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Abstract
Some neurons encode information about the orientation or position of an
animal, and can maintain their response properties in the absence of visual
input. Examples include head direction cells in rats and primates, place
cells in rats and spatial view cells in primates. ‘Continuous attractor’ neural
networks model these continuous physical spaces by using recurrent collateral
connections between the neurons which reflect the distance between the neurons
in the state space (e.g. head direction space) of the animal. These networks
maintain a localized packet of neuronal activity representing the current state
of the animal. We show how the synaptic connections in a one-dimensional
continuous attractor network (of for example head direction cells) could be self-
organized by associative learning. We also show how the activity packet could
be moved from one location to another by idiothetic (self-motion) inputs, for
example vestibular or proprioceptive, and how the synaptic connections could
self-organize to implement this. The models described use ‘trace’ associative
synaptic learning rules that utilize a form of temporal average of recent cell
activity to associate the firing of rotation cells with the recent change in the
representation of the head direction in the continuous attractor. We also show
how a nonlinear neuronal activation function that could be implemented by
NMDA receptors could contribute to the stability of the activity packet that
represents the current state of the animal.

1. Introduction

Single-cell recording studies have revealed a number of classes of neurons which appear to
encode the orientation or position of an animal with respect to its environment. Examples of
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such classes of cells include head direction cells in rats (Ranck 1985, Taube et al 1990, 1996,
Muller et al 1996) and primates (Robertson et al 1999), which respond maximally when the
animal’s head is facing in a particular preferred direction; place cells in rats (O’Keefe and
Dostrovsky 1971, McNaughton et al 1983, O’Keefe 1984, Muller et al 1991, Markus et al
1995), that fire maximally when the animal is in a particular location, and spatial view cells
in primates, that respond when the monkey is looking towards a particular location in space
(Rolls et al 1997, Georges-François et al 1999, Robertson et al 1998). An important property
of such classes of cells is that they can maintain their response properties when the animal is in
darkness, with no visual input available to guide and update the firing of the cells. Moreover,
when the animal moves in darkness, the spatial representation is updated by self-motion, that
is idiothetic, cues. These properties hold for cells which indicate head direction in rats (Taube
et al 1996) and macaques (Robertson et al 1999), for place cells in the rat hippocampus
(O’Keefe 1976, McNaughton et al 1989, Quirk et al 1990, Markus et al 1994) and for spatial
view cells in the macaque hippocampus (Robertson et al 1998). In this paper we consider how
these properties, of idiothetic update in the dark, and of stability of firing in the dark, could
arise. The particular model developed in this paper is for the head direction cell system, as
this can be treated as a one-dimensional system. We extend this model to place cells in rats
elsewhere (Stringer et al 2002).

An established approach to modelling the underlying neural mechanisms of head direction
cells and place fields is ‘continuous attractor’ neural networks (CANNs) (see for example
Skaggs et al (1995), Redish et al (1996), Zhang (1996), Redish and Touretzky (1998),
Samsonovich and McNaughton (1997)). This class of network can maintain the firing of
its neurons to represent any location along a continuous physical dimension such as head
direction. These models use excitatory recurrent collateral connections between the neurons
to reflect the distance between the neurons in the state space of the animal (e.g. head direction
space). Global inhibition is used to keep the number of neurons in a bubble of activity relatively
constant, and to help to ensure that there is only one activity packet. The properties of these
CANNs have been extensively studied, for example by Amari (1977) and Taylor (1999). They
can maintain the packet of neural activity (i.e. the set of active neurons that represent a spatial
location) constant for long periods.

A key challenge in these CANN models is how the bubble of neuronal firing representing
one location in the continuous state space can be updated based on non-visual, idiothetic,
cues to represent a new location in state space. This is essentially the problem of path
integration: how a system that represents a memory of where the animal (referred to more
generically when modelled as an agent) is in physical space could be updated based on
idiothetic cues such as vestibular cues (which might represent a head velocity signal), or
proprioceptive cues (which might update a representation of place based on movements being
made in the space, during for example walking in the dark). An approach introduced in
recent models utilizes the concept of modulating the strength of the synaptic connection
weights in one direction in the CANN to ‘push’ the activity packet in one direction, as the
support for a packet is then asymmetric (for review see Zhang (1996)). Such an approach is
closely related to dynamic remapping (Dominey and Arbib 1992, Pouget and Sejnowski 1995,
Arbib 1997, Guazzelli et al 2001), and is the principal mechanism used to shift egocentric
spatial representations of neural activity using velocity signals in the model of Droulez and
Berthoz (1991).

A major limitation of the models studied so far is that the connections are pre-specified
by the modeller, with for example two types of connection to deal with left and right spatial
shifts. In this paper we introduce a way to learn by self-organization the correct connection
strengths for the CANN to be updated by idiothetic inputs. We note that no simple shift across
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a topographically organized map will work for many of the systems to which our model applies,
such as the hippocampus, as these systems do not display topographical organization. (That
is, nearby cells in the hippocampus do not represent nearby locations in space.)

We also consider the connection strengths between the neurons in the continuous attractor
(which is a different issue to how the idiothetic inputs are learned). The idea that Hebbian
learning can produce symmetric weight matrices within CANN models that enable stable
representations to be formed has been stated and investigated by a number of authors.
However, previous simulations of stable representations within CANN models have been
where the recurrent synaptic weights are ideal, corresponding to regular and complete training
in a completely connected network, thus ensuring that the synaptic weights are perfectly
symmetrical in opposite directions in the state space. In this paper we introduce two methods
to help with the problem of irregular training. One is the use of a short term memory trace in
the Hebbian learning rule used to form the connections between the principal neurons in the
continuous attractor (section 2). The memory trace helps to smooth out irregularities. The
second method is to introduce a stabilizing influence on activity packets, using a nonlinear
neuronal activation function (which could be realized by NMDA receptors) (section 4).

2. Self-organization of recurrent synaptic connections within a one-dimensional
continuous attractor network of head direction cells

In this section we describe formally the model of a continuous attractor network that we
investigate, and show how the weights could be trained, both by a Hebbian method previously
discussed by Zhang (1996) and Redish and Touretzky (1998), and with Hebbian learning with
a short term memory trace to help with the issue of irregular training, and diluted connectivity
in the continuous attractor.

The generic model of a continuous attractor, which has been investigated extensively
previously (Amari 1977, Zhang 1996), is as follows. The model is a recurrent attractor network
with global inhibition. It is different from a Hopfield attractor network in that there are no
discrete attractors formed by associative learning of discrete patterns. Instead there is a set of
neurons that are connected to each other by synaptic weights wRC

ij that are a simple function,
for example Gaussian, of the distance between the states of the agent in the physical world
(e.g. head directions) represented by the neurons. Neurons that represent similar states of the
agent in the physical world have strong connections. The network updates its firing rates by
the following ‘leaky-integrator’ dynamical equations. The continuously changing activation
hHD

i of each head direction cell i is governed by the equation

τ
dhHD

i (t)

dt
= −hHD

i (t) +
φ0

CHD

∑
j

(wRC
ij − wINH)rHD

j (t) + IV
i , (1)

where rHD
j is the firing rate of head direction cell j , wRC

ij is the excitatory (positive) synaptic
weight from head direction cell j to cell i, wINH is a global constant describing the effect of
inhibitory interneurons and τ is the time constant of the system. The term IV

i represents a
visual input to head direction cell i. In the light, each term IV

i is set to have a Gaussian response
profile. The Gaussian assumption is not crucial, but is convenient. It is known that the firing
rates of head direction cells in both rats (Taube et al 1996, Muller et al 1996) and macaques
(Robertson et al 1999) are approximately Gaussian. In this paper we do not present a theory
of how the visual inputs become connected to the head direction cells, but simply note that it
is a property of head direction cells that they respond in the way described to visual inputs.
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When the agent is in the dark, then the term IV
i is set to zero2. The firing rate rHD

i of cell i is
determined from the activation hHD

i and the sigmoid function

rHD
i (t) = 1

1 + e−2β(hHD
i (t)−α)

, (2)

where α and β are the sigmoid threshold and slope, respectively.
One way to set up the weights between the neurons in the continuous attractor network

is to use an associative (Hebb-like) synaptic modification rule. In relation to biology, the idea
here is that neurons close together in the state space (the space being represented) would tend
to be co-active due to the large width of the firing fields. This type of rule has been used
by for example Redish and Touretzky (1998). We describe this rule first, and then introduce
an associative synaptic modification rule with a short term memory trace which has some
advantages. The head direction cells are forced to respond during the initial learning phase
by visual cues in the environment, which effectively force each cell to be tuned to respond
best to a particular head direction, with less firing as the head direction moves away from the
preferred direction. The simple associative learning rule is that the weights wRC

ij from head
direction cell j with firing rate rHD

j to head direction cell i with firing rate rHD
i are updated

according to the following (Hebb-like) rule

δwRC
ij = krHD

i rHD
j (3)

where δwRC
ij is the change of synaptic weight and k is the learning rate constant.

This method works well with head direction cells that have Gaussian receptive fields which
overlap partly with each other. In the simulations to be described, during the learning phase
we set the firing rate rHD

i of each head direction cell i to be the following Gaussian function
of the displacement of the head from the preferred firing direction of the cell:

rHD
i = e−(sHD

i )2/2(σ HD)2
, (4)

where sHD
i is the difference between the actual head direction x (in degrees) of the agent and

the preferred head direction xi for head direction cell i, and σ HD is the standard deviation. sHD
i

is given by

sHD
i = MIN(|xi − x|, 360 − |xi − x|). (5)

To train the network, the agent is rotated through the full range of head directions, and at
each head direction the weights are updated by equation (3). This results in nearby cells in
head direction space, which need not be at all close to each other in the brain, developing
stronger synaptic connections than cells that are more distant in head direction space. In
fact, in the case described, the synaptic connections develop strengths which are almost, but
not exactly, a Gaussian function of the distance between the cells in head direction space, as
shown in figure 1 (left). Interestingly if a nonlinearity is introduced into the learning rule which
mimics the properties of NMDA receptors by allowing the synapses to modify only after strong
postsynaptic firing is present, then the synaptic strengths are still close to a Gaussian function
of the distance between the connected cells in head direction space (see figure 1) (left). We
show in simulations presented below that the network can support stable activity packets in
the absence of visual inputs after such training.

2 The scaling factor φ0/CHD controls the overall strength of the recurrent inputs to the continuous attractor network,
where φ0 is a constant and CHD is the number of synaptic connections received by each head direction cell from
other head direction cells. Scaling the recurrent inputs

∑
j (w

RC
ij − wINH)rHD

j (t) by (CHD)−1 ensures that the overall
magnitude of the recurrent input to each head direction cell remains approximately the same when the number of
recurrent connections received by each head direction cell is varied. For a fully recurrently connected continuous
attractor network, CHD is equal to the total number of head direction cells, NHD.
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Figure 1. Numerical results of the regular training of the one-dimensional continuous attractor
network of head direction cells with the Hebb rule equation (3) without weight normalization.
Left: the learned recurrent synaptic weights from head direction cell 50 to the other head direction
cells in the network arranged in head direction space, as follows. The first graph (solid curve)
shows the recurrent synaptic weights learned with the standard Hebb rule equation (3). The second
graph (dashed) shows a Gaussian curve fitted to the first graph; these two graphs are almost
coincident, although the weights are not strictly Gaussian. The third graph (dash–dot) shows the
recurrent synaptic weights learned with the standard Hebb rule equation (3), but with a nonlinearity
introduced into the learning rule which mimics the properties of NMDA receptors by allowing the
synapses to modify only after strong postsynaptic firing is present. Right: the stable firing rate
profiles forming an activity packet in the continuous attractor network during the testing phase in
the dark. The firing rates are shown after the network has been initially stimulated by visual input
to initialize an activity packet, and then allowed to settle to a stable activity profile in the dark.
The three graphs show the firing rates for low, intermediate and high values of the lateral inhibition
parameter wINH. For both left and right plots, the head direction cells are arranged according to
where they fire maximally in the head direction space of the agent when visual cues are available.

A new hypothesis is now proposed for how the appropriate synaptic weights could be
set up to deal with irregularities introduced into the synaptic weight connections by irregular
training or by randomly diluted connectivity of the synaptic weights (as is present in the
brain, Rolls and Treves (1998), Rolls and Deco (2002)). This hypothesis takes advantage of
temporal probability distributions of firing when they happen to reflect spatial proximity. If we
again consider the case of head direction cells, then the agent will necessarily move through
similar head directions before reaching quite different head directions, and so the temporal
proximity with which the cells fire can be used to set up the appropriate synaptic weights. The
learning rule to utilize such temporal properties is then a trace learning rule which strengthens
synaptic connections between neurons based on the temporal probability distribution of the
firing. There are many versions of such rules (Rolls and Milward 2000, Rolls and Stringer
2001), but a simple one which works adequately is

δwRC
ij = krHD

i rHD
j (6)

where δwRC
ij is the change of synaptic weight, and rHD is a local temporal average or trace

value of the firing rate of a head direction cell given by

rHD(t + δt) = (1 − η)rHD(t + δt) + ηrHD(t) (7)
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Table 1. Typical parameter values for models 1A and 1B.

σHD 20o

Learning rate k 0.01

Learning rate k̃ 0.01
Trace parameter η 0.9
τ 1.0
φ0 400
φ1 400
φ2 400
γ 0.5
αHIGH 0.0
αLOW −0.5
β 0.1

where η is a parameter set in the interval [0,1] which determines the contribution of the current
firing and the previous trace. For η = 0 the trace rule (6) becomes the standard Hebb rule (3),
while for η > 0 learning rule (6) operates to associate together patterns of activity that occur
close together in time. In the simulations described later, it is shown that the main advantage
of use of the trace rule (6) in the continuous attractor (with η > 0) is that it produces a broader
profile for the recurrent synaptic weights in the continuous attractor network than would be
obtained with the standard Hebb rule (3), and thus broader firing fields (compare figures 1
and 2). Use of the trace rule thus allows broadly tuned head direction cells to emerge (in the
light as well as in the dark) even if the visual cues used for initial training produce narrow
tuning fields. Use of this rule helps also in cases of diluted connectivity and irregular training,
as shown below in figure 3.

With irregular training, the magnitudes of the weights may also be uneven (as well as
unequal in opposite directions). To bound the synaptic weights, weight decay can be used in
the learning rule (Redish and Touretzky 1998, Zhang 1996). In the simulations described here
with irregular training (figures 3, 10 and 12), weight normalization was used3.

Simulations to demonstrate the efficacy of both learning procedures are now described4. In
the simulations, unless otherwise stated, there were 100 neurons in the fully connected network
(CHD = NHD = 100). (We did establish that similar results were obtained with different
numbers of neurons in the network.) Typical model parameters for the simulations performed
in this paper are given in table 1. Each head direction cell i was assigned a unique favoured head
direction xi from 0◦ to 360◦, at which the cell was stimulated maximally by the available visual

3 To implement weight normalization when it was used, after each time step of the learning phase, the recurrent
synaptic weights between neurons within the continuous attractor network were rescaled to ensure that for each head
direction cell i we have√∑

j

(wRC
ij )2 = 1, (8)

where the sum is over all head direction cells j . Such a renormalization process may be achieved in biological systems
through synaptic weight decay (Oja 1982, Rolls and Treves 1998). The renormalization (8) helps to ensure that the
learning rules are convergent in the sense that the recurrent synaptic weights between neurons within the continuous
attractor network settle down over time to steady values.
4 For the numerical integration of the differential equations (1) during the testing phase, we employ the ‘forward
Euler’ time-stepping scheme

hHD
i (t + δt) =

(
1 − δt

τ

)
hHD

i (t) +
δt

τ

φ0

CHD

∑
j

(wRC
ij − wINH)rHD

j (t) +
δt

τ
IV
i , (9)

where the time step δt is set sufficiently small to provide a good approximation of the continuous dynamics.
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cues during training5. We note that although a continuous attractor network is implemented by
the synaptic connection strengths, this does not imply that there has to be any regular, maplike,
topography in the physical arrangement of the neurons. During the testing phase, the dynamical
equations (1) and (2) were implemented with τ = 1 and φ0/CHD = 4. In addition, the lateral
inhibition constant, wINH, was set to half of the value of the maximum excitatory weight wRC

ij .
The results of regular training with the associative rule equation (3) are shown in figure 1.

During regular training of the weights (without weight normalization, and with k = 0.01),
the agent was rotated twice through all 100 head directions xi associated with the 100 head
direction cells (once clockwise, and once anticlockwise). In figure 1 (right) the firing rates of
the cells are shown when, after training, the network was activated by visual cues corresponding
to a head direction of 180◦. The visual cues were transiently applied for t = 0–25, and then the
network was allowed to settle. The stable firing rates that were reached are shown at t = 600
in the figure for three levels of the global inhibition. The values were wINH = 0.3, 0.4 and
0.5× the maximum value of the recurrent synaptic weights, as indicated. The weights that
were produced in the network are those illustrated in figure 1 (left).

The results of regular training with the trace associative rule equation (6) are shown in
figure 2 (without weight normalization, with η = 0.9 and with k = 0.01). The magnitudes
of the strengths of the connections from node (or neuron) 50 to the other neurons in the 100-
neuron continuous attractor model are shown. The weights are broader (and thus also is the
resulting width of the head direction cell tuning curve) than after training with the associative
rule equation (3). This is the main advantage of using the trace rule in the continuous attractor,
given that the tuning of head direction cells is broad (Taube et al 1996, Muller et al 1996,
Robertson et al 1999).

We also investigated the effects of training with a much less regular series of head directions
than used so far. In the irregular training procedure investigated, at every training step, a new
head direction was chosen relative to the current head direction from a normal distribution with
mean zero and standard deviation 90◦, and the agent stepped one node towards that direction
at every time step. This procedure was repeated for 1000 training steps. The effect of this
training on the recurrent weights, which initially had random values, is shown in figure 3.
The connection strengths from presynaptic node (or neuron) 50 to other nodes are shown. The
figure illustrates the effects of training with the trace rule equation (6) and η set to 0.9, and with
weight renormalization using equation (8). The figure shows that training with the trace rule (6)
combined with weight normalization (8) can lead over time to quite a smooth synaptic weight
profile within the continuous attractor network, which is approximately Gaussian in shape.
Furthermore, the weight profile obtained with the trace rule (6) is smoother than that obtained
with the standard Hebb rule (3). This improves the stability of the activity packet within the
continuous attractor network. However, the synaptic weights were insufficiently symmetrical
to produce a completely stable bubble of neuronal activity, and instead the activity packet
showed a slow drift as shown in figure 9 (left). As the system is expected to operate without
drift, in section 4 we investigate ways in which the activity packet of neuronal activity can
be stabilized in a continuous attractor network which does not have completely symmetrical
synaptic weights in both directions round or along the attractor.

The conclusion from this section is that we have shown two self-organizing learning
procedures that can set up the recurrent synaptic weights in a continuous attractor network
of head direction cells to produce a stable bubble of firing which is maintained by a memory
process when the visual cues are removed. (With the trace rule, care may be needed to allow

5 Of course, in real nervous systems the directions for which individual head direction cells fire maximally would be
randomly determined by processes of lateral inhibition and competition between neurons within the network of head
direction cells.
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Figure 2. Numerical results of the regular training of the one-dimensional continuous attractor
network of head direction cells with the trace rule (6) without weight normalization. The plot shows
the learned recurrent synaptic weights from head direction cell 50 to the other head direction cells in
the network, as follows. The first graph (solid curve) shows the recurrent synaptic weights learned
with the trace rule (6). The second graph (dashed) shows a Gaussian curve fitted to the first graph.
The third graph (dash–dot) shows the recurrent synaptic weights learned with the trace rule (6),
but with a nonlinearity introduced into the learning rule which mimics the properties of NMDA
receptors by allowing the synapses to modify only after strong postsynaptic firing is present. The
head direction cells are arranged in the graphs according to where they fire maximally in the head
direction space of the agent when visual cues are available.

Figure 3. Numerical results of the irregular training of the one-dimensional continuous attractor
network of head direction cells with the trace rule (6) and with weight normalization (8). The
training consists of 1000 training steps, where for each training step a new head direction is chosen
at random, and the agent is then rotated over a number of time steps to that new head direction with
learning updates performed at each time step. The plot shows the time evolution of the recurrent
synaptic weights from head direction cell 50 to the other head direction cells in the network. The
head direction cells are arranged in the plot according to where they fire maximally in the head
direction space of the agent when visual cues are available.

the trace value to build up from an initial value of zero during learning.) The trace rule can
help to form broader synaptic weight distributions (and thus broader activity packets), and can
operate well with irregular training.
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3. Continuous attractor models of head direction cells with idiothetic inputs: moving
the activity packet by using idiothetic inputs

A key property of head direction cells is their ability to maintain their responses and update
their firing based on motion cues when the animal is in complete darkness. One approach to
simulating the movement of an activity packet produced by idiothetic cues (which is a form of
path integration) is to employ a look-up table that stores for every possible head direction and
rotational velocity the corresponding new direction in space (Samsonovich and McNaughton
1997). Another approach involves modulating the recurrent synaptic weights between head
direction cells by idiothetic cues as suggested by Zhang (1996), though no possible biolog-
ical implementation was proposed of how the appropriate dynamic synaptic weight changes
might be achieved or how the connectivity could become self-organized. Another mecha-
nism (Skaggs et al 1995) relies on a set of cells, termed rotation cells, which are co-activated
by head direction cells and vestibular cells and drive the activity of the attractor network by
anatomically distinct connections for clockwise and anticlockwise rotation cells. However,
no proposal was made about how this could be achieved by a biologically plausible learning
process. In order to achieve biological plausibility, the appropriate synaptic connections need
to be self-organized by a learning process, and the aim of this section is to propose what the
appropriate connections might be, and how they could self-organize.

Path integration is the ability of a system to continuously track and faithfully represent
the time-varying head direction and position of a moving agent in the absence of visual
input, using idiothetic inputs. We now present a continuous attractor model of head direction
cells, model 1A, that is able to solve the problem of path integration in the dark through the
incorporation of idiothetic inputs from sets of clockwise and anticlockwise rotation cells, and
which develops its synaptic connectivity through self-organization. A closely related model,
model 1B, is described in section 5. Although described in the context of head direction cells,
the procedures are generic.

There is an initial learning phase with both visual and idiothetic inputs available. During
this phase, the visual and idiothetic inputs work together to guide the self-organization of the
network connectivity. An underlying assumption of the models is that, when visual cues are
available to the agent, the visual inputs dominate other excitatory inputs to the head direction
cells. In this case the head direction cells are stimulated by a particular arrangement of visual
features in the environment, and hence by particular head directions. After the learning phase,
the agent is then able to perform effective path integration in the absence of visual cues, with
only idiothetic inputs available. The model (1A) consists of a recurrent continuous attractor
network of head direction cells, which receives inputs from the visual system and from a pop-
ulation of head rotation cells. We denote the firing rate of each head rotation cell k by rROT

k .
The population of head rotation cells includes both clockwise and anticlockwise rotation cells,
which fire when the agent rotates either clockwise or anticlockwise respectively. The simplest
network involves only a single clockwise rotation cell with k = 1, and a single anticlockwise
rotation cell with k = 2. This is the network simulated below. The architecture of model 1A is
shown in figure 4. There are two types of modifiable synaptic connection: (i) purely recurrent
connections within the continuous attractor network of head direction cells, and (ii) idiothetic
inputs to the head direction cells from the head rotation cells. The firing rates of the rotation
cells are assumed to increase monotonically with the angular speed of the agent in the relevant
direction (clockwise or anticlockwise for different head rotation cells), as described later.

The hypothesis that underlies model 1A is that the rotation cell firing interacts in a mul-
tiplicative way with connections in the continuous attractor using sigma–pi neurons, in such
a way that clockwise rotation cells influence connections between neurons in the clockwise
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Figure 4. General network architecture for one-dimensional continuous attractor models of head
direction cells.

direction in the continuous attractor, and vice versa. Sigma–pi neurons sum the products of
the contributions from two or more sources (see Rolls and Deco (2002), Koch (1999), sec-
tion 21.1.1). A neural architecture that might implement such a system is shown in figure 5. In
this figure there is a single clockwise rotation cell with firing rate rROT

1 , and a single anticlock-
wise rotation cell with firing rate rROT

2 . In addition, the idiothetic synaptic weights from the
clockwise and anticlockwise rotation cells are denoted by wROT

ij1 and wROT
ij2 respectively. First,

the connections shown by solid lines are the recurrent connections already described for the con-
tinuous attractor that can maintain its packet of activity. Second, there are sigma–pi synapses
(or more accurately pi synapses) onto neurons in the continuous attractor which multiply to-
gether inputs from the rotation cells and from other head direction cells. Different head rotation
cells (indexed by k) could signal either clockwise or anticlockwise head rotation. The equations
that follow describe how the system operates dynamically. How the appropriate connection
strengths are learned is addressed in section 3.1. We note that the system could be realized in a
number of different ways. For example, the connections that implement the sigma–pi synapses
could also be used as the main recurrent connections in the continuous attractor. In this sce-
nario, the recurrent synaptic connections in the continuous attractor would operate as described
in section 2, but would have in addition a sigma–pi term that operates with respect to rotation
cell inputs. With this regime, the solid connections shown in figure 5 would not be needed.

More formally, for each idiothetic synapse on a head direction cell, the synaptic input is
generated by the product of the input from another cell in the continuous attractor, and the input
from a rotation cell. Such effects might be produced in neurons by presynaptic terminals (see
Koch 1999). The dynamical equation (1) governing the activations of the head direction cells
is now extended to include inputs from the rotation cells in the following way. For model 1A,
the activation of a head direction cell i is governed by the equation

τ
dhHD

i (t)

dt
= −hHD

i (t) +
φ0

CHD

∑
j

(wRC
ij − wINH)rHD

j (t) + IV
i +

φ1

CHD×ROT

∑
jk

wROT
ijk rHD

j rROT
k ,

(10)

where rHD
j is the firing rate of head direction cell j , rROT

k is the firing rate of rotation cell k and
wROT

ijk is the corresponding overall effective connection strength. The first term on the right of
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Figure 5. Recurrent and idiothetic synaptic connections to head direction cells in the sigma–pi
model 1A. In this figure there is a single clockwise rotation cell with firing rate rROT

1 , and a single
anticlockwise rotation cell with firing rate rROT

2 . In addition, the idiothetic synaptic weights from
the clockwise and anticlockwise rotation cells are denoted by wROT

ij1 and wROT
ij2 respectively.

equation (10) is a decay term, the second describes the effects of the recurrent connections in the
continuous attractor, the third is the visual input (if present) and the fourth represents the effects
of the idiothetic connections implemented by sigma–pi synapses6. (We note that φ1 would
need to be set in the brain to have a magnitude which allows the actual head rotation cell firing
to move the activity packet at the correct speed, and that this gain control has some similarity
to the type of gain control that the cerebellum is believed to implement for the vestibulo-ocular
reflex, see Rolls and Treves (1998).) Thus, there are two types of synaptic connection to head
direction cells: (i) recurrent synapses from head direction cells to other head direction cells
within the recurrent network, whose effective strength is governed by the terms wRC

ij , and (ii)
idiothetic sigma–pi synapses dependent upon the interaction between an input from another
head direction cell and a rotation cell, whose effective strength is governed by the terms wROT

ijk .
At each time step, once the head direction cell activations hHD

i have been updated, the head
direction cell firing rates rHD

i are calculated according to the sigmoid transfer function (2).
Therefore, the initial learning phase involves the setting up of the synaptic weights wRC

ij and
wROT

ijk .

6 The scaling factor φ1/CHD×ROT controls the overall strength of the idiothetic inputs from the rotation cells, where
φ1 is a constant, and the term CHD×ROT is defined as follows. CHD×ROT is the number of idiothetic connections
received by each head direction cell from couplings of individual head direction cells and rotation cells. Scaling the
idiothetic inputs

∑
jk wROT

ijk rHD
j rROT

k by the term (CHD×ROT)−1 ensures that the overall magnitude of the idiothetic
input to each head direction cell remains approximately the same as the number of idiothetic connections received by
each head direction cell is varied. For a fully connected network, CHD×ROT is equal to the number of head direction
cells, NHD, times the number of rotation cells, NROT.
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3.1. Self-organization by learning of synaptic connectivity from idiothetic inputs to the
continuous attractor network of head direction cells

In this section we describe how the connections from the idiothetic inputs to the head direction
cells can self-organize such that, after the initial learning phase, the idiothetic inputs can cor-
rectly shift activity packets from one location to another in the continuous attractor network of
head direction cells in the absence of visual cues. The problem to be solved is how, in the ab-
sence of visual cues, the clockwise vestibular inputs might move the activity packet in one direc-
tion, and by the correct amount, in the continuous attractor, and how the anticlockwise vestibu-
lar inputs might move the activity packet the correct amount in the opposite direction. We
know of no previous suggestions of how this could be achieved in a biologically plausible way.

The overall hypothesis of how this is achieved in the first model, 1A, is as follows. In the
learning phase, when the agent is turning clockwise, the firing of the clockwise rotation cells
(rROT

1 ) is high (see figure 5). The idiothetic sigma–pi connections (wROT
ij1 ) to the head direction

cells in the clockwise direction in the continuous attractor network are strengthened by an
associative learning rule that associates the product of the firing of the clockwise rotation cell
(rROT

1 ), and the trace (rHD
j ) of the recent activity of presynaptic head direction cells which is

accumulated in the idiothetic synaptic connection, with the current postsynaptic head direction
cell firing (rHD

i ). The trace enables the idiothetic synapses in the correct direction between
cells in the continuous attractor to be selected.

In the models presented here it is assumed that when visual cues are available during
the learning phase, the visual inputs to head direction cells dominate the other excitatory
inputs, and individual head direction cells fire according to the Gaussian response profile (4).
However, even with visual information available, the idiothetic inputs still have a critical role
to play in the setting up of the synaptic connections from the rotation cells to the continuous
attractor network. In models 1A and 1B, during the initial learning phase with visual input
available, the inputs from the visual and vestibular systems are able to work together to guide
the self-organization of the network synaptic connectivity using simple biologically plausible
learning rules. A common feature of both models 1A and 1B is their reliance on temporal
‘trace’ learning rules for the connections from the rotation cells, that utilize a form of temporal
average of recent cell activity. A key property of these types of learning rule is their ability to
build associations between different patterns of neural activities that tend to occur in temporal
proximity. In the models presented here, trace learning is able to associate, for example, the
co-firing of a set of rotation cells (which correspond to vestibular cells and have firing rates
that depend on head angular velocity) and an earlier activity pattern in the recurrent network
reflecting the previous head direction of the agent, with cells within the recurrent network
reflecting the current head direction of the agent.

During the initial learning phase, the response properties of the head direction and rotation
cells are set as follows. While the agent is rotated both clockwise and anticlockwise during
learning, the visual input drives the cells in the recurrent network of head direction cells as
described above. That is, as the head direction of the agent moves away from the preferred
direction for the cell, the firing rate rHD

i of cell i is set according to the Gaussian profile (4).
While the agent is undergoing rotation, the rotation cells fire according to whether the agent is
rotating in the appropriate direction, and with a firing rate that increases monotonically with
respect to speed of rotation. Specifically, in the simulations performed later the firing rates of
the rotation cells are set in the following simple manner. During the learning phase the agent
is rotated alternately in clockwise and anticlockwise directions at a constant speed. Therefore,
during this phase we set rROT

1 to 1 when the agent is rotating in the clockwise direction,
and 0 otherwise. Similarly, we set rROT

2 to 1 when the agent is rotating in the anticlockwise
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direction, and 0 otherwise. Then, during the subsequent testing phase, the firing rates of the
rotation cells rROT

1 and rROT
2 are varied to simulate different rotation speeds of the agent, and

hence produce different translation speeds of the activity packet within the continuous attractor
network of head direction cells.

For model 1A, the initial learning phase involves the setting up of the synaptic weights
wROT

ijk . At the start of the learning phase the synaptic weights wROT
ijk may be initialized to either

zero or some random positive values. Next, the learning phase proceeds with the agent rotating
in the light, with the firing rates of the head direction and rotation cells set as described above,
with the synaptic weights wROT

ijk updated at each time step according to

δwROT
ijk = k̃rHD

i rHD
j rROT

k (11)

where δwROT
ijk are the changes in the synaptic weights, and where rHD

i is the instantaneous

firing rate of the postsynaptic head direction cell i, rHD
j is the trace value of the presynaptic

head direction cell j given by equation (7), rROT
k is the firing rate of rotation cell k and k̃ is

the learning rate associated with this type of synaptic connection. The essence of this learning
process is that when the activity packet has moved, say, in a clockwise direction in the recurrent
attractor network of head direction cells, the trace term ‘remembers’ the direction in which
the head direction cells have been activated, and the result of rHD

i rHD
j is used in combination

with the firing rROT
1 of the clockwise rotation cell to modify the synaptic weights wROT

ij1 . This
should typically lead to one of the two types of weight wROT

ij1 or wROT
ij2 becoming significantly

larger than the other for any particular pair of head direction cells i and j . For example, if
we consider two head direction cells i and j that fire maximally for similar head directions,
then during the learning phase cell i may often fire a short time after cell j depending on
which direction the agent is rotating in as it passes through the head direction associated with
head direction cell j . In this situation the effect of the above learning rule would be to ensure
that the size of the weights wROT

ij1 and wROT
ij2 for the connection i, j would be largest in the

rotational direction (clockwise or anticlockwise) in which cell i is a short distance from cell j .
The effect of the above learning rule for the synaptic weights wROT

ij1 and wROT
ij2 is to generate a

synaptic connectivity such that the firing of one of the two classes of rotation cells (clockwise
or anticlockwise) should increase the activations hHD

i of head direction cells i, where neurons i

represent head directions that are a small rotation in the appropriate clockwise or anticlockwise
direction from that represented by currently active neurons j . Thus, the co-firing of a particular
type of rotation cell (clockwise or anticlockwise) and set of head direction cells representing a
particular head direction, should stimulate the firing of further head direction cells such that the
pattern of activity within the network of head direction cells evolves continuously to faithfully
reflect and track the changing state of the agent7.

3.1.1. Simulation results demonstrating self-organization of idiothetic inputs to head direction
cells in continuous attractor network. The results of the simulation of model 1A with

7 In order to achieve a convergent learning scheme for model 1A, after each time step the idiothetic synaptic weights
wROT

ijk may be renormalized by ensuring that for each head direction cell i we have

√∑
j

(wROT
ijk )2 = 1, (12)

where such a renormalization is performed separately for each rotation cell k. The effect of such a renormalization
procedure is to ensure that the learning rules are convergent in the sense that the synaptic weights wROT

ijk settle to steady
values over time.
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Figure 6. Numerical results for model 1A with sigma–pi neurons after regular training with the
Hebb rule (3) for the recurrent connections within the continuous attractor, trace rule (11) for the
idiothetic connections and without weight normalization. The plot shows the shift in the activity
packet in the continuous attractor network of head direction cells as the agent rotates clockwise
and anticlockwise in the dark. The shift is effected by idiothetic inputs to the continuous attractor
network from the clockwise and anticlockwise rotation cells. The plot shows the firing rates in
the continuous attractor network of head direction cells through time, with the head direction cells
arranged in the plot according to where they fire maximally in the head direction space of the agent
when visual cues are available.

sigma–pi neurons are shown in figures 6–88. (The regular learning regime was used with the
associative learning rule equation (3), and the weights were not normalized.) Figure 6 shows
the head direction represented in the continuous attractor network in response to rotation cell
inputs from the vestibular system. That is, the results shown are for idiothetic inputs in the
absence of visual cues. The activity packet was initialized as described previously to a head
direction of 75◦, and the packet was allowed to settle without visual input. For t = 0–100
there was no rotation cell input, and the activity packet in the continuous attractor remained
stable at 75◦. For t = 100–300 the clockwise rotation cells were active with a firing rate
of 0.15 to represent a moderate angular velocity, and the activity packet moved clockwise. For
t = 300–400 there was no rotation cell firing, and the activity packet immediately stopped, and
remained still. For t = 400–500 the anticlockwise rotation cells had a high firing rate of 0.3 to
represent a high velocity, and the activity packet moved anticlockwise with a greater velocity.
For t = 500–600 there was no rotation cell firing, and the activity packet immediately stopped.

8 For the numerical integration of the differential equations (10) of model 1A we employ the ‘forward Euler’ time-
stepping scheme

hHD
i (t + δt) =

(
1 − δt

τ

)
hHD

i (t) +
δt

τ

φ0

CHD

∑
j

(wRC
ij − wINH)rHD

j (t) +
δt

τ
IV
i

+
δt

τ

φ1

CHD×ROT

∑
jk

wROT
ijk rHD

j rROT
k , (13)

where the time step δt is set sufficiently small to provide a good approximation of the continuous dynamics. Similarly,
for the numerical integration of the differential equations (18) of model 1B, we employ the time-stepping scheme

hHD
i (t + δt) =

(
1 − δt

τ

)
hHD

i (t) +
δt

τ

φ0

CHD

∑
j

(w̃RC
ij − wINH)rHD

j (t) +
δt

τ
IV
i . (14)
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Figure 7. Numerical results for models 1A and 1B after regular training with the Hebb rule (3) for
the recurrent connections in the continuous attractor, trace rule (11) for the idiothetic connections
and without weight normalization. The plot shows the speed of the activity packet in the continuous
attractor network of head direction cells for different strengths of the idiothetic input rROT

2 , the firing
rate of the anticlockwise rotation cell. The speed plotted is the rate of change of the position (in
degrees) of the activity packet in the head direction space of the agent with time. The first graph
is for model 1A with sigma–pi neurons, and the second graph is for model 1B which relies on
modulation of the recurrent weights within the continuous attractor network.

Figure 7 shows that the velocity of the head direction cell activity packet is a nearly linear
function of the rotation cell firing, at least within the region shown. Separate curves are shown
for the sigma–pi model (1A) and the synaptic modulation model (1B). The results shown in
this figure show that the rate of change (velocity) of the represented head direction in the
continuous attractor generalizes well to velocities at which the system was not trained. The
results show that both models 1A and 1B operate as expected.

Figure 8 shows the synaptic weights from the clockwise and anticlockwise rotation cells
to the continuous attractor nodes in model 1A. The left graph is for the connections from the
pairing of the anticlockwise rotation cell and head direction node 50 to the other head direction
cells i in the network, that is wROT

i,50,2. The right graph is for the connections from the pairing
of the clockwise rotation cell and head direction node 50 to the other head direction cells i

in the network, that is wROT
i,50,1. The graphs show that, per hypothesem, the connections from

the anticlockwise rotation cell have self-organized in such a way that they influence more the
head direction cells in the anticlockwise direction, as shown by the offset of the graph from
node 50. In model 1B, the learned modulation factors λROT

ijk are identical to the corresponding
weights wROT

ijk learned in the sigma–pi model.
Figures 6–8 thus show that self-organization by learning in the ways proposed in models 1A

and 1B does produce the correct synaptic connections to enable idiothetic inputs from for
example head rotation cell firing to correctly move the activity packet in the continuous attractor.
The correct connections are learned during a period of training in the light, when both visual
and idiothetic inputs are present. Thus the two new models proposed in this paper provide
plausible models for how path integration could be learned in the brain.
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Figure 8. Numerical results for model 1A with sigma–pi neurons after regular training with the
Hebb rule (3) for the recurrent connections within the continuous attractor, trace rule (11) for the
idiothetic connections and without weight normalization. The plot shows the learned idiothetic
synaptic weights from the clockwise and anticlockwise rotation cells to the continuous attractor
network of head direction cells. The first graph shows the learned idiothetic synaptic weights
wROT

i,50,1 from the coupling of the clockwise rotation cell and head direction cell 50, to the other head
direction cells i in the network. The second graph shows the learned idiothetic synaptic weights
wROT

i,50,2 from the coupling of the anticlockwise rotation cell and head direction cell 50, to the other
head direction cells i in the network. The head direction cells are arranged in the graphs according
to where they fire maximally in the head direction space of the agent when visual cues are available.

4. Stabilization of the activity packet within the continuous attractor network when the
agent is stationary

With irregular learning conditions (in which identical training with high precision of every
node cannot be guaranteed), the recurrent synaptic weights between nodes in the continuous
attractor will not be of the perfectly regular form normally required in a CANN. This can lead
to drift of the activity packet within the continuous attractor network of head direction cells
when no visual cues are present, even when the agent is not moving. This is evident in figure 9.
In this section we discuss two alternative approaches to stabilizing the activity packet when it
should not be drifting in real nervous systems.

A first way in which the activity packet may be stabilized within the continuous attractor
network of head direction cells when the agent is stationary is by enhancing the firing of those
cells that are already firing. In biological systems this may be achieved through mechanisms
for short term synaptic enhancement (Koch 1999). Another way is to take advantage of the
nonlinearity of the activation function of neurons with NMDA receptors, which only contribute
to neuronal firing once the neuron is sufficiently depolarized (Wang 1999). The effect is to
enhance the firing of neurons that are already reasonably well activated. The effect has been
utilized in a model of a network with recurrent excitatory synapses which can maintain active an
arbitrary set of neurons that are initially sufficiently strongly activated by an external stimulus
(see Lisman et al (1998), but see also Kesner and Rolls (2001)). In the head direction cell
models, we simulate such biophysical processes by adjusting the sigmoid threshold αi for
each head direction cell i as follows. If the head direction cell firing rate rHD

i is lower than
a threshold value, γ , then the sigmoid threshold αi is set to a relatively high value αHIGH.
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Figure 9. Left: numerical results for model 1A with the irregular learning regime using the
trace rule (6) for the recurrent connections within the continuous attractor, trace rule (11) for
the idiothetic connections and with the weight normalization (8) and (12). The simulation was
performed without enhancement of firing of head direction cells that are already highly activated
according to equation (15). This plot is similar to figure 6, where the shift in the activity packet
in the continuous attractor network of head direction cells is shown as the agent rotates clockwise
and anticlockwise in the dark. The shift is effected by idiothetic inputs to the continuous attractor
network from the clockwise and anticlockwise rotation cells. The plot shows the firing rates in
the continuous attractor network of head direction cells through time, with the head direction cells
arranged in the plot according to where they fire maximally in the head direction space of the agent
when visual cues are available. The simulation was performed without NMDA-like nonlinearity
in the neuronal activation function, and some drift of the activity packet when it should be stable is
evident. Right: a similar simulation to that shown on the left, except that it was with enhancement
of firing of head direction cells that are already highly activated according to equation (15). No
drift of the activity packet was present when it should be stationary.

Otherwise, if the head direction cell firing rate rHD
i is greater than or equal to the threshold

value, γ , then the sigmoid threshold αi is set to a relatively low value αLOW. This is achieved
in the numerical simulations by resetting the sigmoid threshold αi at each time step depending
on the firing rate of head direction cell i at the previous time step. That is, at each time step
t + δt we set

αi =
{

αHIGH if rHD
i (t) < γ

αLOW if rHD
i (t) � γ

(15)

where γ is a firing rate threshold. The sigmoid slopes were set to a constant value, β, for all
cells i. This procedure has the effect of enhancing the current position of the activity packet
within the continuous attractor network, and so prevents the activity packet drifting erratically
due to the noise in the recurrent synaptic weights, as illustrated in figure 9 (left). The effect
can also be seen in the threshold nonlinearity introduced into the relation between the velocity
of the activity packet and the idiothetic input signal (figure 10).

The effects of using the additional nonlinearity in the activation function of the neurons in
the continuous attractor models 1A and 1B is illustrated in figures 9 and 10. For the simulations
shown in figure 9, irregular learning was used with the trace rule equation (6) with η = 0.9,
and with weight normalization. Figure 9 (left) shows the results when running without the
NMDA nonlinearity (i.e. with αHIGH = αLOW = 0), and figure 9 (right) shows the results with
the NMDA nonlinearity for which γ was 0.5, αHIGH was 0.0 and αLOW was −5.0. In figure 9
(left) the activity packet was initialized as described previously to a head direction of 108◦, and
the packet was allowed to settle without visual input. For t = 0–100 there was no rotation cell
input, and the activity packet in the continuous attractor showed some drift. For t = 100–300
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Figure 10. Numerical results for models 1A and 1B with the regular learning regime using the
Hebb rule (3) for the recurrent connections within the continuous attractor, trace rule (11) for
the idiothetic connections and without weight normalization. The plot shows the speed of the
activity packet in the continuous attractor network of head direction cells for different strengths
of the idiothetic input rROT

2 , the firing rate of the anticlockwise rotation cell. This plot is similar
to figure 7, except that in the simulations the firing of head direction cells that are already highly
activated is enhanced according to equation (15). The speed plotted is the rate of change of the
position (in degrees) of the activity packet in the head direction space of the agent with time. The
first graph is for model 1A with sigma–pi neurons, and the second graph is for model 1B which
relies on modulation of the recurrent weights within the continuous attractor network.

the clockwise rotation cells were active with a firing rate of 0.095 to represent a moderate
angular velocity, and the activity packet moved clockwise. For t = 300–400 there was no
rotation cell firing, and the activity packet showed some drift. For t = 400–500 the anticlock-
wise rotation cells had a firing rate of 0.08, and the activity packet moved anticlockwise. For
t = 500–600 there was no rotation cell firing, and the activity packet showed a little drift. In
figure 9 (right) it is shown that the drift is eliminated when the NMDA nonlinearity is used,
while the effects of the rotation cell firing still operate. (The testing conditions used for the
right part of the figure were the same as those on the left, except that the clockwise firing rate
was 0.135 and the anticlockwise firing rate was 0.16.) When we inspect figure 10 we see that
a threshold nonlinearity is introduced into the relation between the velocity with which the ac-
tivity packet moves along the continuous attractor, and the rotation cell firing rate (cf figure 7).
The nonlinearity reflects the fact that the head direction cell firing tends to be maintained in a
fixed population of continuous attractor neurons by their nonlinear activation function.

An advantage of using the nonlinearity in the activation function of a neuron (produced for
example by the operation of NMDA receptors) is that this tends to enable packets of activity
to be kept active without drift even when the packet is not in one of the energy minima that
can result from irregular learning (or from diluted connectivity in the continuous attractor as
described below). This is illustrated by the fact that after the irregular learning regime described
above, there tends to be a small number of stable locations for the continuous attractor activity
packet, as shown in figure 11 (left). When the NMDA nonlinearity is used with the parameters
described above, we see from figure 11 (right) that the number of stable states in the continuous
attractor is higher. Thus, use of this nonlinearity increases the number of locations in the
continuous physical state space at which a stable activity packet can be maintained.
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Figure 11. Numerical results for model 1A with the irregular learning regime using the trace
rule (6) for the recurrent connections within the continuous attractor, trace rule (11) for the idiothetic
connections and with the weight normalization (8) and (12). The plot shows the drift of the activity
packet within the continuous attractor network of head direction cells when the visual input is
removed, and the agent itself remains stationary (i.e. not rotating). Both left and right plots show
many time courses of the position of the activity packet within the continuous attractor network
in the head direction space of the agent for different initial locations. The left plot shows results
without enhancement of the firing of head direction cells that are already highly active, while the
right plot shows results with enhancement of the firing of head direction cells that are already highly
active according to equation (15).

Figure 12. Effects of undertraining. Left: a sigma–pi network (model 1A) with 100 recurrent
connections per neuron in the fully connected continuous attractor (CHD = 100) was trained with
ten different equispaced head directions. The simulations were run without the NMDA nonlinearity
in the activation functions in the neurons of the continuous attractor. It was found that the network
settled into the correct head direction state from among the ten head direction states originally trained
when stimulated (from time t = 0–50) with a visual input corresponding to any head direction.
Right: a similar experiment, but with 10% connectivity in the continuous attractor network with
100 recurrent connections per neuron. A number of stable states were found, although there were
fewer than the number trained.

A second way in which real nervous systems might overcome the drift that may be produced
in continuous attractor networks by irregular learning, or by diluted connectivity in the recurrent
attractor connections (which might make the recurrent connections in different directions from
a given neuron asymmetric thus leading to drift), is by using training for only a limited number
of locations in the state space. One way to introduce the concept is to recall that the number
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of stable states that can be trained in a discrete attractor (with fully distributed random binary
patterns) is 0.14C where C is the number of recurrent synapses onto each neuron (Hopfield
1982). With sparse patterns, the capacity is

p ≈ C

a ln(1/a)
k (16)

where k is a factor that is roughly of the order of 0.2–0.3 and depends weakly on the detailed
structure of the firing rate distribution, on the connectivity pattern etc, and where a is the
sparseness defined by

a = (
∑

i ri/N)2∑
i (r

2
i /N)

(17)

where ri is the firing rate of the ith neuron in a set of N neurons (Treves and Rolls 1991).
If discrete attractor networks are trained with more patterns than set by this critical capacity,
then the system will undergo a phase transition and become disordered (i.e. it will be in a spin-
glass phase), and will not operate correctly (Hopfield 1982). The concept we propose now
for continuous attractors is to train the continuous attractor recurrent network with a limited
number of Gaussian patterns which will not exceed some critical capacity (see Battaglia and
Treves (1998)). The resulting system should support an activity packet that moves correctly
in the state space when pushed by the idiothetic inputs, while at the same time having a fixed
number of stable states which will prevent the system from drifting when there are no visual
or idiothetic inputs. Effectively the energy distribution will have minima, but there is still a
continuous mapping from the state of the continuous attractor to the state space of the agent.
We name these systems semi-continuous attractor neural networks (S-CANNs), noting that
there is continuity in the underlying representation, and at the same time a discrete number of
stable states.

We note that for the neuronal activity packets used in the simulations, the sparseness was
approximately 0.3, leading to an estimated number of stable states of the semi-continuous
attractor a little above the 0.14C expected for a sparseness of 0.5. Given that typical cortical
cells might receive 3000–5000 recurrent collateral synapses (see Rolls and Treves (1998),
ch 10), the number of such stable states might be in the order of 1000 in the brain. If head
directions were to be maintained with a resolution of for example 3◦, then only 120 discrete
stable states might be necessary.

We tested this concept by running the self-organizing training procedure on the sigma–pi
network (model 1A) with 100 connections per neuron (CHD = 100) and different extents
of diluted connectivity down to 10% connectivity. A difference to the training regime used
previously is that to ensure that the capacity of a recurrent network operating with discrete
attractor states was not exceeded, the number of different head directions in which the network
was trained was reduced to ten (so that the loading of the network, defined as α = p/CHD where
p is the number of patterns that can be retrieved, was 0.1). Moreover, to ensure that stability
was not produced by other means, the simulations were run without the NMDA nonlinearity
in the activation functions in the neurons of the continuous attractor. It was found that the
network settled into the correct head direction state from among the ten head direction states
originally trained when stimulated with a visual input corresponding to any head direction
(figure 12, left). (A correct state for the network to settle into was taken as one in which the
maximum value of the activity packet was closer to the correct trained head direction than to
any other trained head direction.) It was also found that this type of training could make the
activity packet in the continuous attractor stable in a reasonable number of the trained locations
even when the continuous attractor had diluted connectivity (figure 12, right), although with
the diluted connectivity there appeared to be fewer than the trained number of stable states.
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Figure 13. Recurrent and idiothetic synaptic connections to head direction cells in the synaptic
modulation model 1B.

5. Model 1B

In model 1A described above, there were two separate sets of synapses: the recurrent synapses
wRC

ij between the head direction cells in the continuous attractor network, and the idiothetic
synapses wROT

ijk from the head rotation cells to the head direction cells. These two sets of
synapses operated in a completely independent manner. However, an alternative way of
formulating the mechanism is have the firing rates of rotation cells modulate the strength
of the recurrent connections between the cells within the continuous attractor network. More
specifically, in model 1B, rotation cell firing modulates in a multiplicative way the strength of
the recurrent connections in the continuous attractor in such a way that clockwise rotation cells
modulate the strength of the synaptic connections in the clockwise direction in the continuous
attractor. In a similar way, anticlockwise rotation cells modulate the connections between cells
in the anticlockwise direction in the continuous attractor. The appropriate connection strengths
can be learned in the same way as in the implementation above. Figure 13 shows a possible
neural implementation, where the modulation factors λROT from the rotation cells represent the
modulatory influences that the rotation cells exert on the recurrent synapses. The concept of
synaptic modulation was used by Zhang (1996), though no possible biological implementation
was proposed of how the appropriate dynamic synaptic weight changes might be achieved.

More formally, for model 1B, the dynamical equation (1) governing the activations of the
head direction cells is now extended to include inputs from the rotation cells in the following
way. The activation of a head direction cell i is governed by the equation

τ
dhHD

i (t)

dt
= −hHD

i (t) +
φ0

CHD

∑
j

(w̃RC
ij − wINH)rHD

j (t) + IV
i , (18)

where rHD
j is the firing rate of head direction cell j , and where w̃RC

ij is the modulated strength
of the synapse (effective weighting function) from head direction cell j to head direction cell i.
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The modulated synaptic weight w̃RC
ij is given by

w̃RC
ij = wRC

ij

(
1 + φ2

∑
k

λROT
ijk rROT

k

)
(19)

where rROT
k is the firing rate of rotation cell k, and λROT

ijk is the corresponding modulation factor.
In addition, the parameter φ2 governs the overall strength of the idiothetic inputs. Thus, there
are two types of synaptic connection to head direction cells: (i) recurrent connections from
head direction cells to other head direction cells within the recurrent network, whose strength
is governed by the terms w̃RC

ij , and (ii) idiothetic connections from rotation cells to the head
direction cell network, which now have a modulating effect on the synapses between the
head direction cells, and whose strength is governed by the modulation factors λROT

ijk . As for
model 1A, once the head direction cell activations hHD

i have been updated at the current time
step, the head direction cell firing rates rHD

i are calculated according to the sigmoid transfer
function (2).

The initial learning phase involves the setting up of the synaptic weights wRC
ij and the

modulation factors λROT
ijk . The recurrent synaptic weights wRC

ij and the modulation factors λROT
ijk

are set up during an initial learning phase similar to that described for model 1A above, where
the recurrent synaptic weights wRC

ij are updated according to equation (3), and the modulation
factors λROT

ijk are updated according to

δλROT
ijk = k̃rHD

i rHD
j rROT

k (20)

where δλROT
ijk are the changes in the modulation factors, and where rHD

i is the instantaneous

firing rate of the postsynaptic head direction cell i, rHD
j is the trace value of the presynaptic

head direction cell j given by equation (7), rROT
k is the firing rate of rotation cell k and k̃ is the

learning rate associated with this type of synaptic connection.
We note that models 1A and 1B are closely related. Indeed, for the special case

wROT
ijk = wRC

ij λROT
ijk , the two models become mathematically identical (except for constants).

However, with the learning regime used, this is not the case, and the general relation is as
follows. If model 1A is expressed in a similar form to model 1B, equation (18) of model 1B
applies to both models, and equation (19) of model 1B becomes for model 1A

w̃RC
ij = wRC

ij + φ1

∑
k

wROT
ijk rROT

k . (21)

6. Discussion

In this paper we first demonstrated that continuous attractor networks can be trained by
associative learning rules (equations (3) and (6)) which learn the correct recurrent connections
based on the overlap of the firing fields of neurons. We also showed that the resulting activity
packets were stable (in that they did not drift when the network maintained its activity without
the initiating input stimulus) if all locations in the state space were trained, or more generally,
if the training was sufficiently regular. We went on to show that the activity packet will not
generally be stable (without drift) if the continuous attractor has diluted connectivity, or if
irregular training is used. We then proposed two methods for maintaining the stability of the
activity packet under these conditions, involving nonlinearity in the activation function of the
neurons, and training at only a limited number of locations in the state space of the agent. The
two methods are discussed below.

We also proposed and tested two methods for training the system to use idiothetic (self-
motion) inputs to move the activity packets in the continuous attractor correctly. The methods
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are generic, and the particular case simulated as an example was how rotation cell firing might
move the activity packet in a continuous attractor network representing head direction. Our
aim was to produce methods that would show how the appropriate connections might self-
organize. We sought also to discover methods that used local learning rules for the synaptic
modification, because local learning rules are more biologically plausible than alternatives. (A
local synaptic learning rule is one in which the information to modify the synapse is available
in the pre-synaptic and post-synaptic elements, and does not need to be transported in from
elsewhere, see Rolls and Treves (1998)). We discovered two such methods for enabling
the appropriate connections to self-organize, described in this paper as models 1A and 1B.
Model 1A used sigma–pi neurons and the architecture shown in figure 5. Model 1B used
the concept of modulation of synaptic strengths in the appropriate direction in the continuous
attractor network depending on the direction of rotation as suggested by Zhang (1996), but
actually provided suggestions about how this might be achieved, and a demonstration that the
model (1B) worked. Both models made novel use of a trace synaptic modification rule to
enable the recent change of the head direction being represented in the continuous attractor to
be correctly associated with the current idiothetic rotation signal.

The actual biophysical mechanisms that are needed to implement the self-organization by
learning of the idiothetic connections in both models must, necessarily given the computational
structure of the problem to be solved, include three terms. In the models these terms
are the idiothetic cell firing, and two signals in the head direction continuous attractor
network to specify the direction of change of the activity packet representing the current head
direction. In both models the multiplicative interactions required, namely sigma–pi operation
or synaptic strength modulation, could be performed by presynaptic contacts. However,
multiplicative interactions of the type needed in these models might be achieved in a number
of other biophysically plausible ways described by Koch (1999, section 21.1.1) and Jonas and
Kaczmarek (1999).

The models described in this paper show how path integration could be achieved in a
system that self-organizes by associative learning. The path integration is performed in the
sense that the representation in a continuous attractor network of the current location of the
agent in the state space can be continuously updated based on idiothetic (self-motion) cues,
in the absence of visual inputs. The path integration described in this paper refers to updating
the representation of head direction using head rotation velocity inputs, and is extended by
Stringer et al (2002) to an agent performing path integration in a two-dimensional space (such
as the floor of a room, or open terrain) based on idiothetic inputs from head direction cell firing
and from linear whole body velocity cues. We note that whole body motion cells are present
in the primate hippocampus (O’Mara et al 1994) and that head direction cells are present in
the primate presubiculum (Robertson et al 1999).

Previous models of path integration suffer from the problem that they tend to operate
as look-up tables, with no suggested process by which the required connections might be
formed. For example, a continuous attractor network of head direction cells might have its
pattern of firing rates updated by two sets of idiothetic inputs conveying information about
the agent rotating either clockwise or anticlockwise. However, a hard-wired model of this
process must effectively rely on a form of ‘look-up’ table to be able to move the activity
packet in the correct way, so as to properly track and represent the state of the agent. That is,
with the continuous attractor network in a particular state, and with incoming idiothetic inputs
representing, say, a rotation or translation, which new cluster of neurons is to be activated in
the attractor network is determined through a pre-set matrix that encodes which neurons in
the attractor network are stimulated given the current state of the attractor network and the
idiothetic inputs. In Samsonovich and McNaughton (1997), this look-up table takes the form
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of an intermediate layer of neurons, with pre-set synaptic connections such that an incoming
combination of signals from the continuous attractor and the idiothetic input fires a set of cells in
the intermediate layer that will in turn stimulate the appropriate cells in the continuous attractor
network such that the new attractor state properly reflects the agent’s new state. However, the
apparent absence of any spatial regularity in the cell response properties of the continuous
attractor networks makes such innate hard-wiring unlikely. This is because the ‘look-up’ table
instantiated by the intermediate layer of neurons must give an output that is consistent in the
following sense. Consider a continuous attractor network of head direction cells. If a 30◦

clockwise rotation shifts the attractor network from state S1 to state S2, and if a further 40◦

clockwise rotation shifts the attractor network from state S2 to state S3, then a 70◦ clockwise
rotation should be able to shift the network from state S1 to state S3. This form of consistency
places severe constraints on the synaptic weights to and from the intermediate layer, and it is
not clear how an innate connectivity could be hard-wired that met these constraints, especially
without some form of spatial organization of response properties in the continuous attractor
network. In addition, if the cell response properties of the continuous attractor network do need
to develop through learning and self-organization as suggested above, then this might create
further difficulties for such a hard-wired ‘look-up’ table instantiated in an intermediate layer.
Hence, such a hard-wired ‘look-up’ table mechanism for moving the localized activity packet
within the continuous attractor networks appears unlikely, and a more biologically plausible
mechanism for idiothetic updating of the continuous attractor network may need to develop
through learning and self-organization. Two such models have been described in this paper.

The networks described in this paper were able to maintain a stable activity packet if the
recurrent weight profiles were identical for each node in the continuous attractor network,
were symmetrical in the two directions round the continuous attractor and if nearby nodes
were more strongly coupled than more distant nodes. This could be achieved by using an
associative learning rule to link nodes with overlapping Gaussian firing rate profiles, complete
connectivity in the continuous attractor and regular training. If the recurrent connectivity
between the neurons in the continuous attractor network was incomplete, or if there was some
irregularity in the training regime, then the activity packet tested without visual input drifted.
Two ways to overcome the drift were found. One was to use supra-linearity in the neuronal
activation function, to encourage neurons already firing to keep firing. Such a function might be
implemented by NMDA receptors (Wang 1999). The second way was to train the network at a
limited number of locations in the state space. We conjecture that the number of locations must
not exceed what would be the capacity of the networks when operating as discrete attractors.
Provided that the recurrent weights between neurons in the continuous attractor are still a
simple function of the physical distance to be represented in the environment, the network
can still represent continuous space, though in a semi-continuous way. The stability in this
scenario is achieved by virtue of the fact that there are effectively discrete energy minima in
the semi-continuous energy landscape. Of course, care must be taken not to overtrain these
semi-continuous attractor networks with too many locations, or they will enter a disorganized,
spin-glass phase (Amit 1989). Prevention of overtraining in the natural world might be assisted
by only learning when new or salient visual inputs produced by new places or views that would
fire head direction cells are encountered.

An interesting aspect of the operation of continuous attractors with diluted connectivity
trained in only a limited number of locations in the state space is that the exact node on
which the activity packet is centred is close to one of the training nodes, but that the number
of such stable locations in the state space increases approximately as one would expect the
capacity of a discrete attractor network to increase. We postulate that this is because the diluted
connectivity produces minima in the energy landscape superimposed on the minima introduced
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by the limited training, and that these energy minima support stable firing provided that the
critical capacity of the network operating as a discrete attractor is not exceeded.

The model makes a number of predictions, which can in principle be tested experimentally.
One prediction is that for the idiothetic learning rule equation (11) to operate correctly using
its temporal trace, the presynaptic term rHD

j must precede or reflect the history before the
post-synaptic term becomes active. This requirement of the model appears to be supported
(see Abbott and Nelson 2000). Another prediction is that the idiothetic inputs (in the case
considered in this paper, from head rotation cells) need to operate with nonlinearity of the type
specified by sigma–pi neurons. In this context, we remark that very few idiothetic sigma–
pi synapses would suffice to implement the mechanism for path integration described in this
paper. The reason for this is that the introduction of any asymmetry into the continuous attractor
functional connectivity will suffice to move the activity packet. The prediction is thus made
that the connectivity of the idiothetic inputs could be quite sparse in brain systems that perform
path integration.
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