
3 Probability theory and motion/sensor
models

A major milestone for modern approaches to machine learning and robotics is the
acknowledgement of our limited knowledge about the world and the unreliability of
sensors and actuators. It is then only natural to consider quantities in our approaches
as random numbers. Random numbers are a wonderful mathematical construct to
describe uncertainty. While a specific regular number has only one specific value, a
random number will have different values every time we query it. Each query is drawing
an example from a probability distributions that governs this variable. For example,
consider a light sensor. We might think that an ideal light sensor will give us only one
reading while holding it to a specific surface, but since the peripheral light conditions
change, the characteristics of the internal electronic might change due to changing
temperatures or variable batteries, or since we move the sensor unintentionally away
from the surface, it is more than likely that we get different readings over time.
Consequently, variables that have to be estimated from sensors, such as the pose of a
robot, are fundamentally random numbers.

A common misconception about randomness is that one can not predict anything
for random numbers. But even random numbers have most commonly values that are
more likely than others, and while we might not be able to predict a specific value when
drawing a random number, it is possible to say something about how often a certain
number will appear when drawing many examples. We might even be able to state
how confident we are that a specific number occurs, or, in other words, how uncertain
a specific value might be or how it might vary when drawing several examples. The
complete knowledge of a random number, that is, how likely each value is for a random
number x, is captured by the probability density function p(x). We discuss some
specific examples of pdfs below. In these examples we assume that we know the pdf,
but in may practical applications we must estimate this function. Indeed, estimation of
pdfs is at the heart if not the central tasks of machine learning. If we would know the
‘world pdf’, the probability function of all possible events in the world, then we could
predict as much as possible in this world.

Most of the systems discussed in this course are stochastic models to capture
the uncertainties in the world. Stochastic models are models with random numbers,
and it is therefore useful to remind ourselves about the properties of such variables.
This chapter is a refresher on concepts in probability theory. Note that we are mainly
interested in the language of probability theory rather than statistics, which is more
concerned with hypothesis testing and related procedures.
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3.1 Random numbers and their probability density
function

3.1.1 How to describe uncertainty

Probability theory is the theory of uncertainty that uses the construct of random
numbers as mathematical formalism. We denoted such numbers, or more precisely
random variables when we write symbols to represent them, by capital letters to
distinguish them from regular variables written in lower case. A random number, X ,
is a quantity that can have different values each time the variable is inspected, such as
in measurements in experiments. This is fundamentally different to a regular variable,
x, which does not change its value once it is assigned. A random number is thus a new
mathematical concept, not included in the regular mathematics of numbers. A specific
value (sample) of a random number is still meaningful and might influence subsequent
processes in a specific (even deterministic) way.

Since a random number can change values every time it is inspected, it is useful
to describe properties of a distribution when drawing examples many times. The fre-
quency with which numbers can occur is then the most useful quantity to take into
account. This frequency is captured in the ‘frequentist’ interpretation of random num-
bers by the mathematical construct of a probability. A slightly different interpretation
of a random numbers is that it describes the uncertainty that comes with each drawing
of a random number. This ‘Bayesian’ interpretation is useful as we would then be
comfortable applying such constructs even to events that we can not repeat easily. This
view is sometimes contrasted with a ‘Frequnetist’ interpretation that stresses that such
theories only make sense when sampling many times. For most of what we discuss in
the following we mainly apply this formalism, and there is little need to twelve into
a philosophical debate. There are even other formulations and formalization, such as
fuzzy systems, which capture many aspects of the following discussions.

We can formalize the idea of expressing probabilities of drawing specific values
for random number with some compact notations. We speak of a discrete random
number in the case of discrete numbers for the possible values of a random number.
A continuous random number is a random number that has possible values in a
continuous set of numbers. There is, in principle, not much difference between these
two kinds of random variables, except that the mathematical formulation has to be
slightly different to be mathematically correct. For example, the probability (mass)
function,

P (x) = P (X = x) (3.1)

describes the frequency with which each possible value x of a discrete variable X
occurs. Note that x is a regular variable, not a random number. The value of P (x) gives
the fraction of the times we get a value x for the random number X if we draw many
examples of the random number.3 From this definition it follows that the frequency of
having any of the possible values is equal to one, which is the normalization condition

X

x

P (x) = 1. (3.2)

3Probabilities are sometimes written as a percentage, but we will stick to the fractional notation.
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In the case of continuous random numbers, we have an infinite number of possible
values x so that the fraction for each number becomes infinitesimally small. It is then
appropriate to write the probability distribution function as P (x) = p(x)dx, where
the lower case function p(x) is the probability density function (pdf). To be precise,
this density function is again a short hand notation of

p(x) = p(X = x) (3.3)

in analogy with eqn 3.1, but the sum in eqn 3.2 then becomes an integral, and normal-
ization condition for a continuous random number is

Z

x

p(x)dx = 1. (3.4)

There is of course an infinite number of values for a continuous variable in some
interval. Therefore, only the probability of getting a number in a certain interval could
have a meaningful finite value such as

P (x
1

< X < x
2

) =

Z
x2

x1

p(x)dx. (3.5)

Another useful description of a continuous random variable is the cumulative density
function (cdf)

P
c

(x) = P (�1 < X < x) =

Z
x

�1
p(x0

)dx0. (3.6)

We will formulate the rest of this section in terms of continuous random numbers.
The corresponding formulas for discrete random variables can easily be deduced by
replacing the integrals over the pdf with sums over the probability function. It is
also possible to use a continuous formulation of discrete random numbers with the
mathematical construct of a �-function. Thus, the differences between continuous and
discrete random numbers are mainly technical and will hopefully not distract from the
general ideas.

An important basic examples of a discrete random number is a Bernoulli random
number. A Bernoulli random number is a binary number drawn from an experiment
that has two possible outcomes: success with probability p; or failure, with probability
(1� p).

Probability function:
P (success) = p;P (failure) = 1� p

mean: p
variance: p(1� p)

Another important discrete distribution is the multinomial distribution, which is
the distribution of outcomes in n trials that have k possible outcomes. The probability
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of each outcome is thereby p
i

.

Probability function:
P (x

i

) = n!
Q

k

i=1

(pxi

i

/x
i

!)

mean: np
i

variance: np
i

(1� p
i

)

An important example is the binomial distribution (k = 2), which describes the
the number of successes in n Bernoulli trials with probability of success p. Note that
the binomial coefficient is defined as

✓
n
x

◆
=

n!

x!(n� x)!
(3.7)

and is given by the MATLAB function nchoosek.

x

P(x)

np

Probability function:

P (x) =

✓
n
x

◆
px(1� p)n�x

mean: np
variance: np(1� p)

A very important example of a continuous random number is a Gaussian or
Normal distributed random number. The Normal or Gaussian distribution describes
a continuous random number with a single bell shaped peak in the distribution as shown
below. The pdf depends on two parameters, the mean µ and the standard deviation �.
The importance of the normal distribution stems from the central limit theorem outlined
below. This theorem captures an interesting fact about sums of random numbers,
namely that the sum of many random numbers is Gaussian distributed. Formally, this
is only correctly true if the random numbers are independent and drawn from the
same (but arbitrary) distribution, and also that an infinite number of such variables is
considered. But the importance in practice is that even small sums of random numbers
with different underlying pdfs have often a distribution that is well approximated by a
Gaussian.

µ

σ

x

p(x)

Probability density function:

p(x) = 1

�

p
2⇡

e
�(x�µ)2

2�2

mean: µ
variance: �2

Another important distribution that we encounter in the following is the uniform
distribution. This is simply the distribution where random numbers are equally likely
in an interval a  x  b. Pseudo-random variables with this distribution are often
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generated by routines in many programming languages.

x

p(x)

Probability density function:
p(x) = 1

b�a

mean: (a+ b)/2
variance: (b� a)2/12

Finally one example of a continuous distribution with an unsymmetric shape. The
sum of the squares of normally distributed random numbers is chi-square distributed
and depends on a parameter ⌫ that is equal to the mean. � is the gamma function
included in MATLAB as gamma.

ν x

p(x)

Probability density function:
p(x) = x

(⌫�2)/2
e

�x/2

2

⌫/2
�(⌫/2)

mean: ⌫
variance: 2⌫

There are many more examples of density functions with specific names, but it is
equally important to realize that there is an infinite number of possible pdfs. In general
we do not know the pdf of random variables encounter in our environment or that
describe our robot. Estimating the density function is the main challenge of machine
learning.

3.1.2 Moments: mean, variance, etc.

In the following we only consider independent random values that are drawn from
identical pdfs, often labeled as iid (independent and identically distributed) data. That
is, we do not consider cases where there is a different probability of getting certain
numbers when having a specific number in a previous trial. The static probability
density function describes, then, all we can know about the corresponding random
variable.

Let us consider the arbitrary pdf, p(x), with the following graph:

µ x

p(x)

Such a distribution is called multimodal because it has several peaks. Since this is a
pdf, the area under this curve must be equal to one, as stated in eqn 3.6. It would be
useful to have this function parameterized in an analytical format. Most pdfs have to be
approximated from experiments, and a common method is then to fit a function to the
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data. However, sometimes it is sufficient to know at least some basic characteristics of
the functions. For example, we might ask what the most frequent value is when drawing
many examples. This number is given by the largest peak value of the distribution. A
more common quantity to know is the expected arithmetic average of those numbers,
which is called the mean, expected value, or expectation value of the distribution,
defined by

µ =

Z 1

�1
xp(x)dx. (3.8)

In the discrete case, this formula corresponds to the formula of calculating an arithmetic
average, where we add up all the different numbers together with their frequency.
Formally, we need to distinguish between a quantity calculated from random numbers
and quantities calculated from the pdfs. If we treat the pdf as fundamental, then
the arithmetic average is like an estimation of the mean. This is usually how it is
viewed. However, we could also be pragmatic and say that we only have a collection
of measurements so that the numbers are the ‘real’ thing, and that pdfs are only a
mathematical construct. While this is mainly a philosophical debate, we try to be
consistent in calling the quantities derived from data ‘estimates’ of the quantities
defined through pdfs.

The mean of a distribution is not the only interesting quantity that characterizes a
distribution. For example, we might want to ask what the median value is for which it
is equally likely to find a value lower or larger than this value. Furthermore, the spread
of the pdf around the mean is also very revealing as it gives us a sense of how spread
the values are. This spread is often characterized by the standard deviation (std), or its
square, which is called variance, �2, and is defined as

�2

=

Z 1

�1
(x� µ)2p(x)dx. (3.9)

This quantity is generally not enough to characterize the probability function uniquely;
this is only possible if we know all moments of a distribution, where the nth moment
about the mean is defined as

mn

=

Z 1

�1
(x� µ)np(x)dx. (3.10)

The variance is the second moment about the mean,

�2

=

Z 1

�1
(x� µ)2p(x)dx. (3.11)

Higher moments specify further characteristics such as the kurtosis and skewness of the
distribution. Moments higher than this have not been given explicit names. Knowing
all moments of a distribution is equivalent in knowing the distribution precisely, and
knowing a pdf is equivalent in knowing everything we could know about a random
variable.

In case the distribution function is not given, moments have to be estimated from
data. For example, the mean can be estimated from a sample of measurements by the
sample mean,
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x̄ =

1

n

nX

i=1

x
i

, (3.12)

and the variance either from the biased sample variance,

s2
1

=

1

n

nX

i=1

(x̄� x
i

)

2, (3.13)

or the unbiased sample variance

s2
2

=

1

n� 1

nX

i=1

(x̄� x
i

)

2. (3.14)

A statistic is said to be biased if the mean of the sampling distribution is not equal to the
parameter that is intended to be estimated. Knowing all moments uniquely specifies a
pdf.

3.1.3 Functions of random variables and the central limit theorem

A function of a random variable X ,

Y = f(X), (3.15)

is also a random variable, Y , and we often need to know what the pdf of this new
random variable is. Calculating with functions of random variables is a bit different to
regular functions and some care has be given in such situations. Let us illustrate how
to do this with an example. Say we have an equally distributed random variable X as
commonly approximated with pseudo-random number generators on a computer. The
probability density function of this variable is given by

p(x) =

⇢
1 for 0  x  1,
0 otherwise. (3.16)

We are seeking the probability density function p(y) of the random variable

Y = e

�X

2

. (3.17)

The random number Y is not Gaussian distributed as we might think naively. To cal-
culate the probability density function we can employ the cumulative density function
eqn 3.6 by noting that

P (Y  y) = P (e

�X

2

 y) = P (X �
p
� ln y). (3.18)

Thus, the cumulative probability function of Y can be calculated from the cumulative
probability function of X ,

P (X �
p

� ln y) =

(R
1p
� ln y

p(x)dy = 1�
p
� ln y for e�1  y  1,

0 otherwise.
(3.19)

The probability density function of Y is the the derivative of this function,
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p(y) =

⇢
1�

p
� ln y for e�1  y  1,

0 otherwise. (3.20)

The probability density functions of X and Y are shown below.
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A special function of random variables, which is of particular interest it can approx-
imate many processes in nature, is the sum of many random variables. For example,
such a sum occurs if we calculate averages from measured quantities, that is,

¯X =

1

n

nX

i=1

X
i

, (3.21)

and we are interested in the probability density function of such random variables. This
function depends, of course, on the specific density function of the random variablesX

i

.
However, there is an important observation summarized in the central limit theorem.
This theorem states that the average (normalized sum) of n random variables that are
drawn from any distribution with mean µ and variance � is approximately normally
distributed with mean µ and variance �/n for a sufficiently large sample size n. The
approximation is, in practice, often very good also for small sample sizes. For example,
the normalized sum of only seven uniformly distributed pseudo-random numbers is
often used as a pseudo-random number for a normal distribution.

3.1.4 Measuring the difference between distributions

An important practical consideration is how to measure the similarity of difference
between two density functions, say the density function p and the density function q.
Note that such a measure is a matter of definition, similar to distance measures of real
numbers or functions. However, a proper distance measure, d, should be zero if the
items to be compared, a and b, are the same, its value should be positive otherwise, and a
distance measure should be symmetrical, meaning thatd(a, b) = d(b, a). The following
popular measure of similarity between two density functions is not symmetric and is
hence not called a distance. It is called Kulbach–Leibler divergence and is given by

dKL

(p, q) =

Z
p(x) log(

p(x)

q(x)
)dx (3.22)

=

Z
p(x) log(p(x))dx�

Z
p(x) log(q(x))dx (3.23)

This measure is zero if p = q since log(1) = 0. This measure is related to the
information gain or relative entropy in information theory.
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3.2 Density functions of multiple random numbers

3.2.1 Multivariate distributions

So far, we have discussed mainly probability (density) functions of single random
numbers. As mentioned before, we use random numbers to describe data such as
sensor readings in robots. Of course, we often have then more than one sensor and
also other quantities that we describe by random numbers at the same time. Thus, in
many applications we consider multiple random numbers. The quantities described by
the random numbers might be independent, but in many cases they are also related.
Indeed, we will later talk about how to describe various types of relations. Thus, in
order to talk about situations with multiple random numbers, or multivariate statistics,
it is useful to know basic rules. We start by illustrating these basic multivariate rules
with two random numbers since the generalization from there is usually quite obvious.
But we will also talk about the generalization to more than two variables at the end of
this section.

An example of a multivariate density function over several random numbers,
x
1

, ..., x
n

is the multivariate Gaussian (or Normal) distribution,

p(x
1

, ..., x
n

) = p(x) =
1

p
2⇡

n

p
det(⌃)

exp

✓
�1

2

(x� µ)T⌃�1

(x� µ)

◆
. (3.24)

This is a straight forward generalization of the one-dimensional Gaussian distribution
mentioned before where the mean is now a vector, µ and the variance generalizes to
a covariance matrix, ⌃ = [Cov[X

i

, X
j

]]

i=1,2,...,k;j=1,2,...,k

which must be symmetric
and positive semi-definit. An example with mean µ = (1 2)

T and covariance ⌃ =

(1 0.5; 0.5 1) is shown in Fig,3.1.
In robotics systems as well as in many realistic machine learning problems we

have systems that depend on many random numbers. An efficient way to argue in such
multivariate cases is hence crucial for real world applications. We will come back to
this are when considering Bayesian models.

3.2.2 Joined, conditional and marginal distributions

We have seen that probability theory is quite handy to model data, and probability
theory also considers multiple random numbers. The total knowledge about the co-
occurrence of specific values for two random numbers X and Y is captured by the

joined distribution: p(x, y) = p(X = x, Y = y). (3.25)

This is a two dimensional functions. The two dimensions refers here to the number
of variables, although a plot of this function would be a three dimensional plot. An
example is shown in Fig.3.2. All the information we can have about a stochastic system
is encapsulated in the joined pdf. The slice of this function, given the value of one
variable, say y, is the

conditional distribution: p(x|y) = p(X = x|Y = y). (3.26)

A conditional pdf is also illustrated in Fig.3.2 If we sum over all realizations of y we
get the
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Fig. 3.1 Multivariate Gaussian with mean µ = (1 2)

T and covariance ⌃ = (1 0.5; 0.5 1).

marginal distribution: p(x) =

Z
p(x, y)dy, (3.27)

which is sometimes called the sum rule or marginalization.
In some cases we might have or guess a functional form of the density function

which typically has parameters that we need to estimate from data. With a parameter-
ized hypothesis, we can use common statistical methods such as maximum likelihood
estimation to estimate the parameters as in the one dimensional cases. If we do not
have a parameterized hypothesis we need to use other methods, such as treating the
problem as discrete and building histograms, to describe the density function of the
system.
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Fig. 3.2 Example of a two-dimensional probability density function (pdf) and some examples of
conditional pdfs.

Note that parameter-free estimation is more challenging with increasing dimen-
sions. Considering a simple histogram method to estimate the joined density function
where we discretize the space along every dimension into n bins. This leads to n2 bins
for a two-dimensional histogram, and nd for a d-dimensional problem. This exponen-
tial scaling is a major challenge in practice since we need also considerable data in
each bin to sufficiently estimate the probability of each bin.

3.2.3 The chain rule

As mentioned before, if we know the joined distribution of some random numbers
we can make the most predictions of these variables. However, in practice we have
often to estimate these functions, and we can often only estimate conditional density
functions. A very useful rule to know is therefore how a joined distribution can be
decompose into the product of a conditional and a marginal distribution,

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (3.28)

which is sometimes called the product rule. Note the two different ways in which we
can decompose the joined distribution. This is easily generalized to n random numbers
by the chain rule

p(x
1

, x
2

, ..., x
n

) = p(x
n

|x
1

, ...x
n�1

)p(x
1

, ..., x
n�1

) (3.29)
= p(x

n

|x
1

, ..., x
n�1

) ⇤ ... ⇤ p(x
2

|x
1

) ⇤ p(x
1

) (3.30)
= ⇧

n

i=1

p(x
i

|x
i�1

, ...x
1

) (3.31)

but note that there are also different decompositions possible. We will learn more about
this and useful graphical representations in Chapter 5.



| 63Density functions of multiple random numbers

Estimations of processes are greatly simplified when random numbers are inde-
pendent. A random number X is independent of Y if

p(x|y) = p(x). (3.32)

Using the chain rule eq.3.28, we can write this also as

p(x, y) = p(x)p(y), (3.33)

that is, the joined distribution of two independent random numbers is the product of
their marginal distributions. Similar, we can also define conditional independence. For
example, two random numbers X and Y are conditionally independent of random
number Z if

p(x, y|z) = p(x|z)p(y|z). (3.34)

Note that total independence does not imply conditionally independence and visa
versa, although this might hold true for some specific examples.

3.2.4 How to combine prior knowledge with new evidence: Bayes rule

One of the most common tasks we will encounter in the following is the integration
of prior knowledge with new evidence. For example, we could have an estimate of
the location of an agent and get new (noisy) sensory data that adds some suggestions
for different locations. A similar task is the fusion of data from different sensors. The
general question we have to solve is how to weight the different evidence in light
of the reliability of this information. Solving this problem is easy in a probabilistic
framework and is one of the main reasons that so much progress has been made in
probabilistic robotics.

How prior knowledge should be combined with prior knowledge is an important
question. Luckily, basically already know how to do it best in a probabilistic sense.
Namely, if we divide this chain rule eq. 3.28 by p(x), which is possible as long as
p(x) > 0, we get the identity which is called Bayes theorem

p(x|y) = p(y|x)p(x)
p(y)

, (3.35)

This identity is important because it tells us what the probability of a given state is give
a measurement of y, that is, p(x|y). Prior to the measurement our believe of a state x
is given by p(x). Furthermore, the likelihood of having a measurement y is given by
the likelihood functions p(y|x). Bayes theorem tells us that we should weight there
likelihood of measurement y with the prior probability of being in the corresponding
state, and then normalize this number by the marginal distributions

p(y) =

Z
p(y|x)p(x)dx (3.36)

The marginal probability of y, p(y), does not depend on the statex. However, estimating
the denominator p(y) is often the most labor intensive part of applying Bayes theorem
since we often mainly mainly estimate p(y|x) so that we have keep a running average
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of this density over all possible states to estimate this marginal distribution. It is
sometimes useful to remember Bayes rule in the form

p(x|y) = p(y|x)p(x)R
p(y|x)p(x)dx

. (3.37)

where we explicitly replaced the marginal distribution of y. We will see below that
Bayes rule (eq. 3.37) together with the rule of total probability (eq. 3.3) are the basic
rules that allow us to argue (making statistical inference) in probabilistic systems.

3.2.5 Matlab support for statistics

Random numbers and statistics are a common tool in science so that support in this
area is not surprising. We are mainly concerned here with using random numbers and
probability theory rather than statistical method for hypothesis testing. Here we only
discuss producing the some basic random numbers.

Matlab has some support for random numbers, in particular to generate the most
frequently used ones. For example, the function
rand()

generates uniformly distributed random numbers between 0 and 1. A normal distributed
random number can be generated with
randn()

An 10⇥ 2 array of normal distributed numbers can be generated with
randn(10,2)

A 2⇥5 matrix of uniformly distributed integer random numbers between 1 and maxn
(inclusive) can be generated with
randi(maxn,2,5)

The statistics toolbox has much more support for random variables, including several
more random number generators for different distributions, support for cumulative
distributions, and some machine learning tools that we discuss later.

Exercises
1. Plot a histogram of random numbers drawn from the Chi-square distribution and

the Trappenberg distribution. The Trappenberg distribution is given by

p(x) =

⇢
a
n

|| sin(x)|| for 0 < x < n⇡/2
0 otherwise (3.38)

for n = 5. What is the mean, variance, and skewness of these distributions?
2. Explain if the random numbers X and Y are independent if their marginal distri-

bution is p(x) = x+3log(x) and p(y) = 3ylog(y), and the joined distributions
is p(x, y) = xylog(x) + 3ylog(xy).

3. (From Thrun, Burgard and Fox, Probabilistic Robotics) A robot uses a sensor
that can measure ranges from 0m to 3m. For simplicity, assume that the actual



| 65Probabilistic sensor models

ranges are distributed uniformly in this interval. Unfortunately, the sensors can
be faulty. When the sensor is faulty it constantly outputs a range below 1m,
regardless of the actual range in the sensor’s measurement cone. We know that
the prior probability for a sensor to be faulty is p = 0.01.
Suppose the robot queries its sensors N times, and every single time the mea-
surement value is below 1m. What is the posterior probability of a sensor fault,
for N = 1, 2, ..., 10. Formulate the corresponding probabilistic model.

4. Given are four Bernoulli distributed random numbers X
1

, X
2

, X
3

and Y . The
conditional probability of random numbers X

i

on Y is given by p(x
i

|y) =

0.2 and are conditionally independent of each other given Y . The marginal
probability of Y is p(y) = 0.3. What is the probability of Y given X

1

=true
and X

2

=true and X
3

=false ?

3.3 Probabilistic sensor models

Having acknowledged that sensors are noisy, we now turn to their corresponding
probabilistic description that will be used later in this course. A sensor model describes
the likelihood of a sensor value, which we denote here with x, given a certain reading
of the sensor, denoted by Z. That is, a probabilistic sensor model describes

Sensor model: p(x|Z). (3.39)

We make here the implicit assumption that this measurement model does not depend
on the history of previous states. To be more specific, let us make a specific sensor
model for the ultrasonic sensor. To investigate how this sensor responds to an obstacle
at different distances we need a tape measure to measure the actual distance of the
ultrasonic sensor from the obstacle. We then read the sensor for different distances
from the obstacle and repeat this several times. Examples of such measurement for two
different ultrasonic sensors are shown in Fig. 3.3. Other testing scenarios or shown in
3.4.

The figures reveal some interesting observations. While the return value is engi-
neered to return the distance to an obstacle in cm, these tests show that the distance
to the obstacle in our measurements are always overestimated. Furthermore, the error
is not the same for all distances Interestingly there is an intermediate area where the
error is largest and the error gets smaller for large distances. The precise response of
the sensor depends on many factors such as the material of the obstacle, the orientation
of it’s reflecting surface, and the general conditions of the surroundings. Dealing with
such uncertainties are the major focus of our investigations later in this course.

For now let us just concentrate on variations even within the specific environment
in which we made these measurements. The measurements were repeated several
times, and since the system responds only with discrete values, the number times a
specific number was reported in indicated by the size of the circle representing the
measurement. It is clear that there is some distribution of measurements. What shape
does this distribution resemble? Let us assume that this distribution is Gaussian with
mean µ(d) for the actual distance d and variance �2

s

(d) which could itself depend on
the distance. The noise model can then be written as
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Fig. 3.3 Example of response a sensor function for two different ultrasonic sensors from a test
setup as shown in Fig. 3.4. The dots show the different readings in repeated trials, and their size
indicates the frequency with which this particular value is encountered. Some of the tests included
a systematic variation of the true distance, whereas others chose a random order of different
distances.

p(x|Z; ✓) =
1p
2⇡�

e
x

2

2�2
s , (3.40)

Where x(d) is a function that we need to characters further in order to make some
predictions that we can take into account when using the sensor data. Finding this
function, or more precisely the density function that describes the training examples,
is the major focus of supervised learning that we discuss in the next section. For now,
we should note that the measurement model encapsulates all the information we can
get from a sensor.

3.3.1 Probabilistic motion models

Sensors are not the only noisy parts of a robot. Indeed, the motion of a robot is
commonly even more unreliable. We thus need a motion model that takes uncertainties
into account and that returns the probability of a new pose x

t

after applying a motor
command m at t � 1. The new state might depend on the history of previous states,
{x

0

, ..., x
t�1

}, but we make here the common Markov assumption that the new state
only depends on the previous state,

Motion model: p(x
t

|x
t�1

,m). (3.41)

We already discussed the deterministic part of dynamic movement in the kinematic
models of the last chapter, and we will here augment these within a probabilistic
framework. To illustrate this, let’s use a simple sample of a tribot moving on a one-
dimensional trajectory. The position on this trajectory is specified by the position
variable x. We want to apply a specific motor commands that will turn on both motors
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Fig. 3.4 Setup of experiments to evaluate the ultrasonic sensor. Note that the performance of the
ultrasonic sensor in a corner situation is quite problematic.

for a specific time t
m

. The displacement of the robot is then to a first approximation
linear in this time,

�x = x
t

� x
t�1

= a
0

+ a t
m

. (3.42)

This is a linear kinematic model where we included a constant a
0

to describe the effect
of a latency when applying the motor command. If we only take this kinematic model
into account to calculate the new position of the robot without any sensor feedback,
then this is often called dead reckoning in navigation.

While the kinematic model give us a baseline for what to position to expect
after applying a motor command, we also know that movements will introduce errors
such as from slippage of the wheels or external factors that alters the position of the
robot. Indeed, taking uncertainties into account, such as noisy movements, unexpected
environments, or inconsistent orders, is a crucial step to make robots work in the real
world.

To capture at least some kind of uncertainty, we can run the tribot repeatedly for
a specific time and measure the distance traveled. One can then plot a histogram of
these positions to estimate the noise distribution. Let us assume again that this noise
is Gaussian. The motion model can then be written as

p(x
t

|x
t�1

, t
m

; ✓) = x
t�1

+ a
0

+ at
m

+

1p
2⇡�

e
(b

m

)2

2�2
m , (3.43)

with parameters b
m

and �
m

that describe the Gaussian noise that we used here to
describe noisy observation. Of course, we need to measure examples of real movements
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to see if they are Gaussian or if other noise models would be more appropriate. The
next chapters will introduce techniques to learn such models from examples.

Exercise

1. Use the light sensor to measure distances to a surface and derive a sensor model
for this sensor. Provide a parametric form of your model and include estimations
of the parameters.

2. Derive a motion model for the tribot when driving the motors with different
power parameters. Provide a parametric form of your model and include esti-
mations of the parameters.


