
1 Classification

This chapter follows closely: http://cs229.stanford.edu/notes/cs229-notes2.pdf

1.1 MLE of Bernoulli model

An important special case of learning problems is classification in which features are
mapped to a finite number of possible categories. We have previously used general
learning machines such as MLPs and SVMs to learn models to predict the class
membership from features. We are now going back to more specific probabilistic
models. We are again mainly discussing binary classification, which is the case of
two target classes where the target function (y-values) has only two possible values
such as 0 and 1.

Let us first consider a random number which takes the value of 1 with probability
φ and the value 0 with probability 1 − φ (the probability of being either of the two
choices has to be 1.). That is,

p(y) = φy(1− φ)1−y (1.1)

Such a random variable is called Bernoulli distributed, and all Bernoulli distributions
are characterized by one parameter φ. Tossing a coin is a good example of a Bernoulli
process (a process of generating such random numbers). We can use maximum likeli-
hood estimation to estimate the parameter φ from such trials. That is, let us consider
m tosses in which h heads have been found. The log-likelihood of m trials is

l(φ) = log
∏
i

φy
(i)

(1− φ)1−y(i) (1.2)

= log(φh(1− φ)m−h) (1.3)
= h log(φ) + (m− h) log(1− φ). (1.4)

To find the maximum with respect to φ we set the derivative of l to zero,

dl

dφ
=
h

φ
− m− h

1− φ
(1.5)

=
h

φ
− m− h

1− φ
(1.6)

= 0 (1.7)

→ φ =
h

m
(1.8)

As you might have expected, the maximum likelihood estimate of the parameter φ is
the fraction of heads in m trials.

Classification2 |

1.2 Logistic regression (again)

Of course, we usually consider the case of classification when the parameterφ, depends
on an attribute x, as usual in a stochastic (noisy) way. More specifically,

h(y = 1|x; θ) = ĥ(x; θ) (1.9)

h(y = 0|x; θ) = 1− ĥ(x; θ) (1.10)

which we can combine as

h(y|x; θ) = (ĥ(x; θ))y(1− ĥ(x; θ))1−y (1.11)

The corresponding log-likelihood function is

l(θ) =

m∑
i=1

y(i) log(ĥ(x; θ)) + (1− y(i)) log(1− ĥ(x; θ)). (1.12)

To find the corresponding maximum we can use the gradient ascent algorithm, which
is like the gradient descent algorithm with a changed sign,

θ ← θ + α∇θl(θ). (1.13)

To calculate the gradient we can calculate the partial derivative of the log-likelihood
function with respect to each parameters,

∂l(θ)

∂θj
=

(
y

1

ĥ
− (1− y)

1

1− ĥ

)
∂ĥ(θ)

∂θj
(1.14)

where we dropped indices for better readability.
As an example let us again consider logistic regression. An example is illustrated

in Fig.1.1 with 100 sample point plotted as stars. The data suggest that it is far more
likely that the class is y = 0 for small values of x and that the class is y = 1 for large
values of x, and the probabilities are more similar in between. Thus, we put forward the
hypothesis that the transition between the low and high probability region is smooth
and qualify this hypothesis as parameterized density function known as a logistic or
sigmoid function

ĥ = g(θTx) =
1

1 + exp(−θTx)
. (1.15)

As before, we can then treat this density function as function of the parameters θ for
the given data values (likelihood function), and use maximum likelihood estimation to
estimate values for the parameters so that the data are most likely. The density function
with sigmoidal offset θ0 = 2 and slope θ1 = 4 is plotted as solid line in Fig.1.1.

We can now calculate the derivative of the hypothesis ĥ with respect to the param-
eters for the specific choice of the logistic functions. This is given by

∂ĥ

∂θ
=

∂

∂θ

1

1 + e−θx
(1.16)

=
1

(1 + e−θx)2
e−θx(−x) (1.17)

| 3Generative models

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

y

Fig. 1.1 Binary random numbers (stars) drawn from the density p(y = 1) = 1
1+exp(−θ1x−θ0)

(solid line).

=
1

(1 + e−θx)
(1− 1

(1 + e−θx)
)(−x) (1.18)

= −ĥ(1− ĥ)x (1.19)

Using this in equation 1.14 and inserting it into equation 1.13 with the identity(
y

1

ĥ
− (1− y)

1

1− ĥ

)
ĥ(1− ĥ) = y(1− ĥ)− (1− y)ĥ (1.20)

= y − yĥ− ĥ+ yĥ (1.21)
= y − ĥ (1.22)

gives the learning rule

θj ← θj + α(y(i) − ĥ(x(i), θ)x
(i)
j (1.23)

How can we use the knowledge (estimate) of the density function to do classifica-
tion? The obvious choice is to predict the class with the higher probability, given the
input attribute. This bayesian decision point, xt, or dividing hyperplane in higher
dimensions, is give by

p(y = 1|xt) = p(y = 0|xt) = 0.5→ xtθTxt = 0. (1.24)

We have here considered binary classification with linear decision boundaries as lo-
gistic regression, and we can also generalize this method to problems with non-linear
decision boundaries by considering hypothesis with different functional forms of the
decision boundary. However, coming up with specific functions for boundaries is often
difficult in practice.

1.3 Generative models

In the previous sections we have introduced the idea that understanding the world
should be based on a model of the world in a probabilistic sense. That is, building a
good recognition system means estimating a large density function about labels in of

Classification4 |

objects from sensory data. This is what we have done so far; we used mainly (stochastic)
models as a recognition model that take feature values x and make a prediction of an
output (label) y. In the probabilistic formulation, the models where formulated as
parameterized functions that represent the conditional probability p(y|x; θ). In other
words, the aim of such a model is to discriminate between classes based on the feature
values and are hence called discriminative models. Building a discriminative model
directly from example data can be a daunting task as we have to learn how each item
is distinguished from every other possible item. Indeed, we have mainly used simple
models in low dimensions to illustrate the ideas, and many real world problems have
rather much larger dimensions.

A different strategy, which seems much more resembling human learning, is to learn
first about the nature of specific classes and then use this knowledge when faced with
a classification task. For example, we might first learn about chairs, and independently
about tables, and when we are shown pictures with different furnitures we can draw on
our knowledge to classify them. Thus, in this chapter we start discussing generative
models of individual classes, given by p(x|y; θ).

Generative models can be useful in its own right, and are also important to guide
learning as discussed later, but for now we are mainly interested in using these models
for classification. Thus, we need to ask how we can combine the knowledge about
the different classes to do classification. Of course, the answer is provided by Bayes’
theorem. In order to make a discriminative model from the generative models, we need
to the class priors know, e.g. what the relative frequencies of the classes is, and can
then calculate the probability that an item with features x belong to a class y as

p(y|x; θ) =
p(x|y; θ)p(y)

p(x)
. (1.25)

We can use this directly in the case of classification. The Bayesian decision criterion
of predicting the class with the largest posterior probability is then:

arg max
y

p(y|x; θ) = arg max
y

p(x|y; θ)p(y)

p(x)
(1.26)

= arg max
y

p(x|y; θ)p(y), (1.27)

where we have used the fact that the denominator does not depend on y and can hence
be ignores. In the case of binary classification, this reads:

arg max
y

p(y|x; θ) = arg max
y

(p(x|y = 0; θ)p(y = 0), p(x|y = 1; θ)p(y = 1).

(1.28)
While using generative models for classification seem to be much more elaborate, we
will see later that there are several arguments which make generative models attractive
for machine learning, and we will arue that generative models are do more closely
resemble human brain processing principles.

1.4 Discriminant analysis
We will now discuss some common examples of using generative models in classifi-
cation. The methods in this section go back to a paper by R. Fisher in 1936. In the

| 5Discriminant analysis

following examples we consider that there are k classes, and we first assume that
each class has members which are Gaussian distribution over the n feature value. An
example for n = 2 is shown in Fig.1.2A.

−4 −2 0 2 4−4

−2

0

2

4

6

−5 0 5−4

−2

0

2

4

6

8
A. Two Gaussians classes B. Gaussian and a non Gaussian class

Fig. 1.2 Linear Discriminant analysis on a two class problem with different class distributions.

Each of the classes have a certain class prior

p(y = k) = φk (1.29)

, and each class itself is multivariate Gaussian distributed, generally with different
means, µk and variances, Σk,

p(x|y = k) =
1

√
2π

n√|Σ0|
e−

1
2 (x−µk)T Σ−1

k (x−µk) (1.30)

(1.31)

Since we have supervised data with examples for each class, we can use maxi-
mum likelihood estimation to estimate the most likely values for the parameters
θ = (φk, µk,Σk). For the class priors, this is simply the relative frequency of the
training data,

φk =
1

m

∑
i∈K

1 (1.32)

where K = {i, fory(i) = k} is the set of all indices with examples from class k. The
estimates of the means and variances within each class are given by

µk =
1

|K|
∑
i∈K

x(i) (1.33)

Σk =
1

|K|
∑
i∈K

(x(i) − µy(i))(x(i) − µy(i))T , (1.34)

where |K| are the number of examples with class label k.

Classification6 |

With these estimates, we can calculate the optimal (in a Bayesian sense) decision
rule, G(x; θ), as a function of x with parameters θ, namely

G(x) = argmax
k

p(y = k|x) (1.35)

= argmax
k

[p(x|y = k; θ)p(y = k)] (1.36)

= argmax
k

[log(p(x|y = k; θ)p(y = k))] (1.37)

= argmax
k

[−log(
√

2π
n√
|Σ0|)−

1

2
(x− µk)TΣ−1

k (x− µk) + log(φk)](1.38)

= argmax
k

[−1

2
xTΣ−1

k x− 1

2
µTk Σ−1

k µk + xTΣ−1
k µk + log(φk)], (1.39)

since the first term in equation 1.38 does not depend on k and we can multiply out the
other terms. With the maximum likelihood estimates of the parameters, we have all
we need to make this decision.

In order to calculate the decision boundary between classes l and k, we make
the common additional assumption that the covariance matrices of the classes are the
same,

Σk =: Σ. (1.40)

The decision point between the two classes with equal class priors is then given by the
point where the probabilities for the two classes (eq.1.39) is the same. This gives

log(
φk
φl

)− 1

2
(µk − µl)TΣ−1(µk + µl) + xΣ−1(µk − µl) = 0. (1.41)

The first two terms do not depend on x and can be summarized as constant a. We can
also introduce the vector

w = Σ−1(µk − µl). (1.42)

With these simplifying notations is it easy to see that this decision boundary is a linear,

a + wx = 0, (1.43)

and this method with the Gaussian class distributions with equal variances is called
Linear Discriminant Analysis (LDA). The vector w is perpendicular to the decision
surface. Examples are shown in Figure 1.2. If we do not make the assumption of equal
variances of the classes, then we have a quadratic equation for the decision boundary,
and the method is then called Quadratic Discriminant Analysis (GDA). With the
assumptions of LDA, we can calculate the contrastive model directly using Bayes rule.

p(y = k|x; θ) =
φk

1√
2π

n
√
|Σ|
e−

1
2 (x−µk)T Σ−1

k (x−µk)

φk
1√

2π
n
√
|Σ|
e−

1
2 (x−µk)T Σ−1

k (x−µk) + φl
1√

2π
n
√
|Σ|
e−

1
2 (x−µl)T Σ−1

l (x−µl)
(1.44)

=
1

1 + φl

φk
exp−θT x

, (1.45)

where θ is an appropriate function of the parametersµk,µl, and Σ. Thus, the contrastive
model is equivalent to logistic regression discussed in the previous chapter, although we

| 7Naive Bayes

use different parametrisations and the two methods will therefore usual give different
results on specific data sets. So which method should be used? In LDA we made the
assumption that each class is Gaussian distributed. If this is the case, then LDA is the
best method we can use. Discriminant analysis is also popular since it often works
well even when the classes are not strictly Gaussian. However, as can be seen in Figure
1.2B, it can produce quite bad results if the data are multimodal distributed. Logistic
regression is somewhat more general since it does not make the assumption that the
class distributions are Gaussian. However, as ;long as we consider only linear models,
logistic regression would have also problems with the data shown in Figure 1.2B.

Finally, we should note that Fisher’s original method was slightly more general than
the examples discussed here since he did not assume Gaussian distributions. Instead
considered within-class variances compared to between-class variances, something
which resembles a signal-to-noise ratio. In Fisher discriminant analysis (FDA), the
separating hyperplane is defined as

w = (Σk + Σl)
−1(µk − µl). (1.46)

which is the same as in LDA in the case of equal covariance matrices.

1.5 Naive Bayes

In the previous example we used two dimensional feature vectors to illustrate the
classification problems with two dimensional plots. However, most machine learning
applications work with high dimensional feature vectors, and we will here discuss an
important example of a Bayesian model that is often used with high-dimensional data.

To discuss this we follow an example, that of making a spam filter that classifies
email messages as either spam (y = 1) or non-spam (y = 0) emails. To do this we need
first a method to represent the problem in a suitable way. We chose here to represent
a text (email in this situation) as vocabulary vector. A vocabulary is simply the list
of all possible words that we consider, and the text is represented by this vector with
entries 1 if the word can be found in the list or an entry 0 if not, e.g.

x =

1
0
0
.
.
.
1
.
.
0

a
aardvark
aardwolf

.

.

.
buy
.
.

zygmurgy

(1.47)

We are here only considering values 0 and 1 instead of, for example, counting how
often the corresponding word appears. The later is usually called a ‘bag of words’. The
difference is that each entry is a binomial random variable and would be a multinomial
in the other example, though the methods generalize directly to the other case. Note

Classification8 |

that this feature vector is typically very high dimensional. Let us consider here that
our vocabulary has 50.000 word, which is a typical size of common languages.

We now want to build a discriminative model from some training examples. That
is, we want to model

p(x|y) = p(x1, x2, ..., x50000|y). (1.48)

This is a very high dimensional density function which has 250.000−1 parameters (the
-1 comes from the normalization condition). We can factorize this conditional density
function with the chain rule

p(x1, x2, ..., x50000|y) = p(x1|y)p(x2|y, x1)...p(x50000|y, x1,, x49999). (1.49)

While the right hand side has only 50.000 factors, there are still 250.000−1 parameters
we have to learn. We now make a strong assumption namely that all the words are
conditionally independent in each text, that is,

p(x1|y)p(x2|y, x1)...p(x50000|y, x1,, x49999) = p(x1|y)p(x2|y)...p(x50000|y).
(1.50)

This is called the Naive Bayes (NB) assumption. Hence, we can write the conditional
probability as a factor of terms with 50.000 parameters

p(x|y) =

50000∏
j=1

p(xj |y). (1.51)

To estimate these parameters we can apply maximum likelihood estimation, which
gives

φj,y=1 =
1

|{y = 1}|
∑

i∈{y=1}

x
(i)
j (1.52)

φj,y=0 =
1

|{y = 0}|
∑

i∈{y=0}

x
(i)
j (1.53)

φy =
|{y = 1}|

m
. (1.54)

The first equation is the probability that the word j appears in a spam text, the second
equation is that the word j appears in a non-spam text, and the third equation specifies
the frequency of spam examples in the data set.

With these parameters we can now calculate the probability that email x is spam
as

p(y = 1|x) =

∏50.000
j=1 φj,y=1φy∏50.000

j=1 φj,y=1φy +
∏50.000
j=1 φj,y=0(1− φy)

. (1.55)

In practice this often works to some extent, at least when the Naive Bayes assumption
is appropriate. Of course, words in a text should be highly correlated, but the gist here
is that the pure frequency of words has some correlates with the type of text.

Finally, a note that there is a slight problem if some of the words, say x100, are not
part of the training set. In this case we get an estimate that the probability of this word

| 9Naive Bayes

every occurring is zero, φ100,y=1 = 0 and φ100,y=0 = 0, and hence p(y = 1|x) = 0
0 .

A common trick, called Laplace smoothing is to add one occurrence of this word in
every case, which will insert a small probability proportional to the number of training
examples to the estimates,

φj,y=1 =

∑m
i=1 1{x(i)

j = 1 ∧ y(i) = 1}+ 1∑m
i=1 1{y(i) = 1}+ 2

(1.56)

φj,y=0 =

∑m
i=1 1{x(i)

j = 1 ∧ y(i) = 0}+ 1∑m
i=1 1{y(i) = 0}+ 2

. (1.57)

We will later compare the Naive Bayes classification with other classification methods.

