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Abstract

Experimental evidence on the distribution of visual attention supports the idea of a spatial saliency map, whereby bottom-up and top-down

influences on attention are integrated by a winner-take-all mechanism. We implement this map with a continuous attractor neural network,

and test the ability of our model to explain experimental evidence on the distribution of spatial attention. The majority of evidence supports

the view that attention is unitary, but recent experiments provide evidence for split attentional foci. We simulate two such experiments.

Our results suggest that the ability to divide attention depends on sustained endogenous signals from short term memory to the saliency map,

stressing the interplay between working memory mechanisms and attention.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Attention is an old concept in psychology correlated with

enhanced processing of objects or regions in space (Posner,

Snyder, & Davidson, 1980). While attention is a multi-

modal phenomenon (Cherry, 1953; Zelano et al., 2004), the

majority of research has focused on selective visual

attention (SVA). The limited capacity of the visual system

necessitates a mechanism to select stimuli from the visual

field, and Tsotsos pointed out that attention solves the

complexity problem of sensory processing (Tsotsos, 1992).

A distinction can be drawn between pre-attentive and

attentive visual processing (Neisser, 1967). Pre-attentive

processing refers to bottom-up (BU) feature saliency of

visual stimuli whereby items that differ from their

surroundings ‘pop out’ to the viewer. Attentive processing

refers to top-down (TD) influences on perception of stimuli

determined by object and locational bias such as task

instructions or foreknowledge of stimulus characteristics.
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.06.015

* An abbreviated version of some portions of this article appeared in

Standage, Trappenberg, and Klein (2005), published under the IEEE

copyright
* Corresponding author.

E-mail addresses: standage@cs.dal.ca (D.I. Standage), tt@cs.dal.ca

(T.P. Trappenberg), klein@or.psychology.dal.ca (R.M. Klein).
Determining saliency, then, is both a BU and TD

requirement, and computational models of SVA include

maps that integrate BU salience across object features

(Koch & Ullman, 1985), TD bias (Treisman, 1998), and the

interplay of both (Deco, Pollatos, & Zihl, 2002; Wolfe,

1994).

Koch and Ullman (1985) provide a neural network model

of SVA in which topographic feature maps are integrated

by a winner-take-all (WTA) saliency map of BU stimuli.

In their model, inhibiting the selected location causes a

shift to the next most salient location. Wolfe (1994) builds

on Neisser’s pre-attentive/attentive distinction (Neisser,

1967), integrating BU and TD saliency criteria in his

Guided Search model. Treisman (1998) provides a model of

spatial attention to solve the Binding Problem, in which a

TD saliency map determines object features selected for

further processing, and suggests parietal cortex as the

biological correlate of her ‘master’ map. Deco et al. (2002)

use inhibition to mediate BU and TD influences in an

instantiation of Duncan and Humphreys’ biased competition

model (Duncan & Humphreys, 2002), simulating saliency in

posterior parietal cortex (PP) with a Continuous Attractor

Neural Network (CANN). Spatial saliency in PP interacts

with BU feature maps to converge on a winning location.

See Shipp (2004) and Itti & Koch (2001) for a review of

these and other models.

There is long-standing debate about the distribution of

SVA. Many cognitive models propose a unitary focus of
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attention, likened to a roving spotlight over the visual field

(Posner et al., 1980). Variants of the spotlight metaphor

include gradient (Downing & Pinker, 1985; LaBerge &

Brown, 1989) and zoom lens (Eriksen & James, 1986)

models, suggesting that attention may be a graded

phenomenon, attenuated around a central focus. A

large body of evidence supports such unitary models

(McCormick, Klein, & Johnston, 1998; Posner et al.,

1980), but several more recent experiments have provided

evidence for non-contiguous allocation of SVA (Awh &

Pashler, 2000; Hahn & Kramer, 1998; Muller, Malinowski,

Gruber, & Hillyard, 2003).

Here, we study how split attention can be achieved by a

dynamic implementation of a WTA map. Despite their

WTA nature, CANNs are able to account for split attention

when network dynamics facilitate long transition states

between regimes (Trappenberg & Standage, 2005) and

when dominated by sustained inputs (Standage, Trappen-

berg, & Klein, 2005). We simulate the experiments of

Muller et al. (2003) with a 1-dimensional (1D) CANN

model. We build on simulations presented in Standage et al.

(2005) that use a narrow weight profile, facilitating steeply

sloped regions of activity that occupy a small portion of the

network. Because we do not know the size of the active

region of PP and its relation to coordinates in the visual

field, we run similar experiments with a wide weight profile,

resulting in activity that spans the majority of the network.

We demonstrate that the ability of the model to account for

divided attention does not depend on fine tuning this

network parameter.

We simulate two experiments by Awh and Pashler

(2000) with a 2-dimensional (2D) CANN model, demon-

strating how the model accounts for their finding divided

attention in one experiment and unitary attention in the

other. Preliminary simulations in 1D are reported in

Standage et al. (2005). Our simulations are consistent with

their experimental findings, but our model offers an

alternative conclusion.
2. Methods

In 1D and 2D simulations, we use a fully connected

recurrent rate model with N nodes, where NZNxNy. We

model only PP from the model by Deco et al. (2002). WTA

is implemented by local cooperation and long distance

competition in the laterally connected network. The average

state ui of a node with index i is given by

t
duiðtÞ

dt
ZKuiðtÞC

X
j

wijrjðtÞa C Iext
i ðtÞ; (1)

where t is a time constant, Iext
i is external input to the

network, aZ2p/Nx is a scale factor, and ri is a normalized
square of ui given by

gðuiÞ Z
u2

i

1 C 1
2

a
P

j u2
j

: (2)

We use this normalization through divisive normal-

ization (shunting inhibition) to force more biologically

realistic smooth (Gaussian) bubbles (Deneve, Pouget, &

Latham, 1999).

The weight matrix w is determined by a shifted Gaussian

function

wij Z AweKd2=2s2
w KC (3)

between node i and node j where d is given by

d Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

x Cd2
y

q
(4)

dx Z minðjix Kjxja; 2pKjix KjxjaÞ (5)

dy Z minðjiy Kjyja; 2pKjiy KjyjaÞ; (6)

and ix and iy are the x and y components of node i, dyZ0 in

the 1D case, C is an inhibition constant describing the

activity dependent inhibition of an inhibitory pool of

neurons, and Aw is a scale factor.

The external input Iext
i is Gaussian shaped around input

location j, determined by

Iext
i Z eKd2=2s2

ext (7)

where d is given by Eq. (4).

In 1D, NxZ100, NyZ1 (NZ100). In 2D, NxZNyZ30

(NZ900). In all simulations, C2{0.1, 0.3}, AwZ10, tZ1,

tZ10, and swZ1.2 (1D) and 1.3 (2D), sext 2{0.3,0.5}.

We classify our inputs along exogenous (exo) and

endogenous (endo) dimensions. Exo inputs refer to neural

responses to stimuli, here representing visual cues. Endo

inputs refer to voluntary control of attention, here

representing task instructions in behavioural studies. Exo

and endo inputs thus correspond to BU and TD signals,

respectively.

Simulations are run with transient and sustained inputs.

We equate network activity with SVA. Because transient

inputs elicit WTA behaviour in CANN models, we start by

demonstrating one-bubble attractor states as models of a

unitary attentional focus. Transient input stimuli are the

norm in biological networks, as evidenced by high firing

rates at stimulus onset followed by lower rates when stimuli

are sustained in experimental settings. In the exo case, this

initial burst of activity serves as input to higher cortical

areas such as PP. Sustained firing after transient stimulation

is a property of highly specialized neural assemblies

(Funahashi, Bruce, & Goldman-Rakic, 1989), and as such

is the exception among biological networks, not the norm.

Where we simulate exo stimuli as sustained inputs, the

stimuli being modelled are spatially static, rapidly changing

symbols. We interpret these changes as providing continual
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‘refreshment’ of neural representations due to novelty

effects (Colby & Goldberg, 1999). We interpret sustained

endo inputs as STM representations of task instructions

in PFC.

We use a Gaussian shaped input profile to approximate

typical tuning curves of neurons, so their firing profiles are

well approximated by smooth curves. In the case of transient

input, the specific shape of localized input is unimportant

because the network dynamic dominates after cessation of

input. With sustained input, a Gaussian input profile leads to

a good approximation of a Gaussian output profile,

achieving the biological realism of our input profile

described above.

Finally, we compare our CANN model of SVA to one

with no lateral interaction, modelling the latter by simply

adding together its Gaussian inputs.
3. Simulations

Muller et al. (2003) provide evidence for sustained

division of visual attention by recording steady state visual

evoked potentials (SSVEP) while subjects viewed a

horizontal array of four stimulus elements following

instructions to attend to two locations. On separate blocks

of trials, subjects attended to adjacent and separated

positions. The SSVEP is the electrophysiological response

in visual cortex to a rapidly flickering stimulus, and has been

shown to increase in amplitude when attention is paid to the

location of the stimulus (Muller et al., 2003). They found

that SSVEPs were lower at the location between separated

targets in a detection task. Additionally, they showed that

split locations were attended just as well as adjacent

locations in their experiment.

We model these experiments in Simulations 1 and 2,

however, we widen the network weight profile from our

earlier work, increasing sw from 0.4 to 1.2 and C from 0.1 to

0.3. This change results in an increase in the width of

a stable post-stimulus bubble from sZ4*a to sZ8*a,

demonstrating that our findings are robust in this respect.

Awh and Pashler (2000) use a partial report procedure to

test subjects’ ability to divide spatial attention. Subjects

viewed a 5!5 array of alpha-numeric characters containing

23 letters and 2 digits. Subjects fixated a central location

before the presentation of two cues, either side of fixation,

indicating the probable location of the digits. The character

array was subsequently presented, and the subjects’ task was

to identify the digits. During eighty percent of trials, digits

appeared at the cued (valid) locations. During the remaining

twenty percent of trials, digits appeared either side of

fixation in the orthogonal direction. Thus, on invalid trials,

one of the digits appeared directly between the cued

locations. Performance at the cued and intervening locations

was compared. To the extent that SVA can be divided,

subjects should perform better at the cued locations than in

the middle. If division of attention were perfect,
performance on the two unattended locations would be

equal. Subjects’ ability to divide SVA was found to depend

on the presence of a subsequent noise mask, but the removal

of array noise alone was sufficient to significantly reduce

division of attention, regardless of subsequent masking.

We model this work in Simulation 3.

3.1. Simulation 1

Adopting Müller’s terminology, we refer to the locations

of stimuli as 1, 2, 3 and 4, where 1 is the left-most location

and 4 is the right-most location (Fig. 1A). A 1C2 trial refers

to trials in which subjects were instructed to direct their

attention to locations 1 and 2, a 2C4 trial refers to

instructions to attend to locations 2 and 4, and so forth for

other combinations of the four locations.

In these transient-input trials, we give the network exo

and endo inputs for 300 iterations of dt/t, simulating the

changing symbols in the visual field and task instructions,

respectively. This input activity is followed by 300

iterations without either source of input. These iterations

are sufficient for the network to stabilize under both

dynamic regimes (both during and after input). In adjacent

trials (1C2 and 3C4) and split trials (1C3 and 2C4),

network activity merges into a single winning bubble

between target locations, predicting a unitary focus of

attention. These results are shown in Fig. 1.

In comparison to our earlier study, the wider activity

profile predicts a more even distribution of attention once

two bubbles merge into one. Specifically, in the 1C2 trial,

activity at locations 1 and 2 is 67 and 90% of maximum

activity, respectively, compared to 21 and 37% in Standage

et al. (2005). The wider activity profile also effects split

trials. The bubble drifts into the area between attended

locations, shown in Fig. 1F and G. Both WTA effects

conflict with Müller’s findings.

3.2. Simulation 2

Network configuration and the shape and location of

inputs is identical to Simulation 1. Exo and endo inputs are

sustained simultaneously for 500 iterations, sufficient for the

network to stabilize.

Under sustained inputs, our model replicates Müller’s

findings in split trials, as network activity is greater at

locations 1 and 3 than in between (Fig. 2B). Two distinct

bubbles are also seen in adjacent trials (Fig. 2A) suggesting

that Müller’s subjects may have divided their attention

between adjacent locations. Because Müller et al. did not

test subjects’ attention between adjacent stimuli, this effect

does not conflict with their results. Having found similar

results with a narrow weight profile in Standage et al.

(2005), results here show that sustained inputs dominate the

network regardless of the width of its weight profile.

To achieve a single bubble in adjacent trials, we increase

the overlap between representations of input stimuli from



Fig. 1. (A) Subjects in Müller’s experiment attended two of four horizontal locations, here labelled 1, 2, 3 and 4. Rectangles were flashed at different rates,

creating SSVEPs. Random sequences of five symbols were provided at all locations. Subjects’ task was to report simultaneous occurrence of a target symbol at

two attended locations. The figure depicts a 1C3 trial with target symbol ‘8’. (B) Nodes 20, 37, 54 and 71 correspond to locations 1, 2, 3 and 4 respectively.

Exo inputs are applied to all locations. Endo inputs are applied to locations 1 and 2 only. Combined exo and endo input activity shown on bottom. Gaussian

width factors swZ1.2, sextZ0.3, constant of inhibition CZ0.3. Dashed vertical lines run through target locations. (C) Stable bubble following transient input.

The bubble is centred on node 31, reflecting the merge between locations 1 and 2. (D) Network activity over time. Input is stopped after 500 iterations, followed

by transition to a one bubble (merged) state by approximately 550 iterations. (E) All parameters are identical to B except endo inputs are applied to locations 1

and 3. (F) Stable bubble following transient input, centred on node 42 (location 3). (G) Network states over time. A merged bubble is stable by approximately

550 ms.
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sextZ0.3 to sextZ0.5. The model predicts divided attention

in split trials (Fig. 2D, but no longer in adjacent trials

(Fig. 2C).

Because network output so closely resembles the shape of

sustained inputs, we investigate the contribution of the

network dynamic to the output profile. In the extreme case,

complete neglect of the network dynamic reduces the model

to a simple addition of Gaussian (AOG) input curves. To test

if an AOG provides a model of CANN behaviour under

sustained inputs, we measure the reduction or ‘dip’

in activity between bubbles at different distances between
inputs, comparing it to peak activity in the bubbles.

Correspondingly, we measure the height of the midpoint

between two Gaussian curves as a function of the distance

between them, comparing it to their maxima. The solid

line in Fig. 3A represents the CANN model. The dotted line

represents AOG. Both curves predict unitary attention when

targets are spatially proximal (z10 nodes) and divided

attention between more distant targets (z30 nodes). In

between, the slight difference between curves reflects the

effect of lateral inhibition, reminiscent of Mountcastle’s two-

point discrimination (Mountcastle & Darian-Smith, 1968).
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In contrast, the effect of local excitation is not evident in

the figure, as the onset of a divided activity is not right-

shifted for the CANN curve.

Fig. 3A shows results of our analysis for only one value

of sext. Fig. 3B shows how the AOG curve in A depends on

the width of Gaussian inputs. The same effect is observed

for the CANN. Our model predicts that attention cannot be

divided at close distances, but without a means to map sext

to physical parameters, we do not predict specific distances

over which attention may be divided.
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Fig. 3. (A) Dip between CANN bubbles (max.-intervening min.) plotted

against the distance between peaks (solid line). swZ0.8, sextZ0.3, CZ0.3.

Dip between peaks of summed inputs, plotted against distance between

them (dashed line). (B) AOG distance vs. dip (as in A). From left to right,

siZ0.1, 0.3, 0.5, 0.7. Dashed line shows curve in A.
3.3. Simulation 3

We simulate Awh and Pashler’s experiments in 2D. In

keeping with our 1D simulations above, we use a wide

weight profile in our 2D model (swZ1.3, CZ0.41). The

effects of a sustained input profile are similar to the 1D case.

In the 2D CANN model, the number and location of inputs

are arranged to reflect Awh and Pashler’s experimental

conditions (described in Fig. 4). Inputs are centred on every

fourth node (horizontally and vertically) in a square

bounded by nodes (7,7) and (23,23) in the 900-node 2D

network. Exo inputs at these locations represent the

character array in Awh and Pashler’s Experiments 1, 4

and 4a. In all trials, endo inputs centred on nodes (11,19)

and (19,19) represent subjects’ attention to the probable

location of the digits. In valid trials, digits are represented

by exo inputs centred on these nodes. In invalid trials, digits

are represented by exo inputs centred on nodes (15,11) and

(15,19). Subjects’ fixation is represented by an exo input

centred on node (15,15). In these simulations, we model
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Fig. 4. Simulation of Awh and Pashler’s Experiment 1. Subjects fixate on

the central dot for 500 ms, then fixate on the dot and attend to the ‘equals’

signs for 750 ms before presentation of a 5!5 character array for 118 ms.

On 80% of trials, digits appear at the attended locations (valid trials). On

invalid trials, digits appear at the locations shown in Fig. 5B. Here, the full

character array is presented on all trials. The 2D CANN’s response to

corresponding input signals is shown on the right.
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the ‘far’ vertical location. This output coincides with Awh and Pashler’s

results on invalid trials.
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Awh and Pashler’s experiments only as far as the

presentation of the character array. The effect of noise

masks and subsequent identification of target digits

presumably involve STM and object recognition processing

not included in our model.

To model Awh and Pashler’s Experiment 1, we provide

an exo input to the fixation point for 500 ms. This exo signal

is then accompanied by endo inputs to target locations for

750 ms. Finally, exo inputs are centred on all character

locations and endo inputs are continued for 118 ms, where

dt/tZ1 ms. These iterations model the duration of input

screens in Awh and Pashler’s study.

Our results replicate those of Awh and Pashler’s

Experiment 1. The sustained endo inputs dominate the

network, facilitating the activity profile shown in Fig. 4C.

Our simulation of Awh and Pashler’s Experiments 4 and

4a uses the same network configuration and width and

duration of inputs as Experiment 1, except the character

array is provided for only 62 ms, as in Awh and Pashler’s

Experiment 4.

We simulate removal of non-target characters during

valid trials by removing all exo inputs except at attended

locations. Similarly, we simulate removal of non-target

characters during invalid trials by limiting exo inputs to the

middle and far locations. Results of our invalid trials
(Fig. 5B) coincide with those of Awh and Pashler. The

middle location is more active than the attended locations.

Results of our valid trials (Fig. 5A) paint a different picture.

The absence of letter noise reduces competition between

stimuli in the character array, so that activity at attended

locations is more cleanly divided than in our simulation of

Experiment 1. Our interpretation of these results is that the

probe stimulus may have been responsible for the reduction

of divided attention in Awh and Pashler’s Experiment 4 and

its abolition in their Experiment 4a.
4. Discussion

In our simulations of Müller’s experiments, we address a

parametric issue raised in Standage et al. (2005). By

increasing the width of the model’s weight profile, and

comparing network output with similar experiments in

Standage et al. (2005), we show that under transient input,

the model outputs a flatter bubble, predicting that the

magnitude of subjects’ attention in Müller’s adjacent trials

was more evenly distributed across attended locations than

predicted in Standage et al. (2005). This input/output

paradigm still supports a unitary gradient model, but with

a much less extreme slope.

In Simulation 2, we show that under sustained inputs,

network output capitulates to input, regardless of the width

of our weight profile. Under this paradigm, we no longer

need the CANN to account for divided attention. A simple

AOG model suffices when inputs are Gaussian shaped.
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In this case, our ability to model divided SVA is mediated

by the width and proximity of input activity. Because inputs

to PP are highly pre-processed, coming from PFC and V4 in

Deco’s model (in addition to less pre-processed input from

V1), we believe these inputs may be characterized by

considerable overlap, given the expansion of receptive fields

in hierarchical processing. We conjecture that the overlap

between integrated object representations may increase as a

function of their number of common features. For example,

neural representations of a red circle and a red square may

overlap more than those of a red circle and a blue square,

and attention may be more difficult to divide between them.

Simulation 2 predicts that attention should be easier to

divide as foci become more distant (within a reasonable

visual area). This prediction is parameter-dependent, as a

stiffer gain function would still predict divided attention, but

in all-or-none fashion. With a Sigmoid gain function, the

model no longer resembles an AOG. These predictions

could be tested by a probe stimulus between adjacent

locations in Müller’s experiment, and the addition of a 1C4

trial. Such experiments are important to further constrain

computational models of attention. Additionally, although

Müller et al. recorded target detection rates (TDR) in their

experiment, the subjects’ task was to detect simultaneous

occurrence of the target symbol at the attended locations

only. TDRs at adjacent locations were no better than at split

locations (indeed, they were slightly worse), but without

testing subjects’ ability to detect simultaneous occurrence of

target symbols at any two locations while subjects attended

to two specific locations, TDRs provide no direct

psychophysical evidence of divided attention. For example,

we do not know that TDRs would be better at positions 1

and 3 during a 1C3 trial than at position 2. We believe that

adding a task requiring subjects to detect simultaneous

occurrence of a target symbol at any two locations during

the same trial block would strengthen Müller’s conclusions.

A parameter largely unexplored in these simulations is

the strength of connectivity in the network. By greatly

reducing input strength in comparison to the network’s

connection strength, connectivity dominates sustained input

and the WTA nature of the model re-emerges. It is also

likely that the strengths of exo and endo inputs are not equal.

If we assume a model that tends to WTA in the general case,

that is, that attention is unitary ‘by default’, and that strong

endo inputs are able to override this tendency in unusual

cases, then perhaps exo inputs to the model should be weak

and wide, and endo’s should be strong and narrow. In this

regard, our model suggests that an understanding of the

modulation of signals from PFC to PP is crucial to

understanding SVA.

Awh and Pashler found the ability to divide SVA was

greatly reduced following removal of noise surrounding

target stimuli. We believe the model can account for this

result if their probe stimuli on invalid trials dominated

voluntary attention. That is, in the absence of competition

from letter noise in the character array, exo signals at
the invalid locations dominated subjects’ attention. In valid

trials, exo and endo signals were directed to the same

locations, so attention may have been divided when Awh

and Pashler were not testing for it, only to be unified by the

testing procedure.

Simulations 2 and 3 show that the CANN model is able to

account for divided SVA under sustained inputs. As such,

we believe that divided SVA may be possible for as long as

endo and/or exo signals are provided to PP, and that

differences in behavioural findings may reflect differences

in experimental conditions rather than subjects’ ability to

divide their attention. The nature of these conditions is

largely unexplored. This conjecture echoes that of Schnei-

der (Schneider, 1998) that different experimental paradigms

may facilitate measurements of different attention-related

phenomena.

Because we interpret endo inputs as subjects’ represen-

tations of task instructions in WM, our model predicts that

interference with STM should abolish split attention in both

Müller’s and Awh and Pashler’s experimental conditions.

This prediction could be tested in a dual task paradigm. By

equating task instructions in behavioural studies with STM

representations in WM, and by modelling these represen-

tations as sustained endo inputs to the CANN, we revisit the

relationship between WM and attention. Attention has often

been cited as the primary constraint on WM capacity

(Cowan, 2001), but here we view WM representations as the

driving force behind attention.

Our focus has been on stable attractor states in this paper.

Transitions between dynamic regimes tend to be rapid, and

given the large number of parameters that effect the model,

stable states provide a better foundation for our simulations.

As we show in Trappenberg and Standage (2005), parameter

adjustments effect transitions between regimes. A possible

explanation of the findings of Müller et al. and Awh and

Pashler is that divided SVA corresponds to the transition

between two-bubble and one-bubble states in a WTA

model. Thus, subjects may only be able to divide attention

during these meta-stable states; given sufficient time for

the network to settle, subjects may be unable to divide their

attention.
5. Conclusions

The model of SVA by Deco et al. (2002) implements a

saliency map in PP with a CANN network. This

instantiation of biased competition (Duncan & Humphreys,

2002) integrates BU and TD influences in a biologically

realistic computational architecture. Our simulations test

this promising model’s ability to explain behavioural and

physiological evidence on the spatial distribution of SVA.

Our results demonstrate that CANNs provide a model of

spatial attention in PP capable of explaining divergent

experimental findings. With transient inputs, the model’s

WTA nature predicts a unitary attentional focus.



D.I. Standage et al. / Neural Networks 18 (2005) 620–627 627
With sustained inputs, the model accounts for divided SVA.

As such, our predictions depend on the nature of exo and

endo signals in attentive phenomena. Here, the use of

sustained inputs replicates the findings of Muller et al.

(2003) and some of the findings of Awh and Pashler (2000).

Where Awh and Pashler interpret unitary attention on

invalid trials as demonstrating unitary attention on valid

trials, we believe subjects’ attention may have been divided

on valid trials, only to be unified by their probe stimulus.

The interplay between WM and SVA is paramount to our

model. If divided attention is facilitated by STM represen-

tations providing endo inputs to PP, then disruption of STM

should abolish divided attention. We believe further

research in this area would improve our understanding of

the relationship between WM and attention.
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