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Abstract We discuss the ability of dynamic neural fields

to track noisy population codes in an online fashion when

signals are constantly applied to the recurrent network. To

report on the quantitative performance of such networks we

perform population decoding of the ‘orientation’ embedded

in the noisy signal and determine which inhibition strength

in the network provides the best decoding performance. We

also study the performance of decoding on time-varying

signals. Simulations of the system show good performance

even in the very noisy case and also show that noise is

beneficial to decoding time-varying signals.
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Introduction

It is increasingly obvious that information processing in the

brain is very different from information processing in a

digital computer. In particular, information processing in

the brain is based on highly distributed representations of

information. For example, it is well known from the work

of Hubel and Wiesel (1962) that some neurons in the pri-

mary visual cortex are selective to edges with specific

orientations. While those neurons fire most vigorously to

edges with their so-called preferred orientation, the same

neurons also fire to edges with other orientations, resulting

in broad tuning curves (see for example, Henry et al. 1974).

Accurate decoding can thus only be achieved by combining

the information of many neurons.

Several questions arise when thinking about information

processing with such population representations. For

example, it seems at first puzzling that broad tuning curves

are common in the brain as it is more difficult to decode

information from such broad representations, in particular

when considering the large noise present in spike trains.

While it turns out that decoding errors can be very small

even with brought tuning curves, when combining infor-

mation from several neurons (see for example,

Trappenberg 2002, Chapter 5.4.4), the presence of large

fluctuations in neuronal firing are a serious challenge to

accurate decoding. Indeed, depictions of tuning curves in

common publications are somewhat deceiving as they

represent averages over many, sometimes hundreds, of

trials.

Population decoding has recently sparked new interest

in the computational neuroscience community as it was

realized that population decoding in very noisy circum-

stances can be achieved through very efficient

implementations based on recurrent radial basis function

networks that resemble possible cortical processing (Pou-

get and Zhang 1997; Pouget et al. 1998, 2000; Deneve

et al. 1999; Wu et al. 2002, 2004; Li and Wu 2007). This

research has shown that this implementation is statistically

efficient and equivalent to maximum likelihood decoding

(Wu et al. 2002), and that these methods also work with

correlations in the noise (Wu et al. 2004). In this paper we

will introduce this method in the formulation of dynamic

field models and show that these models work quite well in

practice without the commonly applied global operation of

divisive inhibition. We also demonstrate that this method

works well online, that is, when noisy signals are con-

stantly applied. An important aspect of the model is that of
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global inhibition that provides the necessary competition

between noisy population components. We investigate in

this paper which strength of activity-dependent inhibition

is optimal for the online decoding. Interestingly, it turns out

that the best performance is reached in a transition region

of the model, where the model turns from a forgetful mode

into a mode with sustained activity. Some preliminary

results of these findings have been reported in (Trappen-

berg 2008). However, in this paper we will not only present

these results in more detail, but we also show results of

additional studies that have explored the ability of online

tracking of time varying signals with the simplified model

proposed in this paper. We found that the method works

well even with fairly fast changing stimuli. Surprisingly,

we also found that some slow changing stimuli provided a

more challenging case for decoding. However, this was

solvable by including noise in the system.

While we demonstrate fast population decoding in this

paper, it is important to keep in mind that the decoding of a

parameter such as the orientation of a stimulus in a visual

scene is not necessarily the goal in cortical information

processing. That is, we subscribe to the interpretation

advanced by Pouget et al. (2000) that population responses

in the brain should be viewed as probabilistic density

information in the brain, that is, the brain cares not only

about specific events but also about their likelihood. It is

thus not desirable to extract only single parameters from

the representation. The online method discussed here does

provide ongoing information of complex signals in the

system, which we believe is essential for further processing

of the information in cortex. Thus, the extraction of a

parameter such as the most likely orientation embedded in

a signal should be seen as only a means of demonstrating

the performance of the system.

Methods

We consider the problem of decoding information from

very noisy signals represented by populations of neurons.

For simplicity we consider representations where a single

parameter is encoded by the activity of nodes, although the

method can be generalized to higher dimensions (Deneve

et al. 2001). Each node represents thereby a collection of

neurons and the activity represents the population rate

(Wilson and Cowan 1972; Gerstner 2000). Each node is

considered to have a different response profile in depen-

dence of the encoded parameter. We use Gaussian tuning

curves similar to orientation tuning curves found in V1 that

ride on top of a constant background field. We further

added noise and only consider periodic parameters to avoid

boundary effects. Specifically, a raw signal sraw with ori-

entation xo is calculated from

xs ¼ MINðjx� xoj; 2p� jx� xojÞ; ð1Þ

srawðxÞ ¼ bþ 1
ffiffiffiffiffiffi

2p
p

r
exp � x2

s

2r2

� �

; ð2Þ

with b = 0.1 and r = 2p/10. To simulate noise we applied

independent Gaussian noise to each node,

snoisyðxÞ ¼ srawðxÞ þ nggðx; l; r2Þ; ð3Þ

where g is a normal distributed random variable with

mean l = 0 and variance r2 = 1, and ng is a noise

parameter setting the strength of the noise. The final

noisy signal was calculated by rectifying and normalizing

snoisy,

sðxÞ ¼ a
snoisy HðsnoisyÞ

R

snoisy HðsnoisyÞdx
; ð4Þ

where H(x) is the step function and the parameter a was set

to a = 0.2. An example of the noiseless signal and a cor-

responding signal with ng = 0.5 is illustrated in Fig. 1.

Note that a simple ‘max’ estimate would result in poor

estimates of the center of the Gaussian signal.

As mentioned in the introduction, a common method to

decode population signals is to use the them as the starting

state of a radial-basis recurrent network and to iterate the

network until a stable state is reached (Pouget and Zhang

1997). The continuous time dynamics of a standard

recurrent network is thereby given as

s
duðx; tÞ

dt
¼ �uðx; tÞ þ

Z

wðx; yÞrðy; tÞdyþ Iextðx; tÞ; ð5Þ

where s is a time constant and Ii
ext is the external input

applied to the network. We formulated the network here

with spatially continuous neural fields that are commonly

discretised in numerical simulations to a network with N

nodes with
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Fig. 1 Noisy population signals (dashed line) of a Gaussian of width

10 centered at node number 50
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x! iDx; ð6Þ

where Dx = 2p/N is a scale factor. The rate r(x,t) in Eq. 5

is related to the internal state variable u(x,t) by a nonlinear

gain function r = g(u). In the recent population decoding

literature it is common to use divisive inhibition (Deneve

et al. 1999),

r ¼ u
R

u dx
; ð7Þ

which has the advantage of resulting in Gaussian activity

packets. However, we propose to use the simpler local

sigmoidal gain function,

r ¼ 1

1þ expð�buÞ ; ð8Þ

with slope parameter b = 0.1. The results in this paper

demonstrate that decoding does not rely critically on the

specific form of the gain function so that a more efficient

local function can be used in practice.

Most important for the use of recurrent networks for

decoding is the form of the weight kernel w(x,y). This is

chosen to be shift invariant and only depends on the dis-

tance between locations in the neural field, that is

wðx; yÞ ¼ wðjx� yjÞ: ð9Þ

It is thereby common to used Mexican hat functions such

as the difference of two Gaussian bell curves or a shifted

Gaussian in a periodic feature space. Again, the precise

form is not critical as long as this interaction kernel

provides some local excitation and long range inhibition.

We use a shifted Gaussian of the form

d ¼ MINðjx� yj; 2p� jx� yjÞ ð10Þ

wðx; yÞ ¼ Awðe�d2=2r2
w � CÞ; ð11Þ

with an weight amplitude of Aw ¼ 0:2=ð
ffiffiffiffiffiffi

2p
p

rÞ and width

rw ¼
ffiffiffi

2
p

r: The Gaussian form can be learned with Heb-

bian training on Gaussian pattern (Stringer et al. 2002), but

most interesting for this paper is the inhibition constant C

which provides the necessary, activity-dependent long

range inhibition.

The dynamics of such center-surround neural fields has

been analyzed by Amari in a classic paper (Amari 1977)

that shows that this model exhibits several regimes char-

acterized by different possible asymptotic states. For

sufficiently large weight amplitude Aw, the specific regime

is determined by the inhibition constant C. If C is low

compared to excitation in the network, then the excitation

will spread through the network resulting in runaway

activity. In contrast, if inhibition is dominating (large C),

then any activity in the field will decay without external

reinforcement. In an intermediate regime it is possible to

have activity packets where localized activity is stable. We

call this regime of the model the memory regime.

The time evolution of the neural field approximated with

100 nodes is depicted in Fig. 2. The noisy input of Fig. 1

was applied until t = 20s, after which point it was removed.

The field develops into a clean bubble around the middle

node in Fig. 2a which was the center of the Gaussian signal

chosen in this experiment. This demonstrates perfect

decoding of the ‘orientation’ parameter. The bubble is

maintained after the input is removed, which demonstrates

the working memory regime of the neural field model. The

clear asymptotic signal is commonly used for decoding, but

in this paper we are specifically interested in fast online

decoding. It is therefore important to note that some good

estimates can be obtained much earlier, even during the

time the external signal is still present. This can be seen

when showing the time evolution until t = 10s on a finer

color scale (Fig. 2b). In Fig. 2c we show the time evolution

with stronger inhibition. In this case, the inhibition is too

large to maintain an activity packet after external input is

removed. However, even in this case, we can see that some

good estimates can be achieved during the time the signal is

present and even shortly after it is removed. The main goal

of the remainder of this paper is to investigate which inhi-

bition strength C is best for decoding and to show that the

neural field can track time varying signals.
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Fig. 2 Noisy population decoding with weak and strong inhibition in

neural fields. The noisy input of Fig. 1 is applied for the first 20 time

steps and then removed. (a) Time evolution of the neural field with

weak inhibition (c = 0.05). (b) The first 10 time steps of panel a with

a finer color scale. (c) Time evolution of the neural field with strong
inhibition (c = 0.07)
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Results

Online decoding and optimal inhibition regime

As was shown in Fig. 2, neural fields can be used to

enhance noisy population decoding even during the time

the noisy signal is applied to the system. However, the

quality of decoding should be compared to the traditional

case of decoding with asymptotic states. The question

remains which inhibition constant is most useful for

decoding. While moderately small inhibition in the mem-

ory regime of the neural field model seem to produce clear

signals, stronger inhibition also increases the competition

which could speed up the formation of clean signals.

In order to report an estimate of the encoded informa-

tion, in our case the location of the center of the Gaussian

signal which we sometimes call ‘orientation’, we use a

simple center of mass estimate based on the activations r of

the neural fields at different times during their evolution.

We thereby calculate a torque value,

mi ¼
X

iþN=2

j¼i�N=2

rjðj� iÞ ð12Þ

for each node i = 1, …, N in the network and choose as an

estimate of the ‘orientation’ the minimum,

x̂ ¼ argmin mi: ð13Þ

The decoding error calculated as absolute minimum

difference between the estimated orientation and the true

orientation. In the following we show results of simulations

in which we consider time varying noise in which a new

noise term was chosen in each unit time interval. This

represents a more plausible implementation of decoding

conditions in the brain. We found similar results in the

static noise case. Figure 3 shows results of simulations

over 100 runs at different estimation times and for various

inhibition constants C. Shown is the improvement ratio, the

ratio of decoding errors, of the decoding when estimating

the orientation from the neural field at various times

relative to the center of mass estimation of the noisy signal

at t = 0. Error bars in the figures represent the variance of

the results over 100 runs. As can be seen, the estimation

improves with ongoing evolution of the neural field, and

the best improvements are achieved with an inhibition

constant around C = 0.06. Interestingly, this is also the

transition region from the memory regime to the regime

with decaying activity.

Further details of the estimation performance at different

times and for different noise amplitudes from simulations

with inhibition C = 0.06 are shown in Fig. 4. Figure 4a

shows that the estimation error rapidly decrease with time

and that there is only a small further improvement after the

noisy signal is removed. It is also interesting to note that

decoding with neural fields works well for very noisy

signals. Figure 4b shows the decoding error with the center

of mass estimation on the noisy signal (the curve labeled

t = 0 in the figure) and the center of mass decoding at time

t = 20s based on the neural fields. The curves represent
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Fig. 3 Improvement factor relative to center of mass decoding of the

original noisy signals with the neural fields at different times and

different inhibition constants C
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averages over 100 runs and the error bars depict the stan-

dard deviations in these runs. While the decoding error

does of course increase in both cases, it is interesting to

note that the neural field decoding deteriorates much less

with increasing noise.

Online tracking of time varying signals

The results reported so far have shown that fast and robust

decoding is possible with neural fields even during the time

when noisy signals are applied as external input. In this

section we further explore the performance of this method

with time varying signals. As an example, we consider

Gaussian signals similar to the ones used above but where

the center of the Gaussian is a piecewise constant function

in time. Specifically, the center of the Gaussian is changing

with a sine function of period T. The noisy input signal is

then chosen at the beginning of each unit time interval

from this function and applied as constant input during this

small time interval, that is,

xoðtÞ ¼ sin
½t�
T

� �

; ð14Þ

where [t] denotes the integer component of the continuous

time. During each unit time interval there is also a new

noise component chosen for the input signal that is applied

as external input to the neural field.

Some example time evolutions of the neural field for

different frequencies of the time varying signals for the

cases of no noise (ng = 0; left column) and very noisy

signals (ng = 0.9; right column) are shown in Fig. 5. In

these figures, we indicate the true centers of the time

varying signal as white lines, and the instantaneous center

of mass decoding with black lines. Note that the illustrated

time intervals are adjusted to always show a time span of 2.5

T after starting the simulations with a homogenous field.

It is probably not surprising that the neural field can

follow the time varying signal fairly well for intermediate

frequencies of the signal. There is, of course, some time lag

(phase) between the true signal and decoded one since the

neural field needs some time to respond to the stimulus.

The signal can also follow fairly well the high frequency

stimuli, although the amplitudes of the decoded signal are

much smaller than the signal. Thus, the system predicts an

underestimation of orientations with increasing frequen-

cies. More surprising is the performance of the system with

much lower frequencies. The lower left graph in Fig. 5

shows an example where the decoding breaks down. This

problem is still present when increasing the size of the

network, although it can not be ruled out that this effect

disappears in the continuum limit. However, noise turned

out to be very beneficial in this situation, as shown in the

right column of Fig. 5. Indeed, the neural field is now able

to track even the low frequency stimulus. Furthermore, it is

important to note that the decoding performs very well

even with these very noisy signals (ng = 0.9). While there

are some outliers for intermediate frequencies, typically at

the locations of largest change in signal orientation, the

overall quality is still comparable to the performance

without noise.

Fig. 5 Online population

decoding with time varying

signals with no noise (ng = 0,

left column) and with strong

noise (ng = 0.9, right column).

The time window is chosen to

always depict 2.5 times the

period. The white lines depict

the center of the Gaussian signal

and the black lines are the

instantaneous estimate based on

the center of mass decoding

with neural fields
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The improvements of decoding with noise for lower

frequencies can also be seen in Fig. 6. This figure shows

the phase delay between the original signal and the tracking

with the neural fields. In the noiseless case this phase shift

increases linearly with increasing period T of the signal

until the tracking breaks down. In the noisy case the phase

starts out at similar values to the noiseless case but levels

off for lower frequencies. Such a constant delay could

easily be absorbed in the processing of signals though

backdating of the decoded signal.

Discussion

In this paper we discussed the tracking of noisy population

codes with neural fields. This method has gained consid-

erable interest as it not only performs well in the statistical

sense (Pouget et al. 1998; Wu et al. 2002), but is also a

biologically plausible implementation of how cortical

networks with lateral interactions could process noisy

information provided to them from lower or higher cortical

areas. We showed that this method works well online,

when external inputs are continuously applied. Also, we

investigated which inhibition constant (which regulates the

amount of long range competition relative to short range

cooperation) is best suited for population decoding. Inter-

estingly, we found that this inhibition constant should be

chosen in a range where the neural field model goes from

the memory regime to the regime with decaying activity

packets. This seems to indicate that some balance between

cooperation and competition is useful and illustrates why

simple competitive networks might not provide the best

implementation of winner-take-all mechanisms.

The brain faces the challenge of combining a multitude

of bottom-up sensory information with top-down expecta-

tions to achieve a coherent assessment of the world. This is

consistent with the hypothesis that the cortex forms a pre-

dictive memory system with different levels of abstractions

(Friston 2005; Hinton 2007; George and Hawkins 2005;

Dayan et al. 1995). While in this paper we extracted

(decoded) the ‘orientation’ from the noisy population code,

it is important to note that this was mainly done to provide a

quantitative illustration of the performance of the neural

field’s ability to track noisy inputs. The extraction of a

single parameter, which was done here with a center of

mass scheme, is in this view not the main goal of the neural

field processing in the brain. Indeed, it should be beneficial

to represent some measure of likelihood of features with the

population code, consistent with the interpretation of

(Pouget et al. 2000). In this view it is also important to note

that population coding is not restricted to low level sensory

information with tuning curves where population decoding

is commonly discussed. It is, of course, more difficult to

establish this experimentally since it is much more chal-

lenging to measure such higher-level ‘tuning curves’ as the

neurons that are involved in the representation of a stimulus

might not be organized in the spatial way as the spatial

organizations in hypercolumns found in early visual areas.

In this view we could also think about the noise in a

different way. While in the experiments shown here we

chose the noise term from stochastic processes, we could

also imagine that these signals represent additional infor-

mation from other features of the sensory scene encoded in

the population. It is therefore desirable to not completely

neglect these feature as would be the case when using the

asymptotic states of the neural field without input for fur-

ther processing. With the value of inhibition found in this

study and the strength of input used in the simulations, it

seems that we achieved some balance between the infor-

mation provided by the external input and the activity

generate from the neural field itself. A further step in

establishing neural fields as component of cortical pro-

cessing is to study their ability to integrate top-down

information, which can itself change with time, with the

bottom-up signals processing discussed in this paper.
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