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Abstract  We present two weight- and spike-time depen-
dent synaptic plasticity rules consistent with the physiologi-
cal data of Bi and Poo (J Neurosci 18:10464-10472, 1998).
One rule assumes synaptic saturation, while the other is scale
free. We extend previous analyses of the asymptotic conse-
quences of weight-dependent STDP to the case of strongly
correlated pre- and post-synaptic spiking, more closely
resembling associative learning. We further provide a general
formula for the contribution of any number of spikes to
synaptic drift. Asymptotic weights are shown to principally
depend on the correlation and rate of pre- and post-synaptic
activity, decreasing with increasing rate under correlated
activity, and increasing with rate under uncorrelated activity.
Spike train statistics reveal a quantitative effect only in the
pre-asymptotic regime, and we provide a new interpretation
of the relation between BCM and STDP data.

1 Introduction

Change in synaptic efficacy is believed to underlie learning
and memory and has long been established in the forms of
long term potentiation (LTP) (Bliss and Lgmo 1973) and long
term depression (LTD) (Lynch et al. 1977). Experimental and
theoretical work on plasticity has addressed the dependence
of plasticity on pre-synaptic firing rates (Bienenstock et al.
1982; Dudek and Bear 1992; Kirkwood et al. 1996), the tim-
ing (Levy and Steward 1983; Markram et al. 1997; Bi and
Poo 1998) and interaction (Sjostrom et al. 2001; Bi 2002;
Froemke and Dan 2002; Izhikevich and Desai 2003; Wang
etal. 2005; Froemke et al. 2006; Shah et al. 2006) of pre- and

D. Standage - S. Jalil - T. Trappenberg (B<))

Faculty of Computer Science, Dalhousie University,
6050 University Avenue, Halifax, NS, Canada B3H 1W5
e-mail: tt@cs.dal.ca

post-synaptic spikes, and initial synaptic strength or weight
(Bi and Poo 1998; Debanne et al. 1999; Montgomery et al.
2001; Wang et al. 2005). Theoretical studies have further
investigated the relationship between rate based and spike-
time dependent plasticity (STDP) frameworks (Izhikevich
and Desai 2003; Burkitt et al. 2004) and the conditions under
which STDP rules transduce correlations among pre-synaptic
spike trains into correlations between pre- and post-synaptic
activity (Kempter et al. 1999; Kistler and van Hemmen 2000;
Kuhn et al. 2003; Giitig et al. 2003) as required by Hebb’s
postulate (Hebb 1949).

Here, we focus on weight-dependent STDP rules. In
Sect. 2, we derive parameters for two weight-dependent
STDP rules from experimental data. We calculate asymptotic
weights resulting from these rules in Sect. 3. Where earlier
studies of the asymptotic consequences of STDP rules con-
sider uncorrelated or weakly correlated pre- and post-synaptic
spike trains (Kempter et al. 1999; Kistler and van Hemmen
2000; Song et al. 2000; van Rossum et al. 2000; Rubin et al.
2001; Giitig et al. 2003; Burkitt et al. 2004), we extend these
analyses to the case of strongly correlated spikes, where pre-
synaptic activity ‘repeatedly and persistently takes part in fir-
ing’ the post-synaptic cell, as proposed by Hebb. Our analysis
shows that the means of equilibrium weight distributions are
principally determined by the correlation and rate of pre- and
post-synaptic spiking, where weights decrease with increas-
ing rate in the correlated case. In Sect. 4, we show that our
qualitative results do not depend on our choice of spike train
statistics or correlation model. Furthermore, we derive a gen-
eral formula for the contribution of any number of individ-
ual spikes to synaptic drift, proving that our results do not
depend on a specific implementation of spike interactions, in
contrast to the interpretation of Izhikevich and Desai (2003).
We end Sect. 4 by showing a novel instance of rate-based
BCM curves (Bienenstock et al. 1982) under STDP. These

@ Springer



Biol Cybern

curves emerge when temporal constraints prevent weights
from reaching asymptotic values at lower spike rates.

2 Weight dependence of STPD

Weight-dependent plasticity has been shown by several
groups (Bi and Poo 1998; Debanne et al. 1999; Montgomery
et al. 2001; Wang et al. 2005), but only Bi and Poo (1998)
have done so under the STDP pairing protocol. Not only did
they use the same protocol in their weight- and spike-time-
dependent experiments, but they controlled spike timing in
their weight-dependent experiment, allowing us to relate
these two data sets. We therefor derive our weight-dependent
plasticity rules from their data.

For simplicity, our analysis of weight- and spike-time-
dependent plasticity assumes these two factors are indepen-
dent. A learning rule of this form may be written as

Aw(p.ay = kfip.ay(w)e A (D

where Awy, 4} is the change in weight for potentiation (index
p) or depression (index d), At = o5 —1pre is the difference
between the times of post-synaptic (Z0s,) and pre-synaptic
(tpre) firing, and ¢ parameterizes the timescale of the plastic-
ity window. The experimental data are commonly shown in
relative terms (%) whereas our formulations express absolute
changes in synaptic strength.

We consider two forms of the weight dependent factor f.
Bi and Poo (1998) hypothesized a log-linear rule by drawing
a line through these data in the semi-logarithmic plot. This
hypothesis yields

fip.ay(w) = (agp.ay — bip.aylogw)w 6(w), 2
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Fig. 1 aFitof the power rule to Bi and Poo’s (1998) spike-time depen-
dent data for estimates of different initial weights w. Circles and squares
represent w = 30 for potentiation and depression, respectively. Solid
curves show fits to these data. Dashed curves for the potentiation data
show fits for w = {70, 200, 500} pA top to bottom. The log rule leads
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where 0(w) is the Heaviside function, keeping weights
positive, and the parameters a and b differ for potentia-
tion and depression. A maximum weight implicit in this rule
agrees with evidence for saturable synapses (Petersen et al.
1998; O’Connor et al. 2005b). We contrast the above rule
with a power rule of the form

Sip.ay(w) = a{p,d}wb(zhd}_ 3

A power law more closely approximates the data plotted on
a log scale, and, unlike the log rule, imposes no maximum
weight. While synapses must surely have intrinsic limits, we
include this rule for comparison with the limited case. We
hereafter refer to Eq. 1 with weight-dependence determined
by Egs. 2 and 3 as the log and power rules, respectively.
The constants in Eqgs. 2 and 3 were determined by first fit-
ting the weight-dependent STDP data shown in Fig. 1b. The
fitted curves for the log rule are shown as solid lines along-
side the potentiation data (circles) and depression data (stars)
of Bi and Poo (1998). The equivalent curves for the power
rule are shown as dashed lines. The fits to the depression data
are nearly indistinguishable. The fits to the potentiation data
agree similarly with the data, but the intrinsic limit in the log
rule generates a marked difference for large weight values.

2.1 Detailed fitting procedure

Bi and Poo (1998) controlled spike timing in their weight-
dependent experiment by limiting their pre-before-post (LTP)
time interval to 5 < Ar < 15 ms and limiting their post-
before-pre (LTD) interval to 3 < Ar < 30 ms. For the
weight-dependent fit, we replaced these intervals with their
midpoint values (A7, = 10, Aty = 17.5). We then fit their
spike-time dependent data (Fig. 1b) to determine the rema-
ining parameter ¢ in Eq. 1, capturing the time course of

120

Change in EPSC amplitude (%)

Initial EPSC amplitude (pA)

to similar fits. b Log and power fits to Bi and Poo’s weight-dependent
STDP data. A log fit imposes a maximum synaptic weight where the
upper solid line meets the x-axis. A power fit (dashed curve) imposes
no such maximum. These two fits are nearly indistinguishable for the
LTD data
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spike-time dependence for each of potentiation and depres-
sion. Because of the wide range of initial synaptic strengths in
Bi and Poo’s spike-time dependent experiment (30 < w <
500 pA) we assumed that for a given At, the largest rela-
tive changes in weight represent synapses with the smallest
initial values. Thus, consistent with their initial weights, we
assign an initial weight w = 30 pA to the data showing the
largest STDP values, and only include these data in our time-
dependent fit determining c. The resulting parameter values
are apqy = (208, =54}, bp.a) {26.4,3.5}, cipay =
{0.054, 0.042} for the log rule and ayp 4y = {431, —59},
bip,ay = {0.4,0.1}, ¢(p,ay = {0.039, 0.043} for the power
rule. We further assume that each of the 60 pre-before-post
pairings in the experiment contributed equally to the overall
synaptic change. This assumption is common in computa-
tional studies (van Rossum et al. 2000). A deviation from this
linear assumption results in an altered learning rate that does
not effect the means of equilibrium weight distributions. As
the above parameters are deduced by fitting the percentage
data, we include a factor of 100 in the learning rate to yield
a fractional scale. The learning rate used in our analyses and
simulations is therefore k£ = 1/6,000 unless otherwise stated.

Fitted curves for the power rule are shown as solid lines
in Fig. la for our estimates of the data representing ini-
tial weights of 30 pA (open symbols). The large scatter in
the figure is commonly interpreted as noise, but we inter-
pret it according to the weight-dependence shown in Fig. 1b.
For potentiation, we include dashed lines representing initial
weights set to 70, 200 and 500 pA, respectively (top to bot-
tom). The fit of the log rule leads to qualitatively similar plots.

3 Equilibrium weights for uncorrelated and time-locked
pre- and post-synaptic Poisson spike trains

While the above plasticity rules are deterministic, they yield a
stochastic drift of weights with stochastic spike trains. If this
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Fig. 2 a Illustration of uncorrelated and time-locked spike trains. b
Equilibrium weights as a function of spike rate under the log rule for
analytic (curves) and numeric (symbols with error bars) calculations.

Y

drift is driven by a novel correlation between pre- and post-
synaptic spiking, weights will undergo considerable change
from an initial random state. When weights have been driven
for long periods by pre- and post-synaptic spiking with a
given statistical profile, they begin to fluctuate around a mean
value where the average potentiation equals the (negative)
average depression. In this section, we calculate the means of
these equilibrium weight distributions for the log and power
rules. The drift of weights can be calculated with Fokker—
Planck mean field theory (Kempter et al. 1999; Kistler and
van Hemmen 2000; van Rossum et al. 2000; Rubin et al.
2001; Burkitt et al. 2004), but we are concerned with the
means of equilibrium distributions and adopt the simplified
methodology of Izhikevich and Desai (2003). We refer to
these asymptotic values as equilibrium weights w*.

First, we present our basic analysis for the cases of uncor-
related and time-locked pre- and post-synaptic spike trains
(see Fig. 2a) where these spike trains are Poisson distrib-
uted (Bair et al. 1994) (exponential inter-spike intervals) and
where only nearest neighbour spikes contribute to plastic-
ity. Under nearest neighbour STDP, each pre-synaptic spike
triggers LTP with the next post-synaptic spike and triggers
LTD with the previous post-synaptic spike, as described by
Izhikevich and Desai (2003). In Sect. 4, we show that our
qualitative results do not change for partially correlated spike
trains or for other spike train distributions or spike interac-
tions.

3.1 Equilibrium weights for uncorrelated Poisson spiking

The average synaptic increase (LTP) for each pre-synaptic
spike is given by

e e]

(Aw,) = /p,,(At)Aw,,dAt, )

time-locked

uncorrelated

Rate (Hz)
For time-locked spiking, the solid and dashed curves correspond to

At =4 and At = 10 ms, respectively. In numeric simulations, weights
were averaged over 5,000 trials following an equilibrating 5,000 trials
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where p,(At) is the probability density of a post-synaptic
spike following a pre-synaptic spike with time lag At¢. Sim-
ilarly, the average depression for each pre-synaptic event is
given by

o]

(Awg) = /pd(At)AwddAt, &)
0

where p;(At) is the probability density of a post-synaptic

spike preceding a pre-synaptic spike with time lag At. Thus,

independent pre- and post-synaptic Poisson spike trains have

an average depression and potentiation of

oo
(Awpa)) = f{p,d}(w)/Ve_(c(f”d)+r)AtdAt (6)
0
= fip.ay(w) ———, )
T Clpdy T 7

where r is the rate of the spike trains. We only consider the
case where rpre = rpost = 7.

An equilibrium weight w* is reached when the average
potentiation equals the (negative) average depression. For
the log rule this value is given by

N ap(cg +r)+aq(cyp +r)

= X 8
v pbp(0d+r)+bd(cp+r) &

and for the power rule by

_Gpcatr

1
by—bp . 9
aq cp + r) ©)

w* = (
Equilibrium weights for independent pre- and post-synaptic
Poisson spike trains are shown as a function of rate in Fig. 2b
for the log rule. Symbols represent the results of simulations
where weights were averaged over 5,000 spike pairings fol-
lowing 5,000 equilibrating pairings.

3.2 Equilibrium weights for time-locked Poisson spiking

The above analysis of uncorrelated pre- and post-synaptic
spikes is relevant if events represented by pre-synaptic firing
are not associated with a post-synaptic response. In contrast,
associative learning is achieved if a neuron becomes respon-
sive to (correlated with) a pre-synaptic spike pattern. Studies
have shown that STDP rules capture correlations among input
spikes driving a model neuron (Kistler and van Hemmen
2000; Song et al. 2000), as synapses mediating correlated
pre-synaptic activity learn to provide the strongest, fastest
(Song et al. 2000) and most precisely timed (Kistler and van
Hemmen 2000) inputs to the post-synaptic cell. Alternatively,
plasticity may ‘piggyback’ other sources of activity driving
pre- and post-synaptic neurons. In this section, we assume
associations have been formed by one or both of these mech-
anisms, labelled self-organisation and associativity respec-
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tively under the terminology of Hasselmo (1995). We inves-
tigate the ongoing effect of these associations on the asymp-
totic strength of weights for rules grounded in Bi and Poo’s
data (Bi and Poo 1998).

For analytic simplicity and to illustrate the limiting case
for informative spike timing, we consider the case where a
post-synaptic spike is triggered with a short but fixed delay
At following a pre-synaptic spike. We do not suggest that a
single pre-synaptic spike should drive a post-synaptic neu-
ron in this way. Rather, our pre-synaptic spikes represent
the activity of one of many inputs from pre-synaptic neurons
participating in an established association. We later relax this
condition by varying the probability of a time-locked post-
synaptic spike in Sect. 4.1.

Time-locked pre- and post-synaptic spikes result in an
ongoing potentiation of weights given by

(Awp) = fp(w)e P2 (10)

for each pre-synaptic event. However, every pre-synaptic
event can also trigger depression in conjunction with a pre-
vious (uncorrelated) post-synaptic spike (Eq. 6). An equilib-
rium weight w* for time-locked pre- and post-synaptic spikes
under the log rule is, therefore, given by

ape=r®(cq + 1) + agr

w* = ex 11
P bpe=rA(cq + 1) + bar (b
and for the power rule by
1
1 ba—bp
aqr

The rate-dependence of equilibrium weights for time-locked
pre- and post-synaptic Poisson activity under the log rule is
shown in Fig. 2b, where the solid and dashed lines represent
analytic solutions for At =4 and At = 10 ms, respectively.
Symbols represent corresponding numeric simulations. The
figure shows that equilibrium weights decrease with increas-
ing spike rates in the strongly correlated Poisson case, but
quantitatively, these values exceed biologically realistic
values.

4 Equilibrium weights for alternative conditions

In the previous section, we determined equilibrium weights
for the log and power rules under the specific conditions
of Poisson-distributed pre- and post-synaptic spike trains,
uncorrelated and time-locked pre- and post-synaptic spikes,
and nearest neighbour spike interactions. Here, we show in
Sect. 4.1 that partially correlated pre- and post-synaptic spike
trains interpolate between the extreme cases of uncorrelat-
ed and time-locked pre- and post-synaptic spikes. We show
in Sect. 4.2 that our results do not qualitatively depend on
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Poisson-distributed spike trains. In Sect. 4.3, we show that
our results do not depend on nearest neighbour spike inter-
actions, in contrast to the claims of Izhikevich and Desai
(2003). Finally, in Sect. 4.4, we demonstrate learning under
a finite number of spike pairings, and discuss how BCM-like
curves (Bienenstock et al. 1982) are generated by the log and
power rules.

4.1 Equilibrium weights for partially correlated pre-
and post-synaptic Poisson spiking

The cases of uncorrelated and time-locked pre- and post-syn-
aptic spike trains define the extreme cases of possible spike
train relations. Here we extend this analysis to some more
realistic cases with partially correlated pre- and post-synap-
tic activity. We discuss two examples of correlation models,
providing a biological interpretation of each. In both models,
we again consider Poisson pre-synaptic spiking.

Correlation model 1: Post-synaptic spikes are generated
with a probability given by constant p with a fixed time delay
At = 4ms. Inthe (1 — p) cases where there is no time-locked
post-synaptic spike the time delay is distributed exponen-
tially. This methodology approximates the biological case
where pre-synaptic input generates a post-synaptic spike with
a finite probability, but otherwise the post-synaptic neuron
emits Poisson background activity. Figure 3a shows mean
weights over 10,000 pairings following 10,000 equilibrating
pairings under the log rule for p = {0, 0.2, 0.4, 0.6, 0.8, 1}.
Low values of p lead to rate-dependent curves qualitatively
similar to the perfectly time-locked case (p = 1) where lower
means reflect the lower likelihood of correlated pre- and post-
synaptic spikes.

Correlation model 2: We consider the case where correla-
tions between pre- and post-synaptic spikes are expressed
by an altered probability of a post-synaptic spike within a
time At of a pre-synaptic event. Specifically, we consider an
exponential distribution of delay times A¢, where the decay
parameter is modulated for different correlations between
pre- and postsynaptic spikes. The alteration of the probabil-
ity density of At is accomplished by parameter s in Eq. 13.
The mean delay At is set to be (I — s)A, where A = 1/r
is the inverse of the spike rate. For s = 0, this parameter
yields the uncorrelated case discussed above. When s tends
to 1, we expect a post-synaptic spike with a very short aver-
age time delay. The average potentiation (and similarly for
depression) and the corresponding equilibrium weights are
given by

Aw, = (ap — b, logw)w/ 11 e~ (TS gAL (13)
0
. ap(1/(L =s)cp + 1) +aq(l/(ca + 1))
S w =ex .
by(1/((1 = s)cp + 1) +ba(1/(ca +1))

(14)

Analytic equilibrium weights for this correlation model
are plotted in Fig. 3b for different values of s, where s = 0
is equivalent to the uncorrelated case in Fig. 2band s = 1 is
close to the time-locked case with Ar = 1 ms, shown with
a dashed line in the figure. Both correlation models show
that partial pre- and post-synaptic correlations interpolate the
extreme cases discussed in Sect. 3.

4.2 Equilibrium weights for spike trains with non-Poisson
statistics

We have thus far shown results for Poisson spike trains in
our analysis, but similar derivations can be made for other
spike distributions. While the specific values of equilibrium
weights for a given rate depend on the distribution model,
their qualitative dependence on rates and the correlation
between pre- and post-synaptic spiking does not change.
Examples from simulations for several ISI distributions are
shown in Fig. 4. Figure 4a shows the cases of uncorrelated
and time-locked pre- and post-synaptic spikes under the log
rule. Figure 4b shows the time-locked case under the power
rule. The dependence of equilibrium weights on rate is sim-
ilar for these distributions, but could possibly differ for very
different distributions such as those corresponding to burst-
ing behaviour.

4.3 Equilibrium weights beyond nearest neighbour
interactions

In the nearest neighbour case, we only consider the first post-
synaptic spike following a pre-synaptic spike for potentia-
tion and the first pre-synaptic spike following a post-synaptic
spike for depression. While the first spike makes the great-
est contribution to plasticity due to the decaying exponential
term in STDP rules, it is possible that the sum of subsequent
spikes has a pronounced effect on synaptic strength, as argued
by Izhikevich and Desai (2003).

For Poisson spike trains, we use the following method to
analytically calculate the average contribution to potentiation
of the nth spike following a specific pre-synaptic spike (the
method is the same for depression, where pre-synaptic spikes
follow a specific post-synaptic spike). The first post-synaptic
spike is expected to occur on average at At; = 1/r foruncor-
related pre- and post-synaptic activity, and at Af; = const in
the time locked case, and is weighted by e~ rAN The sec-
ond spike, which we expect on average at A, = Aty + 1/r,
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Fig. 3 a Correlation model

with varying probability p of a 3000
time locked post-synaptic spike.
Weights were averaged over 2500
5,000 trials following 5,000
equilibrating trials. < 2000
b Correlation model with o
varying exponential distribution "2 1500
for different correlation
parameters s where
A, = r/(1 — 5). The dashed line 1000
shows the time looked case
discussed in Sect. 3.2 with 500
At =1 ms 10
Rate (Hz) Rate (Hz)

Fig. 4 Equilibrium weights as A 3000 B
a function of rate for pre- and I lognormal (locked) ] 010
post-synaptic spike trains with lognormal
different ISI distributions. 8
a Time-locked (fop) and ___ 2000 exponential (locked) 10 )
uncorrelated (bottom) spiking S < uniform
with the log rule. b Time-locked et uniform (locked) — :/ 6 \
spiking with the power rule = 1000 % 10 expon/:ntial

4

T~ uniform (uncorr) 10
o 10’ 102 10° 10’ 10%
Rate (Hz) Rate (Hz)

contributes less to potentiation because e P21 < ¢=CpAR2, N o\
To calculate the average potentiation, we determine the den-  (AWp) = Kfip.a)y(w) Z ( r+ cp) ’ (18)

n=1

sity function of the n-th spike by convolving the density func-
tions of all random variables in the sum. This convolution
can be done analytically for Poisson spike trains by indepen-
dently summing exponentially distributed random variables
with equal mean A. The resulting random variable is gamma
distributed with mean A = 1/r and parameter n,
(Al‘/)»)n_le_At/)“

p(Al) = o (15)
where n is the number of spikes considered. Thus, the aver-
age potentiation for uncorrelated pre- and post-synaptic spike
trains is given by

N T —(r+cp)At

() = Kfipar) 3 [

o dAt (16)

n=1 0

and similarly for depression. Using the definition of the
Gamma function,

o]

ru)=/}4ﬂ”dn (17)

0

we can evaluate this integral as
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generalizing Eq. (7) to multiple spike contributions. Thus,
equilibrium weights for the uncorrelated case are given for
the log rule by

ap Zf:]:l(cd +r)" +aq Zrlzvzl(cp +r)"

w* = exp ,  (19)
bp Y1 (ca +1)" +ba X (cp+1)"
which reduces to Eq. (8) for n = 1. Furthermore, since
- 1
Zx” = for x < 1, (20)
= x—1

where x = r/(r + ¢{p,q}), the all-to-all case for uncorrelated
spike trains is independent of r,

apcq +aqcp

; 21
bpcd + bdcp

w*(n = 00) = exp

in agreement with Kempter et al. (1999). This value is also
equivalent to the » = 0 limit for n = 1 (Eq. 8).
A similar evaluation for the time-locked case yields

apAP +agAD
byAP +byAD

*

w” = exp (22)
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Fig. 5 Equilibrium weights under nearest-n interactions for time-
locked and uncorrelated Poisson spike trains. In each case, curves cor-
respond to values of n = {1, 2, 4, 10, 50, 100} (top to bottom). Curves
between n = 50 and n = 100 become indistinguishable and approxi-
mate the infinite (asymptotic) case

with
N n—1
_ (n —2)!
AP =~ 1 r 23
¢ ( +nz_;(cp+r)”11"(n—1)) (23)
and

l’l
AD = Z (=1 (24)
“ (cp +1)"T(n)’

Equilibrium values for interaction models with different
n (nearest-n interactions) are shown in Fig. 5 for the time-
locked and independent Poisson cases. These curves cor-
respond to values of n = {1, 2,4, 10, 50, 100} (from top
to bottom) although results between n = 50 and n = 100
become indistinguishable. As expected, an increasing num-
ber of neighbouring spikes will only influence equilibrium
values at high rates due to the exponential decay of the
STDP time window. Furthermore, increasing the number of
neighbours n quickly converges to an asymptotic value. We
reached machine precision around n = 150.

4.4 Convergence to equilibrium: BCM-like curves
in the pre-asymptotic regime

The analysis above concerns the asymptotic regime, where
equilibrium weights correspond to the infinite limit of
pairings, and simulations approximate this limit with many
thousands of pairings. Experiments in vitro are temporally
constrained in that a plasticity-inducing stimulus is applied
for a short time, after which synaptic responses are mea-
sured and compared to pre-stimulus measurements. While
the duration of plasticity-inducing stimuli typically varies

across protocols and the nature of experiments, the number
of repetitions is typically on the order of 10-100 for STDP
(Biand Poo 1998; Froemke and Dan 2002) and pairing proto-
cols (Petersen et al. 1998; O’Connor et al. 2005a) and 100—
1000 repetitions for rate-based protocols (Dudek and Bear
1992; Kirkwood et al. 1996). We now consider the effects of
the log and power rules under similar conditions.

Figure 6a shows mean percentage weight changes follow-
ing n = 100 spike pairings where weights were initialised in
the middle range of possible values (700 pA) and means were
calculated over 100 trials. In this simulation, we use Poisson
spike trains under the log rule with nearest neighbour spike
interactions. Results for uncorrelated pre- and post-synap-
tic spikes correspond to the case studied by Izhikevich and
Desai (2003). While we can generate BCM-like curves in
this limited case of finite pairings and uncorrelated spiking,
the effect is small and not found in the time-locked case.
Results for time-locked spikes resemble those in the asymp-
totic regime (e.g., Fig. 2b) though here, percentage weight
change is reduced by several orders of magnitude.

We can, however, show BCM-like curves with different
spike train statistics. Figure 6b shows that BCM-like curves
resembling those measured by Dudek and Bear (1992) and
Kirkwood et al. (1996) are produced with time-locked, peri-
odic pre- and post-synaptic spiking (At = 1,000 000 ms). Results
are shown for the log rule. The solid line represents weight
changes after 1,000 pairings for a synapse initialised to
700 pA. Performing the same experiment with 10,000 spike
pairings results in the dashed line. The dotted line corre-
sponds to weight changes for an infinite number of pairings
(equilibrium weights). As shown in the figure, the depres-
sion valley becomes deeper and shifts to the left with an
increased number of pairings, while changes in the potenti-
ation portion of the curve are much smaller. Our investiga-
tion shows that BCM-like curves may be produced by STDP
rules in the pre-asymptotic regime, but these curves depend
on the precise form of pre- and post-synaptic firing. Fur-
ther experiments are required to investigate this and other
possible explanations for BCM-like curves, as experiments
investigating BCM (Dudek and Bear 1992; Kirkwood et al.
1996) have not controlled post-synaptic firing, crucial to the
BCM hypothesis.

5 Discussion and conclusions

Weight-dependent STDP rules are commonly used in
modelling studies. We have presented two such rules with
parameters fit to physiological data (Bi and Poo 1998) and
studied their consequences in both the asymptotic and pre-
asymptotic regimes. Our analysis includes the case where
synapses are driven by noisy spike trains with little or no
correlation between pre- and post-synaptic spikes, as done
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Fig. 6 Mean percentage weight change under the log rule for limited
numbers of spike pairings. Weights were initialised to mid-range values
(700 pA) and means were calculated over 100 trials. a Results for time-
locked and uncorrelated Poisson spike trains for 100 pairings at rate r
with nearest neighbour spike interactions. b Results for periodic, time-
locked pre- and post-synaptic spike trains where pre- and post-synaptic
spikes are 180 degrees out of phase. The solid line shows changes after
1,000 pairings for a synapse initialised to 700 pA. The same experi-
ment with 10,000 spike pairings results in the dashed line. The dotted
curve shows analytic equilibrium, corresponding to an infinite number
of pairings

in previous studies, and also the case of highly correlated
pre- and post-synaptic spike trains more closely resembling
the case of associative learning. We found that ‘runaway’
synapses (Abbott and Nelson 2000) are still a problem for
these rules, at least under parameters suggested by weight-
dependent STDP data (Bi and Poo 1998).

In the pre-asymptotic regime, we show that BCM-like
curves (Bienenstock et al. 1982) can be generated by weight-
dependent STDP rules when low-rate activity prevents
weights from reaching equilibrium values in finite time.

@ Springer

While this effect is parameter dependent, it provides a novel
instance of these curves and highlights the need for rate-based
plasticity experiments that control post-synaptic spiking.

In the asymptotic regime, we find that for all spike train sta-
tistics considered, equilibrium weights for correlated spike
trains decrease with increasing spike rate, a novel form of
synaptic scaling. We prove this relationship for an arbitrary
number of contributing spikes in the Poisson case, providing
a general formula for the drift of potentiation and depression
in the steady state. We further demonstrate this relationship
for partially correlated Poisson spiking, showing that partial
correlations interpolate between the extreme cases of time-
locked and independent pre- and post-synaptic activity.

Equilibrium weights for uncorrelated spike trains increase
with rate for a finite number of contributing spikes. This
increase approaches 0 in the infinite limit of spike contribu-
tions, showing rate independence in this specific case, consis-
tent with the analysis of (Kempter et al. 1999). Correlated and
independent equilibrium weights converge at around 100 Hz.
This effect suggests that low to intermediate rates provide
a better regime for associative learning than high rates, or,
stated differently, high rates may prevent weights from dis-
tinguishing between correlated and uncorrelated activity.

Under a rule imposing no maximum weight (the power
rule) synapses do not reach infinite values because depres-
sion balances potentiation, but the resulting equilibrium val-
ues under both rules (with and without maxima) are too large
to be useful in a biologically realistic regime. This problem
has an additional, unwanted consequence. Weight-dependent
STDP rules implicitly assume that a synapse can span the
entire range of values in Bi and Poo’s weight-dependent
STDP data (Bi and Poo 1998), suggesting changes in synap-
tic efficacy of around 10,000%. No synapse in their experi-
ments, however, changed in strength by more than around
100%. Many more pairings than the 60 of their protocol
would be required to traverse this range, assuming their syn-
apses could in fact be further strengthened. Alternatively,
it is possible that the large variation in their initial weights
(Fig. 1b) reflects varying populations of synapses. Neurons in
culture often make multiple post-synaptic contacts (Debanne
et al. 1996) and this possibility must be carefully addressed
in future experiments on weight-dependent STDP.
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