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Abstract— Many spiking neuron models have been proposed
over the last decades with varying computational complexity and
abstraction from biological neurons. Among the few studiesthat
have compared spiking models, little emphasis has been given to
the formal description of calibration methods in tuning model
parameters. We give an example of calibrating a leaky integrate-
and-fire neuron with the first-spike time of a Hodgkin-Huxley
neuron. We further demonstrate how model parameters can be
tuned to minimize subthreshold differences in membrane po-
tential. This example emphasizes the dependencies of calibration
methods on other experimental parameters, complicating detailed
comparisons of spiking models.

I. I NTRODUCTION

Models of spiking neurons are increasingly important to
the investigation of spike-time dependent brain mechanisms
and the dynamics of cell assemblies. Many spiking models
have been proposed, and Izhikevich [1] has recently provided
a summary and discussion of a number of these model
neurons. Most network investigations use leaky integrate-and-
fire (LIF) neurons [2], [3], but little emphasis has been given
to their relation to conductance-based models. While many
investigations are not crucially dependent on the choice of
neuron model, the response of LIF and Hodgkin-Huxley (HH)
nodes to stochastic input has been shown to differ [4], and
divergent network behaviour has also been mentioned [5].

We investigate sub-threshold differences between standard
HH and LIF models. These models are fundamentally dif-
ferent, but there are good reasons why LIF nodes provide a
functional approximation of HH nodes and a good description
of spike-time dependent information processing in the brain.
Prior to the opening of ion channels leading to spike gener-
ation, neurons are essentially leaky integrators, and the rapid
opening of these channels lends further support to the use of
LIF neurons. Additionally, the spike form is stereotypical, so it
doesn’t contribute to information transmission. The principle
task in using LIF nodes, then, is choosing parameters that
facilitate particular features of corresponding conductance-
based neurons.

One approach to making LIF nodes better approximate
conductance-based models is to allow for a dynamic time-
scale parameter in the LIF model [6]. Another is to replace

their constant threshold with a variable threshold [7]. Here, we
keep this scale parameter constant for each trial, adjusting its
magnitude for different input signals. We thus tune the time
constant of an LIF neuron such that LIF and HH models spike
at the same time in response to the same input. We show that
this time constant and the time course of the subthreshold
dynamic depend on the specific amplitude and waveform of
the input stimulus, and that an adjustment to the form of the
input stimulus can be used to reduce sub-threshold differences
between LIF and HH nodes.

The focus of this paper is to demonstrate that adjustments
to model parameters are necessary if spiking models are to be
compared. Our simple input types (step and alpha functions)
serve to demonstrate the susceptibility of these nodes to
changes in input, stressing the need for calibrating conditions
in comparative studies.

II. T HE MODELS

The baseline model to which we compare the LIF model is
the standard Hodgkin-Huxley model given by the four coupled
differential equations [8]
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where C is the capacitance of the membrane,gi, i ∈
{K, Na, L} are conductance parameters for the different ion
channels, andEi are the corresponding equilibrium potentials.
The variablesn, m, andh describe the opening and closing of
the voltage dependent channels. We use the standard param-
eters derived by Hodgkin and Huxley to simulate the action
potential of the giant axon of a squid [8],gK = 36, gNa =
120, gL = 0.3, EK = −12, ENa = 115, EL = 10.613. Note
that normalization sets the resting potential of the membrane
to 0 (ures ≈ 0).



We choose the HH model as an example of a conductance-
based model, treating it as the baseline for neuronal behavior.
We recognise that the model is an approximation of real
neuronal behavior, and that more advanced models have been
proposed that include the effects of additional ion channels
[9]. Furthermore, the HH model can be simplified, as the
voltage dependence of the variablesn0 andm0 show similar
characteristics and can be combined [10], [11], [9].

The HH model is compared to the LIF model, described in
three steps

1) Subthreshold leaky integrator:

τm

du(t)

dt
= −u(t) + IIF

ext(t). (5)

2) Firing Threshold: the firing timetf is given by a constant
delay (tc) after the potential crosses the firing threshold
ϑ:

u(tf − tc) = ϑ. (6)

3) Refractory time and reset: the membrane potential is
reset to a valueures after a fixed absolute refractory
time tR

u(tf − tc + tR) = ures. (7)

Due to its apparent simplicity, the LIF model is common
in computational studies of spiking neurons. Unfortunately,
steps 2 and 3 must be coded with conditional statements
unless their effect is altered so they may be described with
continuous functions in the form of a differential equations.
Solving differential eqn. (5) with conditional eqns. (6) and
(7) can only be integrated piecewise due to non-differentiable
points in the model attf − tc and tf − tc + tR. In contrast,
ODE solvers can be applied directly to the HH equations. We
use numerical solutions for the HH equations and analytical
solutions for the subthreshold dynamics eqn. (5) of LIF nodes.
Another advantage of the HH model is that parameters may
be given physical meaning and assigned measurable values.

III. C ALIBRATING CONDITIONS: INPUT SIGNALS AND

FIRING TIME

While it is clear that the HH and LIF models are inherently
different, we ask how they may be compared. The models
have thus to be calibrated so their features are equivalent under
equivalent conditions. In this study, we choose parametersin
the LIF model such that the time of its first spike matches that
of the HH model following sufficient external stimulus. We
calibrate the models on their first spikes to provide a simple
example of possible calibration methods. Matching the firing
times in a spike train provides a more challenging problem.

There is no firing threshold in HH nodes. Their sub-
threshold dynamic models that of biological neurons [12] and
any perceived threshold is variable. The HH ‘firing threshold’
then, is not a constant, and depends on sub-threshold dynamics
consistent with biological neurons [12]. To match the firing
times of HH and LIF nodes, we first approximate a firing

threshold for the HH model for step and alpha input (from
an initial membrane potential of0). We apply a series of
inputs of decreasing amplitudeaext to the HH node. The
maximum value ofV elicited by the maximum amplitude of
input insufficient to cause a spike is considered the threshold
(ϑHH). For each input type, this approximate threshold is
used as the firing threshold of the LIF node in subsequent
experiments (ϑIF = ϑHH).

The membrane time constantτm must be determined such
that in response to the same input, the LIF node crosses
the firing threshold at the same time as the HH node. The
differential equation for the LIF subthreshold dynamic (egn.
(5)) can be solved analytically for specific input functions. For
a step input function with amplitudeaext,

IΘ

ext = aextΘ(ton), (8)

this is given by

u(t) = ures + aext ∗ (1 − e
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τ ). (9)

For an alpha function input
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An example of the time course of the membrane potentials of
the HH and LIF neurons with these adjustments is shown in
Figure 1 for a step function input. The LIF node responds with
a stronger initial increase in membrane potential, which isthen
compensated by a lower rate close to the firing threshold.
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Fig. 1. The evolution of membrane potential in HH (solid line) and LIF
(dashed line) model neurons in response to a constant external inputIext = 10

applied att = 10ms. The firing threshold is indicated as dotted line.

The difference between the HH and LIF curves depends
on details of the models and experimental settings. For step



and alpha inputs, Figure 2 shows the maximum difference
between these curves for different amplitudesaext. Increasing
aext reduces the difference between these curves for both
input types. Because the shape of the sub-threshold curve
is fundamentally different in these models (the LIF curve is
convex, shown in Figure 1) reducing this difference becomes
increasingly relevant as the potential approaches threshold,
where the LIF node is more susceptible to noise due to its
convex sub-threshold curve.
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Fig. 2. Maximal difference between the subthreshold membrane potential
between the HH and LIF model neurons in response to increasing amplitude
of step input (solid line) and alpha function input (dashed line).

IV. REDUCING SUB-THRESHOLD DIFFERENCES BY

ADJUSTMENTS TO INPUT

We have so far assumed that the form and amplitude of the
input signals driving the different models should be the same
for each model, but this need not be the case. One approach to
finding a better correspondence between LIF and HH nodes is
to modify the input each model receives. The difference curve
for the membrane potential of the HH and LIF models when
driven by a step function is shown in Figure 3a with a solid
line. The dashed line shows the difference between the HH
and LIF models if the amplitude of the LIF input is increased,

aIF

ext = 10 ∗ aHH

ext , (13)

followed by recalculation ofτ . This simple adjustment reduces
the difference between models. Similar results can be achieved
by adjusting the amplitude of the alpha function (Figure 3b.).

The difference between the models’ subthreshold dynam-
ics may be further adjusted by a time-dependent alteration
to the input signal to the LIF node, or a transformation
IIF
ext = F (IHH

ext ) may exist to further minimize differences.
This adjusted input function mimics the slower response of
the HH nodes (due to the opening dynamics of the channels)
by a time-delayed LIF input stimulus. Such an approach is
similar to that of Stevens and Zador [6].

We adjust the membrane time constant as necessary to
match the spike time of the HH neuron, therefore changing
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Fig. 3. Difference between the subthreshold membrane potential of HH and
LIF models in response to (a) step-function input and (b) alpha function input.
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this constant for the different curves shown in Figure 3. For
example, the time constant for the solid line in Figure 3a is
τ = 0.62, whereasτ = 10.84 in the adjusted case (dashed line
in Figure 3a). Similarly, in the case of the unadjusted alpha
function in Figure 3b,τ = 0.6, whereasτ = 28.32 in the
adjusted case (dashed line in Figure 3b. These adjustments
serve to further demonstrate that the time constant of the
LIF neuron should not be treated as the membrane time scale
parameter of a biophysical neuron. Note that we still keep the
time parameter constant within each trial and do not consider
varying time scale parameters such as in [6].



V. D ISCUSSION ANDCONCLUSIONS

When comparing different models, care must be given to the
specification of calibrating conditions such as the adjustment
of spike times. Here we discuss only a noise-free case, but
the curves in Figure 1 demonstrate that noise may influence
LIF nodes more than HH nodes due to a larger buildup of
potential for longer periods close to threshold. Adjustments
to noise models must therefor be considered with the use of
these nodes.

Differences between HH and LIF models can be minimized
by transformations in their driving signals. Unfortunately, such
transformations are dependent on the signals themselves. It is
unknown whether a general methodology for the specification
of such transformations can be found.

We have only discussed the subthreshold response for the
first spike in the HH and LIF models. Further issues need
consideration when comparing spike trains in different models,
such as differences in refractory periods. The LIF model
discussed here has an absolute refractory time, while the
HH model includes a more precise approximation of the
hyperpolarization dynamics. This difference further highlights
the necessity of carefully chosen parameters in comparison-
based studies.

Comparative studies of neuron models are important to ver-
ify that perceived discrepancies between models do not depend
on un-tuned parameters, where tuning depends on the specific
simulations or network behaviour under study. Comparative
studies must therefor specify the methods of calibration used
to create an adequate baseline for comparison. If the use of
different neuron models leads to divergent experimental results
following careful tuning of model parameters, further study
should focus on appropriate use of models at various levels of
abstraction, and on the calibration of neuron simulations under
relevant experimental conditions. In this study, we compare
a relatively simple conductance-based model with the LIF
neuron. If LIF nodes are insufficient to reproduce network
effects found with conductance models, then a mechanistic
account of the phenomena under study may be found in the
detail of the conductance model.
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