
CSCI	1106	
Lecture	18	

Debugging	

Announcements	

•  Today’s	Topics	
– Mo?va?on	
– Where	to	start	
– The	“prinD”	method	
– Divide	and	conquer	strategy	

Bugs	Suck	(Mosquitoes	too)	
•  Most	programs	have	bugs	
–  Design	flaws	
–  Typos	
–  Bad	assump?ons	
–  Logic	and	calcula?on	errors	

•  Bugs	cause	programs	to	misbehave	
–  Crash	
–  Have	incorrect	behaviour	
–  Corrupt	data	
–  Can	cause	loss	of	life,	limb,	and	property	

•  Buggy	programs	must	be	debugged	(fixed)	

This	Program	Does	Not	Work…	Why?	

var	i	
var	x[10]=[0,0,0,0,0,0,0,0,0,0]	
var	distance=2	
x[0]=1	
	
for		i	in	1:9	do	

	x[1]=x[i-1]+distance	
end	

The	robot	is	moving	the	distance	d=2	in	a	given	?me	interval.	We	want	to	
calculate	the	posi?on	x	of	the	robot	at	each	of	the	10	intervals	when	the	
posi?on	at	the	first	?me	interval	is	x[0]=1		
	

[1,2,0,0,0,0,0,0,0,0]	[1,3,5,7,9,11,13,15,17,19]	

Asking	the	Right	Ques?ons	

•  Why	is	the	program	not	working?			
– Because	it	has	a	bug…	

•  AssumpAon:	Most	of	the	program	is	correct	
•  ObservaAon:	The	bug’s	loca?on	is	the	point	in	
the	program	where	it	starts	to	misbehave	

•  Conclusion:	So,	we	ask	where	is	the	bug?	
– When	does	the	bug	appear?	
– How	does	the	bug	manifest?	

The	When	and	the	How	

•  Ques?on:	Why	do	we	care	about		
– When	the	bug	appears?	
– How	the	bug	manifests?	

•  Answer:	
– Programs	are	large	and		complicated	
– Want	to	restrict	our	bug	search	to	part	of	the	
program	

– This	makes	debugging	easier,	but	…	
•  S?ll	need	to	find	the	bug	

Where	to	Start	…	

•  Recall:	We	assume	that	program	misbehaviour	
begins	shortly	a^er	bug	is	encountered	

•  Goal:	Narrow	our	search	for	the	bug	
•  Idea:	Determine	the	first	instance	of	program	
misbehaviour	

•  So…	where	in	the	program	do	things	go	wrong?	

Manifesta?on,	Loca?on,	Match	

•  Idea:	
– Bugs	manifest	in	program	misbehaviour	
– Misbehaviour	corresponds	to	a	program	loca?on	
– Need	to	match	the	manifesta?on	to	the	loca?on	

•  To	do:	
–  Iden?fy	the	bug	manifesta?on	

•  How	do	we	know	that	something	is	wrong?	
–  Iden?fy	the	manifesta?on	loca?on	

• Where	in	the	code	does	this	something	occur?	

Bug	Manifesta?on	
var min!
var max!
var mean!
var state = STOPPED!
!
onevent button.forward!
 state = FORWARD!
 motor.left.target = SPEED !
 motor.right.target = SPEED !
 !
onevent button.backward!
 state = STOPPED!
 motor.left.target = 0!
 motor.right.target = 0!
!

!
onevent prox!
 call math.stat(prox.horizontal[0:4], !
 min, max, mean)!
 !
 when state== FORWARD and max > THRESHOLD do!
 state = TURN!
 motor.left.target = -SPEED!
 end!
 !
 when state == TURN and max <= THRESHOLD do!
 state = FORWARD!
 motor.right.target = SPEED!
 end!
!

•  This	program	fails	to	make	the	robot	move	forward	a^er	the	
robot	starts	to	turn	

•  Where	in	the	code	does	it	fail?	

var min!
var max!

var mean!
var state = STOPPED!

!
onevent button.forward!

 state = FORWARD!
 motor.left.target = SPEED !

 motor.right.target = SPEED !
 !

onevent button.backward!
 state = STOPPED!

 motor.left.target = 0!
 motor.right.target = 0!

	
onevent prox!

 call math.stat(prox.horizontal[0:4], !
 min, max, mean)!

 !
 when STATE == FORWARD and max > 0 do!

 state = TURN!

 motor.left.target = -SPEED!
 end!

 !
 when state == TURN and max <= 0 do!

 state = FORWARD!
 motor.right.target = SPEED!

 end	

Program	Execu?on	

Program
	Code	

How	do	we	know	what	part	of	execu?on	
corresponds	to	what	part	of	the	program?	

The	“prinD”	Method	

•  We	have	two	op?ons:	
–  Visually	match	code	to	execu?on	(ok	for	small	programs)	
–  Use	a	mechanical	procedure	to	narrow	our	search	

•  Goal:	
–  Need	to	determine	when	we	have	reached	specific	
loca?ons	in	our	program	

– Want	the	program	to	let	us	know	when	it	has	reached	a	
specific	loca?on	

•  Idea:	
–  Perform	output	when	specific	loca?ons	are	reached	
–  I.e.,	Turn	on	LEDs	when	our	program	reaches	a	set	loca?on	

Add	LED	Ac?va?ons	
var min!
var max!
var mean!
var state = STOPPED!
!
call leds.circle(0,0,0,0,0,0,0,0)!
!
onevent button.forward!
 state = FORWARD!
 motor.left.target = SPEED !
 motor.right.target = SPEED !
 !
onevent button.backward!
 state = STOPPED!
 motor.left.target = 0!
 motor.right.target = 0!
!

!
onevent prox!
 call math.stat(prox.horizontal[0:4], !
 min, max, mean)!
 !
 when STATE == FORWARD and max > THRESHOLD do!
 state = TURN!
 motor.left.target = -SPEED!
 end!
 !
 when state == TURN and max <= THRESHOLD do!
 call leds.circle(32,0,0,0,0,0,0,0)!
 state = FORWARD!
 call leds.circle(32,32,0,0,0,0,0,0)!
 motor.right.target = SPEED!
 call leds.circle(32,32,32,0,0,0,0,0) !
 end!
!

•  Use	the	circle	of	LEDS	on	top	of	the	robot			
 call leds.circle(a,b,c,d,e,f,g,h)!

•  Parameters	range	between	0	(off)	and	32	(very	bright)	
•  Run	the	program	

a	b	
c	
d	e	

h	
f	

g	

The	Result	
var min!
var max!
var mean!
var state = STOPPED!
!
call leds.circle(0,0,0,0,0,0,0,0)!
!
onevent button.forward!
 state = FORWARD!
 motor.left.target = SPEED !
 motor.right.target = SPEED !
 !
onevent button.backward!
 state = STOPPED!
 motor.left.target = 0!
 motor.right.target = 0!
!

!
onevent prox!
 call math.stat(prox.horizontal[0:4], !
 min, max, mean)!
 !
 when STATE == FORWARD and max > THRESHOLD do!
 state = TURN!
 motor.left.target = -SPEED!
 end!
 !
 when state == TURN and max <= THRESHOLD do!
 call leds.circle(32,0,0,0,0,0,0,0)!
 state = FORWARD!
 call leds.circle(32,32,0,0,0,0,0,0)!
 motor.right.target = SPEED!
 call leds.circle(32,32,32,0,0,0,0,0) !
 end!
!

•  Observa?on:	The	LEDs	light	up	
•  Therefore,	the	second	when	statement	is	being	executed	
•  But	the	motors	are	not	behaving	correctly	
•  So	the	bug	is	likely	in	this	part	of	the	code	

Deduc?on	

•  All	three	LEDs	came	on	
– Where	in	the	program	does	this	occur?	
– What	else	happens	in	the	same	part	of	the	
program?	

–  Is	this	correct?	
– Why	or	why	not?	

•  Assume:	Bug	is	near	by	(not	always	the	case)	

Where	is	the	Bug?	
var min!
var max!
var mean!
var state = STOPPED!
!
call leds.circle(0,0,0,0,0,0,0,0)!
!
onevent button.forward!
 state = FORWARD!
 motor.left.target = SPEED !
 motor.right.target = SPEED !
 !
onevent button.backward!
 state = STOPPED!
 motor.left.target = 0!
 motor.right.target = 0!
!

!
onevent prox!
 call math.stat(prox.horizontal[0:4], !
 min, max, mean)!
 !
 when STATE == FORWARD and max > THRESHOLD do!
 state = TURN!
 motor.left.target = -SPEED!
 end!
 !
 when state == TURN and max <= THRESHOLD do!
 call leds.circle(32,0,0,0,0,0,0,0)!
 state = FORWARD!
 call leds.circle(32,32,0,0,0,0,0,0)!
 motor.right.target = SPEED!
 call leds.circle(32,32,32,0,0,0,0,0) !
 end!
!

•  Should	be	
 motor.left.target = SPEED!
•  Because	the	le^	motor	was	set	to	–SPEED earlier	on	

Drowning	in	Complexity	
•  Observa?ons:	
–  This	is	a	simple	program	
–  Yet,	debugging	it	was	not	easy	
–  Imagine	what	happens	with	more	complex	programs	

•  Ques?on:	How	do	we	debug	large	programs?	
–  Some?mes	bugs	are	not	near	their	manifesta?on	
– We	cannot	use	LEDs	everywhere	

•  Too	few	LEDs		
•  Takes	too	long	to	do	

– We	need	to	be	selec?ve	
•  We	need	a	debugging	strategy!	

Divide	and	Conquer	

•  QuesAon:	How	do	you	search	a	phonebook?	
•  Idea:	We	can	search	a	program	for	bugs	in	the	
same	manner	

•  ObservaAon:	
– Programs	are	linear	en??es	
– Programs	comprise	phases	or	stages	

•  QuesAon:	Does	the	bug	occur	before	Stage	3?	
Stage	2	 Stage	3	 Stage	4	 Stage	5	Stage	1	

Finding	the	Bug	

Stage	2	 Stage	3	 Stage	4	 Stage	5	Stage	1	

Stage	2b	 Stage	2c	Stage	2a	

Key	Idea:	The	par??ons	are	where	you	place	print	blocks	(LEDs)	

Ques?on:	What	happens	if	the	program	cannot	be	subdivided	
further?	

Example	
var min!
var max!
var mean!
var state = STOPPED!
!
onevent button.forward!
 state = FORWARD!
 motor.left.target = SPEED !
 motor.right.target = SPEED !
 !
onevent button.backward!
 state = STOPPED!
 motor.left.target = 0!
 motor.right.target = 0!
!

!
onevent prox!
 call math.stat(prox.horizontal[0:4], !
 min, max, mean)!
 !
 when STATE == FORWARD and max > 0 do!
 state = TURN!
 motor.left.target = -SPEED!
 end!
 !
 when state == TURN and max <= 0 do!
 state = FORWARD!
 motor.right.target = SPEED!
 end!
!

Discussion	
•  Debugging	is	an	art,	not	a	science	
–  It’s	hard	to	do	
– A	limle	different	each	?me	
–  Requires	you	to	solve	many	small	problems	
–  Can	take	a	long	?me	

•  There	is	no	silver	bullet	(no	quick	fix)	
•  There	systema?c	approaches	to	ease	debugging	
– Use	output	to	iden?fy	loca?on	of	bug	manifesta?on	
– Use	“divide	and	conquer”	to	narrow	your	search	
– Have	someone	look	over	your	shoulder	(really!)	

Debugging	Rules	of	Thumb	

•  Bugs	are	likely	to	be	found	close	to	where	
they	manifest	

•  Use	an	output	mechanism	(such	as	LEDs)	to	
locate	the	point	in	your	program	where	the	
bug	manifests	

•  Use	divide	and	conquer	to	narrow	your	search	
in	large	programs	

•  Use	as	few	LEDs	as	possible	
•  Have	good	luck	

