
9 DeepLearning

Our treatment of neural networks in the last chapter was basically state of the art in
the 1980 and 1990s. However, neural networks have recently receiving considerable
attention under the name of deep learning. Deep learning basically refer to neural
networks with many layers, which will of course lead to more complex models and
hence it is likely that they can outperform simpler models for complex tasks. While this
was already clear in the 1990s, we have only been able to train such networks in more
complex tasks in the last few years. This advancement is due to several factors, but
specifically through the availability of large supervised datasets, the enormous increase
of computational power in particular with the help of graphical processor units (GPUs)
that are applicable to matrix operations, and also thanks to the development and of
some more sophisticated applications of regularization techniques. Part of making such
deep networks successful for image classification is the resurgence of convolutional
networks which are now an integral part of deep networks and with which we start our
discussion.

9.1 Filters and 1d convolution
Let us start by running a simple linear perceptron on a pattern identification problem.
This consists of some training vectors with ten features. These training vectors can also
be seen as a time series of some measurements where each feature value represents a
time point t. An example training set is shown in Fig. 9.1. These training pattern are
generated in the following way. All the features values are uniformly drawn between
0 and 0.3 except the last one which is always 1 to represent the bias. However, 10
of the training patterns have specific values for three time points, namely x(2) = 1,
x(2) = 0.5, and x(2) = 1.

The program which generates the training examples and trains the perceptron is
shown below.

from p y l a b import ⇤

np =100
X=0.3⇤ r and ( 1 1 , np ) ; X[ 1 0 , : ] = 1
a= a r r a y ( [ 1 . 0 , 0 . 5 , 1 . 0 ] )
X[ 2 : 5 , 0 : 1 0 ] = a r r a y ( [ a , a , a , a , a , a , a , a , a , a ] ) . T

Y= z e r o s ( np ) ; Y[ 0 : 1 0 ] = 1

# model s p e c i f i c a t i o n s

Ni =11; No=1;
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Fig. 9.1 Example of a pattern identification problem. A) the training patterns are mainly noise
except for some pattern that have consistently larger values for features 2, 3 and 4. B) The weights
of a linear perceptron after training on the patterns on the left. The weights represent a filter for
the M-shaped pattern at position 3.

# parame te r and a r r a y i n i t i a l i z a t i o n

N t r i a l s =1000
wo= rand ( No , Ni ) ; dwo= z e r o s ( wo . shape )
do= z e r o s ( No )

f o r t r i a l in range ( N t r i a l s ) :
y=wo@X # p r e d i c t i o n f o r a l l samples

do =(Y�y ) # d e l t a term

dwo =0.9⇤dwo+do@X . T # momentum

wo=wo+0.01⇤dwo # w e i g h t upd a t e

e r r o r [ t r i a l ]=sum ( abs (Y�y ) >0 . 2 ) / np

p l o t ( wo [ 0 , : ] )
f i g u r e ( ) ; p l o t (X)

We can learn two important point from this example. The first is that weights
represent (learned) feature detectors. This is an important way of thinking about these
weights, and plotting the weights will be a good way of visualizing some result of
training. Of course, these weights look for patterns at specific locations. To detect the
same pattern at a different location we would have to train a new node with examples
of the pattern at this new location. This seems to be a lot of training and a lot of
weights. In many cases we want to look for patterns that can occur at any places. For
example, if we are looking for a coffee mug than this can be placed at many locations
in our visual field. Having feature detectors for specific locations does there seem to
be a inefficient way of doing pattern search.

A better way to do location-invariant pattern recognition is to use convolutions.
Let us illustrate the idea before formally defining this operation. For this we will use
again the specific M-shaped pattern in a series of data points. Let say that we know
that we look for this M-shaped pattern, and to detect this we use a filter f which is a
short vector describing this pattern, namely f(0) = 1, f(1) = 0.5, and f(2) = 1. To
apply this filter we simply multiply this filter with the corresponding signal. Let’s say
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the signal is the vector x = (0010.5100000). Let’s place the filter at the beginning of
this signal and let’s multiply the components and then add them together. This results
in the value of 1. Placing the filter starting at the second position and calculating
this sum of the products gives a value of 1.5. After placing the filter at each possible
location we get the sequence (112.511000). The operation of multiplying the filter
with the signal and adding the terms gives us some form of overlap measure between
the pattern and the filter. A large value indicates that the pattern is present and where it
is present. The operation of multiplying and adding while shifting the filter is called a
convolution. The resulting filtered signal represents how much and where a pattern is
present in the original signal. For example, if we have a signal with a shiftend location,
say x = (0000010.5100), we get a filtered signal (000112.511).

You might have noticed that the filtered signal is smaller than the original signal.
Indeed, we are loosing some components in the filtered signal proportional to the size
of the filter as the filter has a finite extend and can not be placed with the beginning
of the filter at the end of the original signal. There are different ways of handling this.
For example, we could just add some zeros to the original signal. This is called zero
padding. Or we could repeat some of the previous entries such as continuing with the
start of the signal when we reach the end. Or we can just accept that the resulting filter
signal is slightly smaller. Sometimes we are even interested in getting smaller versions
of the signal which somewhat represent a compressed representation. One way of
doing this is to not just shift the filter by one step in each iteration of the convolution,
but use larger steps such as 2 or more. This is called a stride. A stride value of two
would half the size of the filtered signal.

Before we move to higher dimensions, let us formalize somewhat our discus-
sion and define the above described convolution for a 1-dimensional discrete signal
mathematically as

(f ⇤ x)(t) =
TX

t

0
=0

f(t0)x(t+ t0). (9.1)

We can also formulate this for a continuous signal. Since we can then not start the
signal at zero, as the signal runs formally from �1 to +1, it is more common to
place the filtered value at the center of the filter

(f ⇤ x)(t) =
Z 1

�1
f(t0)x(t� t0)dt0. (9.2)

Note that we consider here a filter that is reversed compared to the discrete definition.
This is historically the more common way to define the convolution operation. A
function like the filters appearing in an integral are mathematically called a kernel.

9.2 2-d convolution and image processing
In the last section we looked at convolutions for 1-dimensional data. It is straight
forward to generalize this two 2-dimensional data. Mathematically, a complete n-
dimensional convolution could be written as
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where we used the letter g for the signal, which is now an n dimensional array.
Mathematically, this corresponds to a tensor. Note that the difference between an
tensor and a n-dimensional array is usually that the mathematical construct of a tensor
(or a matrix in 2 dimensions or a vector in 1 dimensions) represent the structure of an
array together with some operations such as adding and multiplying such object.

In the following we will illustrate higher dimensional convolutions in a discrete
2-dimensional case, that of processing geyscale images. Let us first make a simple
example of a greyscale iamge, say a matrix of the 4x4 matrix where each entry
corresponds to a pixel with a grey scale value between 0 and 10. An example image is
shown on the left in Fig. 9.2.

Fig. 9.2 Example of edge detector.

We apply to it a filter with 1s on the left column and -1s on the right column.
Applying this filter means first to overlay the filter with the image in the upper left
corner, multiplying the overlapping components and adding them all up. This results
in the value two which we noted in the upper left corner of the resulting filtered image.
Next we move the filter one position to the right and perform the same operation of
component-wise multiplication and addition, which gives the value of 9. We repeat
this procedure until we have placed the filter over all possible places in the image.

It is interesting to observe the resulting filtered image. What stands out in this
image is a horizontal column in the middle. This would correspond to a dark line
which corresponds to an edge in the original image. The filter is therefore a form of an
edge detector, specifically for horizontal edges. An example on a real image is shown
in Fig. 9.3. The first figure shows a color image in JPG format that we can read and
display with the following Python code

from p y l a b import ⇤

img= imread ( ’ pho to . j p g ’ ) ; imshow ( img )
p r i n t ( ’ image shape ’ , img . shape )

This image has 720*1280 pixels, where the color is represented in three channels.
We pick the first channel, which is displaid as the second image, and then apply the
simple edge filter which results in the third image. This filtered image shows mainly
horizontal lines. In a similar way we can also design edge detectors for vertical edges.

Of course, our filter is very small and only show edges with significant changes
between two consecutive edges. There are therefore better designs of edge detectors,
such as the Canny edge detector. These techniques combine such gradient filters with
Gaussian smoothing and removal of some spurious cases. Also, a continuous version



DeepLearning102 |

Fig. 9.3 Example of simple edge detectoron the first component of a JPG image.

of edge filters is for example described by Gabor functions such as the ones shown in
Fig. 9.4a and b. A Gabor function is described by a sinusoidally-modulated Gaussian,

f(u, v) = e�
u

2+�v

2

2⇤�2
cos(

2⇡

�
u+ '). (9.4)

The example of a 64

2 pixel filter with parameters � = 0.5, � = 10, � = 32, and
' = ⇡/2 is shown in Fig. 9.4a. This filter can also be rotated with a rotation matrix
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as shown in Fig. 9.4b for ' = ⇡. Interestingly, such functions describe some of the
neurons in the primary visual cortex of primates. Detecting edges seems therefore a
good first step to process images, a fact that we will encounter again in later discussion.

Attachments area

9.3 Convolutions with tensors
We already discussed the case of a 1-dimensional convolution and a 2-dimensional
convolution. It is easy to generalize this to n-dimensional data. Mathematically, an
n-dimensional convolution could be written as
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A. Gabor function with \phi = \pi/2 B. Rotated version of A

Fig. 9.4 Example of Gabor functions for (a) vertical and (b) horizontal edge detection.
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where we used the letter g for the signal, which is now an n-dimensional array, which
is mathematically a tensor. For example, a 3-dimensional tensor would be a cube, and
convolving them with another 3-dimensional tensor (cube) would result in another
3-dimensional tensor (cube).

However, such higher dimensional operations also do not always make sense even
though out input data might be a tensor. A prominent example is a color image. A color
image can be represented with three 2-dimensional intensity maps, one representing
the red components, one the green components, and one the blue components (see
Fig. 9.6). This is what is behind the RGB representation of a color image. While
these data can be represented by a 3-dimensional tensor, convolving over the color
channels does not really make sense. Indeed, convolutions are only useful when we
are looking for patterns in the relation between neighboring entries in a tensor. While
some objects could be color sensitive, it is more common to just add or average the
information from the different color channels. We can do this in two ways. Before we
used already one in which we just averaged over the color channels that resulted in a
grey-scale image. Another way is to allow first the filtering of each channel and then
average. These two possible ways lead to different results if we allow different filters
for each channel. Mathematically, the second way of averaging over ( n-m)channels
after applying m-dimensional convolutions of the (n-m) channels is given by
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Thus, if we have one edge filter, say a horizontal edge detector, and apply this to a color
image, we get one grey image that averages the lines of the r,g, and b channels of the
color image. If we are using another filter, say vertical edge detector, then we would
get a second filtered image. The different filtered images can be viewed as different
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channels generated by a filter bank. Of course, we can use filter banks that have many
more filters in them. This is illustrated in the following figure.

Fig. 9.5 Representation of color images with color channels.

Fig. 9.6 Convolutions with tensors and channels.

9.4 CNN
The idea of designing position invariant feature detectors in neural networks was was
first decribed by Fukushima in 1980. Fukushima worked at this time for NHK (the
Japanese public broadcaster) together with physiologists as NHK was interested to
understand the mechanisms of human vision. It was well known since the early 1960s
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form the experiments by Hubel and Wiesel that some neurons in the primary visual
cortex (the first stage of visual processing in the cortex) are edge detectors as already
mention above.

Edge detectors are also the workhorse of computer vision, and we discussed in the
first section how such filters are implemented with convolutions. The neural networks
that we discussed before had to learn individual weights to each pixel location. Even
if this network would learn to represent an edge detector, such detectors have to be
learned for each location in an image since edges could usually appear in all locations.
So another way of thinking about convolution is that a neuron (specific filter) is
applied to every possible location in the image. This leads us to a convolutional
neural network (CNN).

Fig. 9.7 A famous implementation (so called AlexNet) of a convolutional neural network for image
classification Representation (Krizhevsky, Sutskever, Hinton, 2012).

A famous example called AlexNet is shown that was used to classify a big database
of images from many different classes is shown in Fig. 9.7. This network takes three
dimensional images (e.g. RGB values of pixels) and applies a layer of filters to it. This
specific network divided the pathways though the network into to stream in order to
facilitate the computation with two GPUs, but at this point it is only necessary to look
at one stream. In this example, the inputs are of size 224x224 with three channels
(RGP). We then perform the following layered computation on this input:
convolution The first level filters are of size 11x11, so that the resulting image is of
size 55x55. This layer also consists of 48 different filters so that we end up with 48
filters.
gain function At this stage we are using a gain (or activation) function that is not
explicitely shown in the figure but is sometimes indicated as separate computing step.
It is common to use the RELU activation function for reasons discussed later.
pooling If we would only apply convolutions on convolutions, then we would end
with filtered images of filtered images. However, what we really hope to achieve are
high level representation such as nodes that represent class labels. Such labels are
likely not to depend on individual pixels and rather represent a highly compressed
summary of an image. To help with this we add pooling layers after each convolution
layer. A pooling operation is usually just taking the average or the maximum of the
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responses in a certain area of the filtered image, thus compressing the images down by
only considering the average or maximal feature represented by the filter in this area.

These three steps are the typical components of a convolutional layer of a CNN,
and these steps are repeated to build a deep convolutional network. At the end we
use a fully connected layer (MLP) to gather all the information and make the final
classification based on the features extracted by the network.

While we have just outlined the operation of this network, an important part of
using this network is of course the training. Indeed, for our further discussion it is
good to realize that the filters are not chosen by hand but are learned from examples.
This training was trained with the back propagation algorithm. This is fairly straight
forward except when back propagating though the pooling layers. One approach is
thereby to give all credit for the error (average pooling), or juts change the winning
unit (max pooling).

9.5 Tensorflow

To implement deep networks we use the Google’s Tensorflow package. At this time
you should follow the tensorfow tutorial

https://www.tensorflow.org/get started/get started

where some of the structure of Tensorflow is described. The please follow the MNIST
tutorial

https://www.tensorflow.org/get started/mnist/beginners


