulating more complicated stochastic
models with causal relations and how to use such models to argue, i.e. do inference.

Let us consider high-dimensional data and the corresponding supervised learning
problem which is simply a generalization of our discussions above. In the proba-
bilistic framework, this means making a hypothesis of joint density function for the
problem:

p(y,x) = p(y, x1, x2, ...10), (31

where y, x1, ... are random variables and 6 represents the parameters of the model.
With this joint density function we could argue about every possible situation in the
environment. For example, we could request classification or object recognition by
calculating the conditional density function

p(yIx) = p(y|x1, x2, ...; 0). (32)

Of course, the general joint density function and even this conditional density function
for high-dimensional problems typically have many free parameters that we need to
calculate with MLE. Thus it is useful to make more careful assumptions of causal
relations that would restrict the density functions.

The object recognition formulation above is sometimes called a discriminative
approach to object recognition because it tries to discriminate labels given the feature
values. Another approach is to consider modeling the inverse conditional density

p(x|y) = p(x1, x2,...1y; 0). (33)

This is called a generative model as it can generate examples from a class, given its
label. To use generative models in classification or object recognition we can apply
Bayes’ rule and calculate a discriminative model. It means relying on class priors
(the relative frequencies of the classes) to calculate the probability that an item with
features x belongs to a class y:

82 T. P. Trappenberg

;0
P(yIx: 0) = p(xly)p(y)' (34)
p(x)

While using generative models for classification seems to be much more elaborate,
there are several reasons that make generative models attractive for machine learning.
For example, in many cases, features might be conditionally independent given a
label, i.e. they verify

p(x1, x2, ...|y) = p(x1]y) p(x2|y)... . (35)

where the indication of the parameter vector was dropped to make the formula less
cluttered. Even if the independence does not strictly hold, this naive Bayes assump-
tion is often useful and drastically reduces the number of parameters that must be
estimated. This can be seen by factorizing the full joint density function with the
chain rule

D(X1, X2, ..., X |y) = p(Xply, X1, oo, Xu—1) (X1, ooy Xn—11y)
= pxaly, X1, .oy Xp—1)...p(x2|y, x1) p(x1]y)

n
= Hp(xj|y,xj_1,...,x1). (36)
j=1

But what if the naive Bayes assumption is not appropriate? Then we need to
build more elaborate models, or causal models. This particular challenge has been
greatly simplified with graphical methods that specify the conditional dependencies
between random variables using graphs [20]. A well known example from one of the
inventors of graphical models, Judea Pearl, is shown in Fig. 13. In graphical models,
the nodes represent random variables, and the links between them represent causal
relations with conditional probabilities. In the case shown here, there are arrows on
the links and the graph contains no loops, which makes it an example of directed
acyclic graph (DAG). In contrast, the RBM discussed previously was an example of
undirected Bayesian network.

In Fig. 13, each of the five nodes stands for a random binary variable: Burglary
B = {yes, no}, Earthquake E = {yes, no}, Alarm A = {yes, no}, JohnCalls
J = {yes, no}, MaryCalls M = {yes, no}. In general, a joint distribution of several
variables can be factorized in various ways following the chain rule mentioned before
Eq. (36), for example:

p(B.E. A, J.M) = p(BIE, A, J, M)p(E|A, J, M)p(A|J, M) p(J|M)p(M). (37)

In this case, with binary random variables we need 2* + 23 + 22 4+ 2! 4+ 20 = 3]
parameters to specify the full joint density function. However, the model of Fig. 13
restricts causal relations between the random variables to represent only a subset of
the factorization of the joint probability function, namely

2 A Brief Introduction to Probabilistic Machine Learning 83

Burglary

P(B) P(E)

001 Earthquake 002

B E |P(AIB,E)
t t 95

t f 94

f ot .29

f f .001

PJIA) A [P(MIA)
t [90 70

Fig. 13 Example of causal model with a two-dimensional probability density function (pdf) and a
few other marginal pdf’s

p(B.E, A, J,M) = p(B)p(E)p(A|B, E)p(J|A)p(M|A). (38)

Therefore, we only need 1 + 1 4+ 2> 4+ 2 + 2 = 10 parameters to specify all the
knowledge in the system. Example parameters for a specific case are displayed in
the conditional probability tables (CPTs), which define the conditional probabilities
represented by the links between the nodes. The graphical representation makes is
very convenient to represent the particular hypotheses about causal relations.

The graph structure of the model also makes it easier to do inference (draw con-
clusions) on specific questions. For example, say we want to know the probability
that there was no earthquake or burglary when the alarm rings and both John and
Mary call. This is expressed by

pB=fE=fA=1J]=1,M=1)
=pB=NpE=NpA=tB=[fE=[fip(J =tlA=0)pM =1|A=1)
=0.999 % 0.998 % 0.001 % 0.9 % 0.7
= 0.00063

where f stands for false and ¢ for true. Although we have a causal model where parent

variables influence the outcome of child variables, we can also use evidence from
child variables to infer possible values for the parent variables. For example, let us
calculate the probability that the alarm rings given that John calls, p(A = ¢|J =1).
For this we should first calculate the probability that the alarm rings as we will need
this later. It is given by

p(A=t)=pA=tB=1t,E=1)p(B=1)p(E=1)
tp(A=1B=1t.E= f)p(B=1)p(E = [)
+p(A=1|B=f.E=0)p(B= f)p(E=1)
+p(A=1B=f E=[f)pB=f)p(E=][)

84 T. P. Trappenberg

Fig. 14 A temporal Bayesian network called a Hidden Markov Model (HMM), with hidden states
X, observations z;, and external influences u;,

= 0.95 % 0.001 * 0.002 4 0.94 % 0.001 * 0.998
+0.29 % 0.999 % 0.002 + 0.001 * 0.999 * 0.998
= 0.0025.

We can then use Bayes’ rule to calculate the required probability:

p(J=1lA=0)p(A=1)

pA=tlJ=1t)=
p(J =t A=)p(A=1t)+p(J =tlA= fHp(A=f)
B 0.9 % 0.0025
~ 0.9 %0.0025 + 0.05 % 0.9975

= 0.043

We can similarly apply the rules of probability theory to calculate other quantities,
but these calculations can get cumbersome with larger graphs. It is therefore better to
resort to numerical tools for the inference, for example a Matlab toolbox for Bayesian
networks.!

I already mentioned the importance of learning in temporal sequences (antici-
patory systems), and Bayesian networks are easily extended to this domain, where
they are called dynamic Bayesian networks (DBN). An important example of DBN
is a hidden Markov model (HMM), as shown in Fig. 14. In this model, a state vari-
able x; is not directly observed and is called a hidden or latent random variable.
The “Markov condition” in this model means that each state only depends on the
previous state (or states), which can include external influences denoted here by u;.
A typical example is robot localization, where a robot is driven with some motor
command u; and the goal is to estimate the new state of the robot. We can use some
knowledge about the influence of the motor command on the system to calculate a
new expected location, and can also combine this in a Bayesian optimal way with
sensor measurements denoted by z;. Such Bayesian models are essential in many
robotics applications.

1 Available at http:/code.google.com/p/bnt/, and used to implement Fig. 13; file at www.cs.dal.ca/
~tt/repository/MLintro2012/PearlBurglary.m.

http://code.google.com/p/bnt/
www.cs.dal.ca/~tt/repository/MLintro2012/PearlBurglary.m
www.cs.dal.ca/~tt/repository/MLintro2012/PearlBurglary.m

2 A Brief Introduction to Probabilistic Machine Learning 85

3.4 Nonlinear Regression and the Bias-Variance Tradeoff

While graphical models are great to argue about situations (doing inference), the role
of supervised learning is to determine the parameters of the model. We have only
considered binary models where each Bernoulli variable is characterized by a single
parameter ¢. However, the density function can be much more complicated than
that and introduce many more parameters. Therefore, a major problem in practice
is to have enough labeled training examples to restrict useful learning appropriately.
This is one important reason for unsupervised learning, as we usually have a lot of
unlabeled data that can be used to learn how to represent the problem appropriately
in order to simplify the task. But we still need to understand the relations between
free parameters and the amount of training data.

We already discussed the bias-variance tradeoff in the first section. Finding the
right function that describes nonlinear data is one of the most difficult tasks in mod-
eling, and there is no single algorithm that can give us the answer. This is why more
general learning machines, which we will discuss in the next section, are popular.
To evaluate the generalization performance of a specific model, it is helpful to split
the training data into a training set, which is used to estimate the parameters of the
model, and a validation set, which is used to study the generalization performance
on data that has not been included during the training of the model.

A important question then becomes how much data we should keep for validation
vs. training. If we use too much data for validation, then we might end up with too
little data for accurate learning in the first place. On the other hand, if we have too
little data for validation, then it might not be very representative. In practice, we
often use some cross-validation technique to minimize the tradeoff, i.e. we use most
of the data for training but repeat the selection of the validation data several times to
make sure that the validation was not just a result of outliers. The repeated division
of the data into a training set and a validation set can be done in different ways.
For example, in random subsampling we merely use random subsamples for each
set and repeat the procedure with other random samples. More common is k-fold
cross-validation: in this technique, we divide the data set into k subsamples and use
k — 1 subsamples for training and 1 subsample for validation. In the next round, we
use another subsample to validate the training. A common choice for the number of
subsamples is k = 10. By combining the results for the different runs we can often
reduce the variance of our prediction while utilizing most data for learning.

‘We can sometimes help the learning process further. In many learning examples it
turns out that some data is easy to learn while other data is much harder. In particular
techniques called boosting, data that is hard to learn is oversampled in the learning
set so that the machine has more opportunities to learn these examples. A popular
implementation of such an algorithm is AdaBoost (adaptive Boosting).

Before proceeding to general nonlinear learning machines, I would like to outline
a point that was eloquently made by Doug Tweet in a course module that we
shared in the summer of 2012, part of a computational neuroscience program in
Kingston, Canada. As discussed above, supervised learning is best phrased in terms

86 T. P. Trappenberg

of regression and many applications are nonlinear in nature. It is common to make
a nonlinear hypothesis under the form y = h(0Tx), where 0 is a parameter vector
and & is a nonlinear function. A common example of such a model is an artificial
perceptron with a sigmoidal transfer function in 1D such as i(x;) = tanh(fx).
However, as stressed by Doug, there is no reason to make the functions nonlinear
in the parameters, which would result in a nonlinear optimization problem. Support
Vector Machines (SVM; reviewed next) are a good example where the optimization
error is simply quadratic in the parameters. The corresponding convex optimization
has none of the local minima that plague multilayer perceptrons.

In summary, these different strategies can be expressed through the following
optimization functions:

Linear Perceptron: E (y — 6’Tx)2 39
Nonlinear Perceptron: E o (y — h(x; 0))2 (40)
Linear in Parameters (LIP): E « (y — 0T¢ (x))2 41
Linear SVM: E x a; ctj y; yj x''x + constraints 42)

Nonlinear SVM: E o« o & y; y; ¢>(X)T¢> (x) + constraints 43)

The LIP model is more general than a linear model in that it considers functions of
the form y = 07 ¢ (x) involving some mapping function ¢ (x). In light of this review,
the transformation ¢ (x) can thus be seen as re-coding a sensory signal into a more
appropriate form using unsupervised learning methods as discussed above.

3.5 General Learning Machines

Before we leave this discussion of basic supervised learning, I would like to mention
some methods that are very popular and often used in machine learning applications.
In the previous section we discussed the formulation of specific hypothesis functions.
However, finding an appropriate hypothesis function requires considerable domain
knowledge. To some extend, this is the “hard problem” in machine learning.
Finding general learning machines has long been on the minds of researchers,
and this area has been especially inspired by human abilities and the brain itself
as a learning machine. A good example are artificial neural networks, in particular
multilayer perceptrons, which became popular in the 1980’s although they had been
introduced much earlier. Boltzmann machines (discussed above) and support vector
machines, which I briefly describe in this section, are also examples of this category.
The overall concept behind these learning machines is to provide a very general
function with many parameters that are adjusted through learning. Of course, the
real problem then becomes to avoid “overfitting” the data with the model. This can

2 A Brief Introduction to Probabilistic Machine Learning 87

0 1000 2000 3000 4000 5000
Training steps

Fig. 15 Multilayer perceptron with one hidden layer. The parameters are called weights w. The
graph on the right shows example training curves when trained on XOR data

be done by applying appropriate restrictions and making the learning efficient enough
so that it can be used for a larger problem size.

Scientists who design different models specially tailored to the different cognitive
functions and their applications point out that a general learning machine is always
at a disadvantage. There is “no free lunch”, they argue, meaning that we need to
create specific models for specific problems. While this is true in principle, general
learning machines can still be successful by providing answers where other methods
are not known. In fact, these methods are currently experiencing something like
a renaissance as they are now applied to massive data sets, whose size also help
alleviate overfitting issues (see [21] for a recent example).

Let us begin with a multilayer perceptron (MLP) as shown in Fig. 15. Each node
represents a simple calculation. The input layer relays the inputs, while the hidden
(resp. output) layer multiplies each input channel x; (resp. h;) by an associated
weight w?j (resp. wy;), sums these net inputs, then passes them through a transfer
function, generally nonlinear, often the sigmoid curve of the logistic function. This
reads:

k=g Zw,(c’ig Zw?jxj . (44)
i J

A network of this type is a graphical representation of nested nonlinear functions
with parameters w. Applying a particular input results in a particular output y, which
can be compared to a desired output y" in supervised learning. The parameters can
then be adjusted as usual in LMS regression, by minimizing the least square error
E = |ly — y'||? typically via a gradient descent:

oE
w—wto—, (45)
ow

88 T. P. Trappenberg

Table 2 A multilayer perceptron with backpropagation for solving the XOR problem

clear;

N_i = 2; N_h = 2; N_o = 1;
w_h = randn(N_h, N_i); w_o = randn(N_o, N_h);
%$training vectors (XOR)

ri=1[0101; 00111;

rd= [0110];

%Updating and training network with sigmoid activation function
for trial = 1:5000;

r h =1./(1 + exp(-w_hxr_1i));

r o=1./(1 + exp(-w_oxr_h));

%error over all pattern

d(trial) = 0.5xsum((r_o-r_d)."2);
$training
d_o = (r_o.x(l-r_o)).*x(r_d-r_o);
d_h (r_h.x(l-r_h)).*x(w_o’xd_o);
w_o = w_o + 0.7+ (r_hxd_o")’;
w_h = w_h + 0.7+ (r_ixd_h")’

end

plot (d)

where « is a learning rate. Since y is a nested function of the parameters, this requires
the application of the chain rule. The resulting equations appear to be “propagating
back™ an error term y — y’ from the output to the previous layers, and for this reason
this algorithm has been termed error-backpropagation [22]. An example program of
an MLP that learns to represent the Boolean logic XOR function is shown in Table 2,
and training curves in Fig. 15.

It is easy to see that such networks are universal approximators [23], i.e. the error
of the training examples can be made as small as desired by increasing the number
of parameters. This can be achieved by adding hidden nodes. However, the aim of
supervised learning is to make predictions, that is to minimize the generalization
error and not the training error. Thus, choosing a smaller number of hidden nodes
might be more appropriate for this goal. The bias-variance dilemma [1] reappears
here in this specific graphical model, and years of research have been investigated
in solving this puzzle. Good practical methods and research directions have been
proposed to counter overfitting, such as early stopping [24], weight decay [25] or
Bayesian regularization [26]. Also, transfer learning [27, 28] can be seen as biasing
models beyond the current data set.

A more recent general learning machine for classification are support vector
machines, which were introduced by Vapnik, Guyon and Boser in 1992 [29, 30].
These machines are fundamentally based on minimizing the estimated generaliza-
tion (called the “empirical error” in this community). The main idea behind SVMs for
binary classification is that the best linear classifier for a separable binary classifica-
tion problem is the one that maximizes the margin between a separating classification

2 A Brief Introduction to Probabilistic Machine Learning 89

Fig. 16 TIllustration of linear X,
support vector classification

wix+b=0

line (separating hyperplane in higher dimensions) and the nearest data points [31].
Since there are many lines that can separate the data, as shown in Fig. 16, the most
robust line is expected to be positioned as far from any data point as possible, since
we also expect new data to be more likely to fall near the clusters of the training
data—if the training data is indeed representative of the general distribution. In the
end, the separating line is determined only by a few close points that are the ones
called support vectors.

Vapnik’s important contributions did not stop there. He also formulated the margin
maximization problem in a form such that the formulas are quadratic in the para-
meters and only contain dot products of training vectors, X' x by solving the dual
problem cast in a Lagrangian formalism [30]. This has several important benefits.
The problem becomes a convex optimization challenge, which avoids the local min-
ima that have crippled MLPs. Furthermore, since only dot products between example
vectors appear in these formulations, it is possible to apply a so-called “kernel trick”
to efficiently generalize these approaches to nonlinear functions.

Let me illustrate the idea behind using kernel functions for dot products. To do
this, it is important to distinguish attributes from features as follows. Attributes are
the raw measurements, whereas features can be made up by combining attributes. For
example, the attributes x| and x, could be combined into a tentative feature vector
(x1, x2, X1Xx2, xlz, x%)T. This is a bit like trying to guess a better representation of the
problem, one that should be “useful” as discussed above in the part about structural
learning. Let us now denote this transformation by a function ¢ (x). The interesting
part in Vapnik’s formulation is that we actually do not even have to calculate this
transformation explicitly, but we can replace the corresponding dot products by a
kernel function

K(x,2) = ¢(x) ¢ (), (46)

which is often much easier to calculate. For example, a Gaussian kernel function
formally corresponds to an infinite-dimensional feature transformation ¢. There are
some arguments from structural learning [30, 32] why SVMs are less prone to over-
fitting, and extensions have also been made to problems with overlapping data in the
form of soft margin classification [31]. These ideas have also been generalized to
regression problems [33], but their performance is often not as satisfactory. We will

90 T. P. Trappenberg
Table 3 Using LibSVM for classification
clear; close all; figure; hold on; axis square

$training data and training SVM
rl = 2 + rand (300, 1); al = 2xpixrand(300, 1); polar(al, rl, ’'bo’);

r2 = randn (300, 1); a2 = .5xpixrand (300, 1); polar(a2, r2, 'rx’);
x = [rl.xcos(al), rl.*sin(al); r2.xcos(a2), r2.xsin(a2)];

y = [zeros (300, 1); ones (300, 1)1;

model = svmtrain(y, x);

$test data and SVM predicition
rl = 2 + rand (300, 1); al = 2xpixrand (300, 1);

r2 = randn (300, 1); a2 = .5xpixrand (300, 1);
x = [rl.xcos(al), rl.*sin(al); r2.xcos(a2), r2.xsin(a2)];
yp = svmpredict (y, x, model);

figure; hold on; axis square

[tmp, I] = sort(yp);

plot (x(1:600-sum(yp), 1), x(1:600-sum(yp), 2), ’'bo’);

plot (x(600-sum(yp) + 1:600, 1), x(600-sum(yp) + 1:600, 2), ’'rx’");

not dive more into the theory of Support Vector Machine but show instead an example
using the popular LibSVM [34] implementation. This implementation includes inter-
faces to many programming languages, such as MATLAB and Python. SVMs are
probably currently the most successful general learning machines for classification.

Table 3 gives an example of applying the LibSVM library to the data displayed
in Fig. 17. The plot on the left is the training data, which is produced from sampling
two distributions: the points in the first class (blue circles) are chosen within a ring
of radius 2.0-3.0, while the points in second class (red crosses) are distributed across
two quadrants. The examples are provided with their corresponding labels to the
training function svmtrain. Similarly, the plot on the right of Fig. 17 is test data.
The corresponding class labels are given to the function svmpredict only for the
purpose of calculating the cross-validation error. For true predictions, this vector can
be set to arbitrary values. The performance of this classification is around 97 % with
the standard parameters of the LibSVM package. However, it is advisable to tune
these parameters, for example with search methods [35].

While SVMs have had a large impact in application-oriented machine learning,
more recent research works are combining ideas from SVMs (in particular kernel
methods), Bayesian networks, and good old-fashioned neural networks. Such hybrid
methods are now taking off, too, and starting to have another great impact—not only
in research but also in many industrial domains.

4 Reinforcement Learning

As discussed above, a basic form of supervised learning is function approximation,
relating input vectors to output vectors, or more generally finding density functions

2 A Brief Introduction to Probabilistic Machine Learning 91

Fig. 17 Example of using training data on the left to predict the labels of the test data on the right

p(y, x) from examples (x), y(©). However, in many applications we do not have
a teacher to tell us exactly at any time the appropriate response to a specific input.
Rather, feedback from a teacher is often delayed and given only in the form of general
feedback such as ‘good’ or ‘bad’, instead of a detailed explanation about what the
learner should have done.

We are now turning to these more general learning problems. Specifically, we
are interested in learning a sequence of appropriate actions to maximize an expected
payoff. More formally, let us learn a temporal density function

p(y(+ DIx@), x(r — 1), ..., x(1)). 47)

We have already encountered such models in the form of temporal Bayesian net-
works. We will now discuss this issue further within the realm of reinforcement
learning or learning from reward. While we mainly consider here the prediction of
a scalar utility function, most of this discussion can be applied directly to a more
graded environmental feedback.

4.1 Markov Decision Processes

Reinforcement learning is best illustrated in a Markovian world.> As discussed
before, such a world is characterized by transition probabilities between states,
T (s'|s, a), that only depend on the current state s € S and the action a € A taken in
this state. We now consider feedback from the environment in the form of a reward
r(s) and ask what actions should be taken in each state to maximize future reward.
More formally, we define the value function or utility function

Q7 (s.a) = E[r(s) +yr(s) +yr(s) +yr(ss) +..] (48)

2 Markov models are often a simplification or abstraction of a real world. In this section, however,
we discuss a “toy world” in which state transitions were designed to fulfill the Markov condition.

92 T. P. Trappenberg

as the expected future payoff (cumulative reward) for being in state s, then sy, 57,
etc. We introduce here the “discount factor” 0 < y < 1 to express that we value
immediate reward over later reward. This is a common treatment to keep the expected
value finite. An alternative scheme would be to consider only finite action sequences.
The policy m(a|s) describes what action can be taken in each state. In accordance
with our overall probabilistic world view, we consider the most general case of
probabilistic policies, i.e., we want to know with what probability a given action
should be chosen. If the policy was deterministic, then taking a specific action would
be determined by applying the policy to the current state, and the value function is
often denoted by V7 (s).3 Our goal is to find the optimal policy 77*, i.e. the one that
maximizes the expected future payoff Q7 :

7*(als) = argmax Q7 (s, a). (49)

This search is called a Markov Decision Process (MDP).

MDPs have been studied since the mid 1950s, and Richard Bellman noted that
it was possible to calculate the value function for each state, and a given policy 7,
using a self-consistent equation now named the Bellman equation. He also called the
corresponding algorithm dynamic programming. Specifically, we can separate the
expected value of the immediate reward from the expected value of the reward from
visiting subsequent states as follows:

07 (s.a) = E[r(®)], +y E[r(s)) + y r(s2) + v2r(s3) +..],. (50)

The first expected value on the right-hand side is simply the immediate reward
received when reaching state s at this particular point in time. The second expected
value is the function of state s;. State s is related to state s, since s; can be reached
from s when taking action a; with a certain probability according to policy 7 (for
example by setting s; = s + aj, or more generally s, = s,—1 + a,). The state
actually reached can also depend on stochastic environmental factors encapsulated
in the matrix 7 (s’|s, @). Incorporating these factors into the equation yields

O () =r)+7 > (T(s/ls, 0> (Jr(a/ls/) E[r(s) + v r(s}) + y2r(sh) + ...]ﬂ)),

(5L
where s{ is the next state after state s’, etc. Thus the expression on the right is the
state-value-function of state s”. If we substitute it with the corresponding expression
on the left of Eq. (48), we get the Bellman equation for a specific policy, namely

Bellman-stoch-: Q7 (s,a) =r(s) +y Z (T(s’ls, a) Z (n(a’ls’) o7 (s, a’))).
s/ a’ (52)

3T (s)is usually called the state value function and Q7 (s, a) the state-action value function. Note,
however, that the value depends in both cases on the states and the actions taken.

2 A Brief Introduction to Probabilistic Machine Learning 93

The variant of this equation for deterministic policies is a bit simpler. Since in this
case an action a is uniquely specified by the policy, the value function Q7 (s, a)
reduces to V7 (s) and the equation becomes

Bellman-det-7: V7 (s) = r(s) +y > (T(s/|s, a)V”(s/)). (53)

s’

The Bellman equation is a set of N linear equations in an environment with N
states, one equation for each unknown value function of each state. The environ-
ment being given, i.e. having functions r and T, we can use well-known methods
from linear algebra to solve for V7 (s). This can be formulated compactly by matrix
notation, in which s and s’ are the indices:

r=~1-yT)V", (54)

where r is the reward vector, I is the identity matrix, and T is the transition matrix.
To solve this equation we have to invert a matrix and multiply this with the reward
values,

Vi=0-yT) 'rT, (55)

where rT is the transpose of r. We can also use the Bellman equation directly to
calculate a state-value-function iteratively. We can start with a guess V for the value
of each state, then calculate from this a better estimate:

Ver+yTV (56)

and so on, until this process converges. Either way, we get a value function for a
specific policy. To find the best policy, the one that maximizes the expected payoff,
we have to loop through different policies and find the maximal value function. This
can be done in different ways, most commonly by using the policy iteration, which
starts with a guess policy, iterates a few times the value function for this policy,
and then chooses a new policy that maximizes this approximate value function. This
process is repeated until convergence.

Table4 provides an example program for a simple 1D state space consisting of a
chain of 10 states, as shown on the left of Fig. 18. The 10th state is rewarded with
r = 1, while the first state receives a large negative reward, r = —1. The intermediate

4 This formulation of the Bellman equation for an MDP [36-38] is slightly different from the for-
mulation of Sutton and Barto in [39], as these authors define the value function to be the cumulative
reward starting from the next state, not the current state. In their case, the Bellman equation reads
V7(s) = > o T(s'|s,a)(r(s") + y V™ (s')). This is only a matter of convention about when we
consider the prediction: just before getting the current reward of after taking the next step.

94 T. P. Trappenberg

Table 4 Program for the chain example using the policy iteration process
%$chain example: policy iteration

%parameters
clear; N = 10; P = 0.8; gamma = 0.9;

$reward function
r = zeros(l, N) - 0.1; r(l) = -1; r(N) = 1;

%$initiality random start policy and value function
policy = ceil(2%rand(l, N)); policy(l) = 2; policy(N) = 1;
Vpi = rand(l, N); Vpi(l) = r(l); Vpi(N) = r(N);

for iter = 1:3
%estimate V for this policy
for 1 = 1:10
for s = 2:N-1

snext = s-1 + 2% (policy(s)-1);

sother = s + 1-2x (policy(s)-1);

Vpi(s) = r(s) + gammax (PxVpi (snext) + (1-P)xVpi (sother));
end

end
Supdating policy
for s = 2:N-1

[tmp, policy(s)] = max([Vpi(s-1), Vpi(s + 1)1]);
end
end
plot (Vpi);
TE 1
Reward v
0.5
-1 [-0.1]-0.1(-0.1{-0.1}0.1 [-0.1]-0.1| 1
0
Optimal Policy
-0.5

o1 2121122121212 0

2 4 6 8 10
state

Fig. 18 Example of using policy iteration on a chain of rewarded states. Left reward values and
optimal policy for each state, where a policy value 1 means “go left” (not present) and a value 2
means “go right”. No further action is taken in the end states

states receive a small negative reward to account for movement costs. After three
iterations, the policy reaches the optimal one (bottom left of figure). Actually, the
optimal policy is often found within just one or two iterations, so the extra iteration
was added to ensure that the value function was properly calculated for this policy.

2 A Brief Introduction to Probabilistic Machine Learning 95

Itis also possible to derive a version of the Bellman equation for the optimal value
Sunction itself:

Bellman-det-* V¥(s) =r(s) + maxy Y T(s'ls,a)V*(s). (57)
a

s

The max function is a little more difficult to implement in the analytic solution, but
we can again easily use an iterative method to solve for this optimal value function.
This algorithm is called value iteration. The optimal policy can always be calculated
from the optimal value function with

7% (s) = arg max > T s, a)VEE). (58)

s

A policy tells an agents what action should be chosen, hence the optimal policy is
related to optimal control as long as the reward reflects the desired performance.

The previously discussed policy iteration has some advantages over value itera-
tion. In value iteration we have to try out all possible actions when evaluating the
value function, which can be time consuming when there are many possible actions.
In policy iteration, we choose only one specific policy, although we then have to
iterate over consecutive policies. In practice, it turns out that policy iteration often
converges fairly rapidly.

4.2 Temporal Difference Learning

In dynamic programming, we iterate repeatedly over every possible state of the
system. This only works if we have complete knowledge of the system. In that sce-
nario, the agent does not even have to ‘perform’ the actions physically, which would
be very time consuming. Instead, the agent can just ‘sit’ and calculate the solution
during a “planning phase”. However, in many cases we do not know the rewards
given in different states, and we usually have to estimate transition probabilities,
too, etc. One approach would be to estimate these quantities by interacting with the
environment before using dynamic programming. In contrast, the following methods
are more direct estimations of the state value function that determines the optimal
actions. These online methods assume that we still know exactly in which state the
agent is, and they can be generalized to partially observable situations by considering
probability maps over the state space.

A general strategy for estimating the value of states is to act in the environment
and thereby sample reward. This sampling should be done with some degree of
stochasticity to ensure sufficient exploration of the states. These methods are gen-
erally called Monte Carlo methods. Monte Carlo methods can be combined with
the bootstrapping ideas of dynamic programming, and the resulting algorithms are
called temporal difference (TD) learning, since they rely on the difference between
expected reward and actual reward.

96 T. P. Trappenberg

We start again by estimating the value function for a specific policy before moving
to schemes for estimating the optimal policy. The Bellman equations require the
estimation of future reward:

DT s)V () & V(). (59)

In this equation we introduced an approximation of the sum by the value of the state
that is reached in one Monte Carlo step. In other words, we replace the total sum
that we could build knowing the environment with a single sampling step. While this
approach is only an estimation, the idea is that it will still result in an improvement
of the estimation of the value function, and that other trials have the possibility to
evaluate other states that have not been reached in this trial. The value function should
then be updated carefully, by considering the new estimate only incrementally:

VT(s) < VT(s) +alr(s) +y V(') — V7 (s)]. (60)

This is called temporal difference or TD learning. The constant « is a learning rate
and should be fairly small. This policy evaluation can then be combined with policy
iteration as already discussed in the section on dynamic programming.

We should now think a little more about what policy to follow. An obvious choice
is to take the action that leads to the largest expected payoff, also called greedy policy.
Applying this policy should be optimal when the value function is exact. However,
one problem with purely sticking to this strategy is that we might not be sufficiently
“exploring” the state space—as opposed to “exploiting” known returns. We address
this exploration-exploitation dilemma here by opting for stochastic policies. Thus we
need to go back to the notation of the state-action value function (although we will
drop the “*’ superscript for the optimal value function for convenience). To include
randomness in the policy we can, for example, follow the greedy policy most of the
time, and only choose another possible action with a small probability denoted by ¢.
This probabilistic policy is called the e-greedy policy and can be formulated as

w(a = argmélx O(s,a)) =1—c¢. 61)

A more graded approach employs the softmax policy, which chooses each action
proportionally to a Boltzmann distribution:

e%Q(s,a)

7(als) = (62)

>, ehou
a

This policy chooses most often the action with the highest expected reward, followed
by the second highest, etc., where the temperature parameter 7 sets the relative
probability of these choices.

2 A Brief Introduction to Probabilistic Machine Learning 97

We can now use these policies to explore the state space and estimate the optimal
value function with temporal difference learning:

0(s,a) < Q(s,a) +alr(s) +y (', a") — OGs, @), (63)

where the actions a’ is the action chosen according to the policy. This on-policy TD
algorithm is called Sarsa for state-action-reward-state-action [39]. A variant of this
approach uses the stochastic action above only when choosing the next state, but
estimates the value function by considering the other possible actions, too:

O(s,a) < Q(s,a) + alr(s) + maxy 0(s',a) — 0(s, a)l. (64)

This is is called an off-policy TD algorithm, or Q-leaning [40]. These algorithms
have been instrumental in the success of reinforcement learning in many engineering
applications.

4.3 Function Approximation and TD(\)

The large number of states in real-world applications makes these algorithms
unpractical. This was already noted by Richard Bellman himself, who coined the
phrase “curse of dimensionality”. We have only considered discrete state spaces,
while many applications involve a continuous state space. While discretizing a con-
tinuous state space is a common approach, increasing the resolution of the discretiza-
tion has the consequence of increasing the number of states exponentially. Another
major problem in practice is that the environment is not fully, or reliably, observable.
Thus we might not even know exactly in which state the agent finds itself when con-
sidering the value update. A common approach to a “partially observable Markov
decision process” (POMDP) is the introduction of a probability map. In the update
of the Bellman equation, we need then to consider all possible states that can be
reached from the current state, something which will typically increase the number
of calculations even further. We will not follow this approach here but rather con-
sider the use of function approximators to overcome these problems. A more general
discussion of reinforcement learning in continuous state and action spaces is given
in [41].

The idea behind the following method is to make a hypothesis of the relation
between sensor data and expected values in the form of a parameterized function as
in supervised learning’:

Vi=V&x) = V(x;0), (65)

5 The same function name is used on both sides of this equation, but these are distinguished by
the inclusion of parameters. The value functions all refer to the parametric model, which should be
clear from the context.

98 T. P. Trappenberg

and to estimate the parameters by maximum likelihood as before. We use here a
time index to distinguish state sequences. In principle, one could build very specific
temporal Bayesian models for specific problems as discussed above, but in this
circumstance I will outline the use of general learning machines. In particular, let us
adjust the weights of a neural network using gradient-descent methods on a mean
square error (MSE) function:

- v,
A0; =a D (r— Voo (66)
=1 J

We consider here the total change of the weights for a whole episode of m time
steps by summing the errors for each time step. One specific difference between
this situation and the supervised learning examples before is that the reward is only
received after several time steps in the future, at the end of an episode. One possible
approach to manage this situation is to keep a history of our predictions and make
the changes for the whole episode only after the reward is received at the end. This is
what we have done in Eq. (66) by providing the reward r as supervision signal in each
timestep. Another approach is to make incremental (online) updates by following the
TD learning philosophy, and replacing the supervision signal for a particular time
step by the prediction of the value of the next time step. Specifically, we can write
the difference between the received reward V,,,+1 = r at the end of the sequence and
the prediction V; at time ¢ as

r=Vi=2 Vur1 = Va) (67)
u=t

since the intermediate terms chancel out. Replacing this in Eq. (66) yields

A0; =Y > (Varr = Vi) oo (68)
1=1 u=t J
m t
vy
=« Vier — Vi —_—, 69
E(1= Vo) ; %, (69)

which can be verified by developing the sums and reordering the terms. Of course,
this is only rewriting the original equation, Eq. (66). We still have to keep a memory
of all the gradients from the previous time steps, or at least a running sum of these
gradients.

While the rules portrayed in Egs. (66) and (69) are equivalent, Richard Sutton [42]
suggested a modified version that multiplied recent gradients by stronger weights than
gradients in the more remote past. For this, he introduced a decay factor 0 < A < 1.
The rule above corresponds to A = 1 and is called the TD(1) rule, while the more
general TD()) rule is given by

2 A Brief Introduction to Probabilistic Machine Learning 99

d v,

AB; =a(Vig — V) D> AL 70

O =aVig1 = V) D %, (70)

u=1 .

It is also interesting to look at the other extreme, when A = 0. The TD(0) rule is

given by
aV;

Ai0j =a(Vigr — Vz)@- (71)

While this last rule gives in principle different results fom the original supervised
learning problem described by TD(1), it has the advantage that it is local in time, does
not require any memory, and often still works very well. The TD(A) algorithm can
be implemented in a multilayer perceptron where the error term is back-propagated
to hidden layers. A generalization to stochastic networks has also been made within
the framework of free-energy formalism [43].

5 Some Biological Analogies

The brain seems to be a very successful learning machine, and it is therefore
not surprising that human capabilities have motivated much research in artificial
intelligence. Conversely, insights from learning theory are important, too, for our
understanding of brain processes. In this last section, I want to mention some inter-
esting relations that neuroscience has with learning theory. I already remarked on the
close links between unsupervised learning and receptive fields in the early sensory
areas of the cortex, which I believe is a wonderful example of underlying mecha-
nisms behind physiological findings. In the following, I would like to add comments
on two other subjects related to supervised learning and reinforcement learning. The
first is about synaptic plasticity, which appears to be an important mechanism for the
physical implementation of learning rules. The second is about the close relation of
reinforcement learning with classical conditioning and the basal ganglia. Classical
conditioning has been a major area in animal learning, and recent recordings in the
basal ganglia have helped relating these areas on a behavioural, physiological and
learning-theoretical level.

5.1 Synaptic Plasticity

As speculated by the Canadian scientist Donald Hebb [44], the leading theory of
the physical implementation of learning is that of synaptic changes, whereby the
synaptic efficacy varies in response to causally related pre- and postsynaptic firings.
Such correlation rules have first been made concrete by Eduardo Caianiello [45], and
have recently been refined in terms of “spike timing-dependent plasticity” (STDP;
see for example [46]). The main idea is that when a driving neuron participates in

100 T. P. Trappenberg

firing a subsequent neuron, then the connection strength between these neurons will
increase—whereas it will decrease in the absence of correlated firing. Many of the
learning rules of neural networks have followed this main association rule through
increment terms that are proportional to pre- and postsynaptic activity, such as

AW,']' X XjXj. (72)

Synaptic plasticity is not only a fascinating area in neuroscience but also constitutes
an important medical issue, since neurodegenerative disorders, such as Alzheimer’s
disease and dementia, have synaptic effects and a great number of psychiatric med-
ications exert their action on the synaptic receptors.

There are many mysteries left that need to be understood if we want to make
progress in helping with neurological conditions and maybe even make progress
in machine learning. One basic fact that seems puzzling is that synapses are not
long-lasting compared to the time scale of human memories.® Synapses consist of
proteins that have to be actively maintained by protein synthesis. Thus, one may
wonder how this maintenance can survive for years and support long-term memory,
such as returning to our place of birth after many years of absence, or meeting
friends whom we had not seen in ages. These are fundamental questions that, to my
knowledge, have not been sufficiently addressed.

While the Hebbian perspective on synaptic plasticity and learning is well
established, I would like to outline an aspect of synaptic plasticity that might be
less well-known. In particular, I would like to point out the findings of my friend
Alan Fine and his colleagues [47], which fit nicely with the probabilistic theme that
I have emphasized in this chapter. Fine and colleagues have performed classical
plasticity experiments that use high- or low-frequency stimulations of hippocampal
slices of rodents to induce measurable changes in synapses. Some of their results
are summarized in Fig. 19. To test the strength of the synapses, they stimulated them
with two pulses, as paired pulses facilitate synaptic responses (the second pulse
makes it easier to elicit a postsynaptic spike). The slices are then activated with
high-frequency stimulations inbetween these tests. As shown in Fig. 19a, the elec-
tric response of the postsynaptic neuron as measured by the excitatory post-synaptic
potential (EPSP) is higher after the high-frequency stimulation. This corresponds to
the classical findings by Bliss and Lgmo [48] and is called long-term potentiation
(LTP), since this enhanced response to a presynaptic stimulus lasts relatively long
compared to the usual scale of neuronal dynamics. Of course, the EPSP is a mea-
sure that can depend on multiple synapses. But Fine and colleagues also imaged the
calcium-related optical luminance signal from individual synapses. This is shown in
Fig. 19b. Surprisingly, they observed that this luminance did not change despite the
fact the calcium-dependent mechanisms are generally associated with synaptic activ-
ity and plasticity. Instead, they found that the probability of eliciting a postsynaptic
spike varied nicely. Specifically, the probability of transmitter release increases with
high-frequency simulations that are usually associated with LTP. They could also

6 Julian Miller made this point nicely at the aforementioned workshop.

2 A Brief Introduction to Probabilistic Machine Learning 101

High-frequency stimulation

a 3 N\ N\
5l -
w O
— 100
(b) 2 Time [ms]
[0}
o
5100 " .
2 0 b ™ i N |
§ 100
i Time [ms]
(c) <1907 oo .
‘g 2 * . .“., *e -
2100 . LN TR A SR
[} . e ot
@
gSO P=0.4 P=0.76 P=0.96
o S S e et S MRl R T PR F o LI ST SUPG] AT Sy AT Lk ot
% 0“0 e at “* ‘o * w? *
I T - . v
0 5 45 50 90 95
Time [min]

Fig. 19 Plasticity experiment in hippocampal slices in which not only EPSPs were measured, but
additionally postsynaptic calcium-dependent fluorescence signals at single synapses were imaged
(data courtesy of Alan Fine and Ryosuke Enoki, after [47])

lower the probability of transmitter release with low-frequency stimulus that usually
elicits a decrease in EPSPs, called long-term depression (LTD; not shown in the
figure).

A manipulation of the probability of transmitter release could explain the
increased EPSP in such experiments. If there is a population of synapses that drive that
neuron, than a population of synapses with higher likelihood of transmitter release
would result in a larger EPSP than a population with smaller likelihood of transmitter
release. In this sense, the findings are still consistent with some of the consequences
of synaptic plasticity. But these findings also point to additional possibilities also
consistent with the view that brain processing might be based on probabilistic com-
putation rather than dealing with point estimates. Thus, the common view of a noisy
nervous system with noisy synapses might be misleading. If this is noise in the sense
of the “limitations” of a biological implementation, then why could the probability
of synaptic responses be modulated reliably?

From a theoretical perspective it is rather difficult for noise to survive thresholding
processes. For example, consider a biased random walk to a threshold as shown on
the left-hand side in Fig. 20. In this example we add 1 plus a Gaussian noise (mean
W, standard deviation o) to the signal at each time step, then the signal is reset when
crossing the threshold. The noise in the process leads to different times of threshold
crossings, and the variation of these times is related to the variations in the signal as
shown on the right-hand side of Fig. 20 where the coefficient of variation C, = o/u

102 T. P. Trappenberg

12 0.6
L) At el i) - 0.5
8 é 0.4
©
s 2 03
@, 1<)
L>> 0.2
2 0.1
0 0
4580 4600 4620 4640 4660 0 05 1 15 2
time CV signal

Fig.20 Demonstration of the relation between variability in signal versus variability in spike timing
response. The graph on the left side shows a noisy accumulation toward a threshold. The graph on
the right shows how the coefficient of variation (C,) varies with noise

is plotted. While there is a positive slope between them (higher noise leads to higher
variations in firing times), the proportionality factor is only around 1/+/47. Hence, if
noise is an issue, then one could use thresholding mechanisms to reduce it and through
repeated stages, as in the brain, the noise should become smaller. Or, in other words,
if noise is the problem then one should filter it out early in the process and higher
processes should be less noisy. In sum, it could be that signal variations in the brain
are not all undesirable noise but could play an important information processing role
such as representing the likelihood of sensory signals or the confidence in possible
actions. This conjecture is consistent with the probabilistic approaches to machine
learning.

5.2 Classical Conditioning and the Basal Ganglia

One of the important roles of computational neuroscience is to bridge the gap between
behavioural and physiological findings [49]. The following discussion is a good
example. Classical conditioning has been intensively studied in the psychological
discipline of animal learning at least since the studies by Pavlov. One of the most basic
findings of Pavlov is that it is possible to learn the fact that a stimulus is predicting
a reward, and that this prediction elicits the same behaviour as the primary reward
signal, such as salivation following a tone when the tone predicts food reward. Many
similar predictions have been summarized very successfully by the Rescorla-Wagner
theory [50]. In terms of the learning paradigms discussed above, this theory relates
the change in the value of a state AV; to the reward prediction error A — V; by the
formula

AVi =a;ip(h = V), (73)

where factors «; and 8 describe the saliencies of the conditioned and unconditioned
stimulus, respectively, and A represents the reward. This model is equivalent to

2 A Brief Introduction to Probabilistic Machine Learning 103

y L
IlM .
4 ‘ Stimulus A No reward

Stimulus A Reward

Fig. 21 Recordings by Schultz et al. [51] in a classical conditioning experiment, where a stimulus
was presented followed by a reward. Early in the trials the SN neurons responded after the animal
received a reward (top left), while the neurons responded to the predictor of the reward in later trials
(bottom left). The neurons even seem to indicate the absence of an expected reward after learning
(right)

temporal difference learning in a one-step prediction task where the reward follows
immediately the stimulus.

The Rescola-Wagner theory with its essential reliance on the reward prediction
error is very successful in explaining behaviour, and it was very exciting when Wol-
fram Schultz [51] and colleagues discovered neural signatures of reward prediction
errors. Schultz found these signals in the substantia nigra, which is part of a com-
plex of different nuclei in the midbrain called the basal ganglia. Its name means
“black substance”, and the dark aspect of this area is apparently due to a chemical
compound related to dopamine, which these neurons transmit to the input area of
the basal ganglia and to the cortex, and has been implicated in modulating learning.
Some examples of the response of these neurons are shown in Fig.21.

We can integrate the Rescorla-Wagner theory with these physiological findings
in a neural network model, as shown in Fig.22. The reward prediction error 7 is
conveyed by the nigra neurons to the striatum, an input area of the basal ganglia, in
order to mediate the plasticity of cortical-striatal synapses. The synapses are thereby
assumed to contain an eligibility trace, since the learning rule requires the association
with the previous state. Many psychological experiments can be modeled by a one-
step prediction task where the actual reward follows a specific condition. The learning
rule can then be simplified to a temporal learning rule in which the term in y can be
neglected, corresponding to the model in Fig. 22a. The implementation of the full TD
rule would require a fast side-loop as shown in Fig.22b, which has been speculated
to be associated with the subthalamus [52].

Of course, the anatomy of the basal ganglia is more elaborate than this. My
student Patrick Connor and I have suggested a model with lateral interactions in the
striatum [53] that has some physiological grounding [54] and can explain a variety of
behavioral findings not covered by the Rescorla Wagner model [55]. Moreover, there

104 T. P. Trappenberg

(a) Temporal delta rule (b) Temporal difference rule (b) SLIM model

X0 Xol® Xa(d Xa(0 X0 Xl Xa(d Xa0

PGP
Vi

I

Fig.22 Implementation of reinforcement learning models through analogies with the basal ganglia.
a Single state of one-step reinforcement learning model (temporal delta rule) with cortical input, a
striatal neuron (Str), and a neuron in the substantia nigra (SN) that conveys the reward prediction
error to striatal spines. b Implementation of the temporal difference (TD) learning with a fast
subthalamic side-loop. ¢ Basic version of the striatal-with-lateral-inhibition (SLIM) model

are two main pathways through the basal ganglia, a direct pathway and an indirect
one, with intermediate stages in distinct subregions of the basal ganglia (not shown
in Fig.22). The direct pathway has a inhibitory effect on the output neurons of the
basal ganglia, while the indirect one has a facilitatory effect. Since the effect of the
output of the basal ganglia is itself to inhibit motor areas, it has been speculated
that the direct pathway could learn to inhibit non-rewarding actions, whereas the
indirect pathway could learn to facilite rewarding actions. Different alterations of
specific pathways have been suggested to relate to different neurological conditions
that are known to involve the basal ganglia, such as Parkinson decease, Tourette
syndrome, ADHD, schizophrenia and others [56]. Thus, modeling and understanding
this learning system has the potential to guide refined intervention strategies.

6 Outlook

Learning is an exciting field that has made considerable progress in the last few years,
specifically through statistical learning theory and its probabilistic embedding. These
theories have at least clarified what could be expected from ideal learning systems,
such as their ability to generalize. Much progress has also been made in unsuper-
vised learning and starting to tackle temporal learning problems. Most excitingly,
the advances in this area have enabled machine learning to find its way out of the
research labs and into commercial products that have recently revolutionized tech-
nologies, such as advanced gaming platforms and smarter recommendation systems.
Statistical learning theory has clarified general learning principles, such as optimal
generalizability and optimal (Bayesian) decision making in the face of uncertainties.

2 A Brief Introduction to Probabilistic Machine Learning 105

What are the outstanding questions, then? While machine learning has enabled
interesting applications, many of these applications are very focused in scope. The
complexity of the environments that humans face still appears far beyond the reach of
our models. Scaling up methods even farther is important to enable more applications.
Many believe that, to this goal, we require truly hierarchical systems [57], and more
specifically systems that process temporal data [58]. While there is exciting progress
in this field, learning to map simple features, such as pixels from an image, to high-
level abstract concepts, such as objects in a scene, is still challenging.

While Bayesian inference has been instrumental in the maturation of machine
learning, there are also severe limitations to such methods. Specifically, truly
Bayesian methods have an unbounded requirement for knowledge as we typically
have to sum over all possible outcomes with their likelihood of each event in order to
faithfully calculate posteriors. This seems not only excessive in its required knowl-
edge and processing demands, but also faces practical limitations in many applica-
tions. An alternative approach is bounded rationality, which could be underlying
a lot of human decision making [59]. Critical for the success of such methods are
fast and frugal heuristics that depend on the environment. Thus there is a major role
for learning in this domain on many different scales, including developmental and
genetic domains. Understanding learning and development is therefore crucial for
scientific reasons as well as technological advancements.

In this chapter, I tried to summarize and relate learning systems that sometimes
seem to form different camps. While the application of probability theory made a
strong impact on our understanding of learning systems in all camps, there has been
some divide between Bayesian modelers, on the one hand, and people in “general”
learning machine, on the other hand. The first point out that there is no such thing as a
“free lunch”, i.e. general learning machines can never become really good compared
to specific models for a particular problem. Yet, finding these specific models can
also be a major challenge that must be solved by domain experts. What kind of
learner does the brain represent? Many aspects of the brain seem to resemble general
learning machines such as the astonishing universality of neocortical architecture.
On the other hand, the ability of high-level inference seems at this point out of the
reach of such learning machines.

I believe that the brain might be somewhat inbetween, as it represents a biased
learning machine that already encapsulates specific strategies (learned through evo-
Iution and development) in the specific environments typically encountered by the
organisms. Such restricted learning machines should be able to support the emer-
gence of Bayesian causal models that could be used by humans to argue about the
world. Such models would not only enable smarter applications but would also help
us in understanding more deeply the nature of cognition and the mind.

Acknowledgments I would like to express my thanks to René Doursat for careful edits, Christian
Albers, Igor Farkas, and Stephen Grossberg for useful comments of an earlier draft circulation, and
all the colleagues that have provided me with encouraging comments.

106 T. P. Trappenberg

References

1. S. Geman, E. Bienenstock, R. Doursat, Neural networks and the bias/variance dilemma. Neural
Comput. 4(1), 1-58 (1992)

2. P. Smolensky, Information Processing in Dynamical Systems: Foundations of Harmony The-
ory, in Parallel Distributed Processing: Volume 1: Foundations, ed. by D.E. Rumelhart, J.L.
McClelland (MIT Press, Cambridge, MA, 1986), pp. 194-281

3. G. Hinton, Training products of experts by minimizing contrastive divergence. Neural Comput.
14, 1711-1800 (2002)

4. G.Hinton, A Practical Guide to Training Restricted Boltzmann Machines. University of Toronto
Technical Report UTML TR 2010-003, 2010

5. A. Graps, An Introduction to Wavelets. http://www.amara.com/IEEEwave/IEEEwavelet.html

6. N. Huang et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear
and non-stationary time series analysis. Proc. R. Soc. Lond. A 454, 903-995 (1998)

7. H.Barlow (1961) Possible principles underlying the transformation of sensory messages. Sens.
Commun. 217-234, (1961)

8. P. Foldidk, Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64,
165-170 (1990)

9. P. Foldiak, D. Endres, Sparse coding. Scholarpedia 3, 2984 (2008)

10. B. Olshausen, D. Field, Emergence of simple-cell receptive field properties by learning a sparse
code for natural images. Nature 381, 607-609 (1996)

11. H. Lee, E. Chaitanya and A. Ng, Sparse deep belief net model for visual area V2, NIPS*2007

12. C.vonder Malsburg, Self-organization of orientation sensitive cells in the striate cortex. Kyber-
netik 14, 85-100 (1973)

13. S. Grossberg, Adaptive pattern classification and universal recoding, I: Parallel development
and coding of neural feature detectors. Biol. Cybern. 23, 121-134 (1976)

14. T. Kohonen, Self-Organizing Maps (Springer, Berlin, 1994)

15. P.Hollensen, P. Hartono, T. Trappenberg (2011) Topographic RBM as Robot Controller, INNS
2011

16. S. Grossberg, Adaptive resonance theory: how a brain learns to consciously attend, learn, and
recognize a changing world. Neural Netw. 37, 1-47 (2012)

17. T. Trappenberg, P. Hartono, D. Rasmusson, in Top-Down Control of Learning in Biological
Self-Organizing Maps, ed. by J. Principe, R. Miikkulainen. Lecture Notes in Computer Science
5629, WSOM 2009 (Springer, 2009), pp. 316-324

18. K. Tanaka, H. Saito, Y, Fukada, M. Moriya, Coding visual images of objects in the inferotem-
poral cortex of the macaque monkey. J. Neurophysiol. 66, 170-189 (1991)

19. S. Chatterjee, A. Hadi, Sensitivity Analysis in Linear Regression (John Wiley & Sons, New
York, 1988)

20. Judea Pearl, Causality: Models, Reasoning and Inference (Cambridge University Press, Cam-
bridge, 2009)

21. D. Ciresan, U. Meier, J. Masci, J. Schmidhuber, Multi-column deep neural network for traffic
sign classification. Neural Netw. 32, 333-338 (2012)

22. D. Rumelhart, G. Hinton, R. Williams, Learning representations by back-propagating errors.
Nature 323(6088), 533-536 (1986)

23. K. Hornik, Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2),
251-257 (1991)

24. A. Weigend, D. Rumelhart (1991) Generalization through minimal networks with application
to forecasting, ed. by E.M. Keramidas. in Computing Science and Statistics (23rd Symposium
INTERFACE’ 91, Seattle, WA), pp. 362-370

25. R. Caruana, S. Lawrence, C.L. Giles, Overfitting in neural nets: backpropagation, conjugate
gradient, and early stopping, in Proceedings of Neural Information Processing Systems Con-
ference, 2000. pp. 402—408

26. D.J.C. MacKay, A practical Bayesian framework for backpropagation networks. Neural Com-
put. 4(3), 448-472 (1992)

http://www.amara.com/IEEEwave/IEEEwavelet.html

2 A Brief Introduction to Probabilistic Machine Learning 107

217.
28.
29.
30.
31.
32.

33.
34.

35.
36.
37.
38.
39.
40.
41.
42.
43.

44.
45.

46.

47.

48.

49.

50.

51.
52.

53.

D. Silver, K. Bennett, Guest editor’s introduction: special issue on inductive transfer learning.
Mach. Learn. 73(3), 215-220 (2008)

S. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. (IEEE TKDE)
22(10), 1345-1359 (2010)

B.E. Boser, LM. Guyon, V. Vapnik, A training algorithm for optimal margin classifiers, in
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, (ACM, 1992),
pp. 144-152

V. Vapnik, The Nature of Statistical Learning Theory (Springer, Berlin, 1995)

C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273-297 (1995)

C. Burges, A tutorial on support vector machines for pattern recognition. Data Min. Knowl.
Disc. 2(2), 121-167 (1998)

A. Smola, B. Scholkopf, A tutorial on support vector regression. Stat. Comput. 14(3) (2004)
C.-C. Chang, C.-J. Lin, LibSVM: a library for support vector machines (2001), http://www.
csie.ntu.edu.tw/cjlin/libsvm

M. Boardman, T. Trappenberg, A heuristic for free parameter optimization with support vector
machines, WCCI 2006, pp. 1337-1344, (2006). http://www.cs.dal.ca/boardman/wcci

E. Alpaydim, Introduction to Machine Learning, 2e (MIT Press, Cambridge, 2010)

S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics (MIT Press, Cambridge, 2005)

S. Russel, P. Norvigm, Artificial Intelligence: A Modern Approach, 3rd edn. (Prentice Hall,
New York, 2010)

R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge,
1998)

C.J.C.H. Watkins, Learning from Delayed Rewards. Ph.D. thesis, Cambridge University, Cam-
bridge, England, 1989

H. van Hasselt, Reinforcement learning in continuous state and action spaces. Reinforcement
Learn.: Adapt. Learn. Optim. 12, 207-251 (2012).

R. Sutton, Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9-44
(erratum p. 377) (1988)

B. Sallans, G. Hinton, Reinforcement learning with factored states and actions. J. Mach. Learn.
Res. 5, 1063-1088 (2004)

D.O. Hebb, The Organization of Behaviour (John Wiley & Sons, New York, 1949)

E.R. Caianiello, Outline of a theory of thought-processes and thinking machines. J. Theor. Biol.
1, 204-235 (1961)

T. Trappenberg, Fundamentals of Computational Neuroscience, 2nd edn. (Oxford University
Press, Oxford, 2010)

R. Enoki, Y.L. Hu, D. Hamilton, A. Fine, Expression of long-term plasticity at individual
synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal
analysis. Neuron 62(2), 242-253 (2009)

T. Bliss, T. Lgmo, Long-lasting potentiation of synaptic transmission in the dentate area of
the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232(2), 331-56
(1973)

D. Heinke, E. Mavritsaki (eds.), Computational Modelling in Behavioural Neuroscience: Clos-
ing the gap between neurophysiology and behaviour (Psychology Press, London, 2008)
R.Rescorla, A. Wagner, in A Theory of Pavlovian Conditioning: Variations, in the Effectiveness
of Reinforcement and Nonreinforcement, ed. by W.F. Prokasy, A.H. Black, Classical Condi-
tioning, II: Current Research and Theory, (Appleton Century Crofts, New York, 1972), pp.
64-99

W. Schultz, Predictive reward signal of dopamine neurons. J. Neurophysiol. 80(1), 1-27 (1998)
J. Houk, J. Adams, A. Barto in A Model of How the Basal Ganglia Generate and Use Neural
Signals that Predict Reinforcement, ed. by J.C. Hauk, J.L. Davis, D.G. Breiser. Models of
Information Processing in the Basal Ganglia (MIT Press, Cambridge, 1995)

P. Connor, T. Trappenberg, in Characterizing a Brain-Based Value-Function Approximator, ed.
by E. Stroulia, S. Matwin, Advances in Artificial Intelligence LNAI 2056, (Springer, Berlin,
2011), pp. 92-103

http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.csie.ntu.edu.tw/cjlin/libsvm
http://www.cs.dal.ca/boardman/wcci

108 T. P. Trappenberg

54. J. Reynolds, J. Wickens, Dopamine-dependent plasticity of corticostriatal synapses. Neural
Netw. 15(4-6), 507-521 (2002)

55. P.Connor, V. LoLordo, T. Trappenberg (2012) An elemental model of retrospective revaluation
without within-compound associations. Anim. Learn. 42(1), 22-38

56. T. Maia, M. Frank, From reinforcement learning models to psychiatric and neurological dis-
orders. Nat. Neurosci. 14, 154-162 (2011)

57. Y. Bengio, Learning deep architectures for Al. Found. Trends Mach. Learn. 2, 1-127 (2009)

58. J. Hawkins, On Intelligence (Times Books, New York, 2004)

59. G. Gigerenzer, P. Todd and the ABC Research Group, Simple Heuristics that Make Us Smart
(Oxford University Press, Oxford, 1999)

	2 A Brief Introduction to Probabilistic Machine Learning and Its Relation to Neuroscience
	1 Evolution, Development and Learning
	1.1 Organizational Mechanisms
	1.2 Generalization
	1.3 Learning with Uncertainties
	1.4 Predictive Learning

	2 Unsupervised Learning
	2.1 Representations
	2.2 Sparse and Topographic Representations
	2.3 Hierarchical Representations and Deep Learning

	3 Supervised Learning
	3.1 Regression
	3.2 Classification as a Logistic Regression
	3.3 Multivariate Generative Models and Probabilistic Reasoning
	3.4 Nonlinear Regression and the Bias-Variance Tradeoff
	3.5 General Learning Machines

	4 Reinforcement Learning
	4.1 Markov Decision Processes
	4.2 Temporal Difference Learning
	4.3 Function Approximation and TD(λ)

	5 Some Biological Analogies
	5.1 Synaptic Plasticity
	5.2 Classical Conditioning and the Basal Ganglia

	6 Outlook
	References

