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Abstract

Biologically inspired neural networks which perform temporal sequence learning and generation are frequently based on hetero-

associative memories. Recent work by Jensen and Lisman has suggested that a model which connects an auto-associator module to a

hetero-associator module can perform this function. We modify this architecture in a simplified model which in contrast uses a pair of

connected auto-associative networks with hetero-associatively trained synapses in one of the paths between them. We simulate both

models, finding that accurate and robust recall of learned sequences can easily be performed with the modified model introduced here,

strongly outperforming the previous architecture.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A sequence S of length p is a list x1; x2; . . . ; xp of patterns,
each pattern representing a memory in the sequence. In
general, it is possible that xm1 ¼ xm2 for m1am2, in which
case knowing the current pattern xm1 ¼ xm2 is not sufficient
to determine if the next pattern is xm1þ1 or xm2þ1 during
recall. For a pattern xm, the length of the preceding
subsequence which uniquely determines xm is called the
degree of xm [18]. The degree of a sequence is the maximum
degree of its components, and a sequence is called simple if
it has degree 1, otherwise it is known as complex. For
example, the sequence A;B;C;D is a simple sequence, and
A;B;C;D;B;C;A is a complex sequence of degree 3.

In contrast to a large body of work on engineering
applications of sequence recognition and generation, we
are specifically interested in neural architectures that can
easily learn and recall temporal sequences based on
associative networks and Hebbian learning. Networks
that are able to learn and recall sequences rely on some
form of hetero-associations between different patterns
in a sequence in addition to standard auto-associative
e front matter r 2005 Elsevier B.V. All rights reserved.
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point-attractor networks. Such networks have long been
proposed and studied by Grossberg [3,4]. Hopfield [6]
noted the difficulty in recalling sequences of more than four
items, and subsequent research has focused on additional
mechanisms to stabilize hetero-associative sequential mem-
ories [16,8,13,5].
In this paper we discuss a modular neural architecture

that is able to learn and robustly recall long temporal
sequences. The architecture consists of two coupled
recurrent networks with auto- and hetero-associative
connections. Similar networks have been studied by Jensen
and Lisman [7] to model memory functions in a cortico-
hippocampal network, and later to model the hippocampus
in more detail [10]. The networks studied by Jensen and
Lisman are based on the coupling of an auto-associative
network with a hetero-associative network, whereas we
consider here a network consisting of two auto-associative
networks that are coupled through hetero-associative
connections.
A related approach to sequence learning and recognition

is discussed in the literature under the name of synfire
chains [1,2,9]. In contrast to the approaches that grew out
of the auto-association literature, this theory is based on
pure hetero-associative connections in (recurrent) diver-
ging/converging chains [1]. However, a bidirectional
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modular model very similar to the model studied here has
recently been studied by Sommer and Wennerkers [12].
This model couples two auto-associative modules with
hetero-associative intra-modular connection, whereas we
found it beneficial to consider only one intra-modular
pathway to be hetero-associative. While synfire chains are
often discussed with neocortical processing [2], it has also
been implicated with Hippocampal functions [19].

While we compare the performance of sequence learning
and recall of an architecture used by Jensen and Lisman
with some modified versions, it is important to note that
the models by Jensen and Lisman, as well as related
hippocampal models by others [17], consider sequences of
items that are time compressed through a phase precession
mechanism or a related mechanism based on multiplexing
with gamma oscillations. Such sequences are limited to a
relatively small number of items (in the order of 4–7) or are
limited in their timescale to events occurring on the order
of seconds. Such memories of short duration sequences are
not considered in this study. Instead, we consider here the
storage and recall of long sequences with hetero-associa-
tions that can bind memories of arbitrary time scales.

The rest of this paper is organized as follows: Section 2
reviews associative memory models of sequence memory
based on auto- and hetero-associations. Section 3 describes
the modular architecture and the two different models
studied in this paper. In Section 4, the models are
compared experimentally with simulations to solidify the
intuition behind their operation. Conclusions and sugges-
tions for future research direction are given in Section 5.

2. Associative sequence memory

We consider in this paper associative memories of leaky-
integrator nodes governed by the dynamics

t
duiðtÞ

dt
¼ �ui þ

X
j

wijrjðtÞ (1)

on a time scale of t, where uiðtÞ is the internal state of node
i at time t. ri is the corresponding firing rate related to ui

through a gain function g,

riðtÞ ¼ gðuiðtÞÞ. (2)

The weights between node j and node i are trained with
Hebbian learning rules. In such rules, the weights are
incremented proportional to the activity of the framing
nodes

Dwij / ðri � hriiÞðrj � hrjiÞ, (3)

where h:i indicates mean node activity. In the following, we
simplify the notation by assuming rate representations with
zero mean and learning procedures which clamp the
network state to the training patterns. We distinguish
between (symmetric) auto-associative weights

wA
ij ¼

1

N

X
m

xmi x
m
j (4)
and (asymmetric) hetero-associative weights

wH
ij ¼

1

N

X
m

xmþ1i xmj , (5)

where N is the number of nodes in the network, and xmi is
the ith component of the mth pattern of a sequence of p

patterns ðm ¼ 1; . . . ; pÞ. These rules are consistent with
Eq. (3) for zero initial weights and an appropriate choice of
learning rates and training repetitions.
Another form of learning sequence relations, which

generalizes the basic form of Eq. (5), is Hebbian trace
learning. In this approach a temporal average (trace) of
node activity,

rjðtÞ ¼

Z 1
0

GðxÞrjðt� xÞdx, (6)

is used in the learning rule, for example

DwH
ij / rirj. (7)

G is a kernel function which specifies how the firing history
is to be sampled, and has the property that

R1
0 GðxÞdx ¼ 1.

For example, the delta function, which is 0 for all x except
for an infinite peak of area 1 at x ¼ k, where k is the
presentation time of the previous pattern, leads to the
training rule of Eq. (5). This could be implemented in
the brain by slow synapses. In contrast, fast synapses
would lead to an auto-associative rule similar to Eq. (4)
(see [7] for a discussion of the physiology underlying these
mechanisms).
Both auto-associative and hetero-associative connec-

tions are necessary to achieve robust sequence memory.
This conjecture is based on the argument that the auto-
associative weights are important for pattern completion
that enables the recall of items with partial cues in noisy
environments, whereas the hetero-associations drive the
state of the system from one pattern to the next. For
example, Hopfield [6] considered a model

t
duiðtÞ

dt
¼ �ui þ

X
j

wA
ij rjðtÞ þ l

X
j

wH
ij rjðtÞ. (8)

However, in simulations the result is that, when l is too
small the network makes no transitions between patterns at
all, usually attracting to the pattern closest to the initiation
state rð0Þ. As l gets larger the network tends to attract to a
later pattern in the sequence before it has come to fully
represent the current pattern in the sequence, causing it to
overlap a number of consecutive patterns and consequently
lose the sequence entirely. Accurate sequence generation
using this approach has only been successfully demon-
strated for sequences of length 4 [6,11].
To solve this problem it is sufficient to allow some delay

between the time a new state is entered and when a
transition from that state to the next is induced. This can
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Fig. 1. The proposed network, a pair of connected cortical modules A and

B. wAA, wBB, wAB and wBA represent the synaptic strengths in the recurrent

connections in modules A and B, and the inter-module connections from

B to A and from A to B, respectively. Lisman’s description [10] is similarly

pictured with wBB trained hetero-associatively (Eq. (5)), and all other

weights set auto-associatively (Eq. (4)). In our model wAB is trained

hetero-associatively (Eq. (5)), and all other weights auto-associatively

(Eq. (4)).
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be achieved using an update rule

t
duiðtÞ

dt
¼ �ui þ

X
j

wA
ij rjðtÞ þ l

X
j

wH
ij rjðtÞ, (9)

where the quantity rjðtÞ is again a convolution of the firing
history as noted in Eq. (6), although this time the trace is
used during recall and not during learning as in Eq. (7).
Kleinfeld [8] uses a delta function dðx� kÞ, representing
slow hetero-associative synapses with a delay of k. Tank
and Hopfield [16] use an exponential kernel function
similar to an alpha function with a peak at x ¼ k for some
k40 causing the firing rate history at time t� k to be
strongest, representing a combination of short-term
memory effects and delayed synapses.

Another related approach is to replace l in Eq. (1)
with lðtÞ, allowing the strength of the hetero-associative
synapses to vary explicitly over time. In this way strong
hetero-association can be used to initiate a transition
to the next pattern in the sequence, followed by strong
auto-association for developing a clear representation of
that pattern. Additional functionality over the kernel
function approach is that it allows adjustment of the
duration for which each pattern in the sequence is
present. This is the approach used by Wang in [18], who
alternates between phases of hetero-association and
auto-association in the connections between a pair of
recurrent networks in order to accurately recall a simple
sequence of pairs of patterns. In the brain, a time-
dependent l may represent the effect of modulatory
synapses from another population of neurons which acts
as a controller during the recall process. However, the
activity of this population must be carefully considered and
modelled if the goal is to explain sequence recall in
animals—one cannot simply choose any lðtÞ which works
without considering how the dynamics might be achieved
in the brain.

Hetero-associative continuous attractor networks have
been studied by Stringer et al. to solve path-integration [15]
and in conjunction with learning motor primitives and
motor control [14]. During learning, these models associate
the movement of the activity packet in the continuous
attractor network over movement-indicator cells corre-
sponding to the lambda values in the formulations above.
This is an example where the hetero-associative weights are
modulated by the firing of other neuronal groups. Paper
[14] gives an example of using this strategy in a modular
network and also demonstrates that complex sequences can
be handled in this approach.
3. The models

We study a modular architecture of two connected
recurrent networks as shown in Fig. 1. The modules are
labelled A and B, respectively. The activities of nodes
in modules A and B are governed by leaky-integrator
dynamics

t
hA

i ðtÞ

dt
¼ �hA

i ðtÞ þ lAA
XN

j¼1

wAA
ij rAj ðtÞ þ lAB

XN

j¼1

wAB
ij rBj ðtÞ,

(10)

t
hB

i ðtÞ

dt
¼ �hB

i ðtÞ þ lBB
XN

j¼1

wBB
ij rBj ðtÞ þ lBA

XN

j¼1

wBA
ij rAj ðtÞ,

(11)

rAi ðtÞ ¼ tanhðhA
i ðtÞÞ, (12)

rBi ðtÞ ¼ tanhðhB
i ðtÞÞ. (13)

Within this architecture we consider two principal models
with different placements of auto- and hetero-associative
weight matrices.
Model 1:
 All weights are auto-associative except the
weights in module B which are hetero-associa-
tive. This model corresponds to an auto-associa-
tive coupling of an auto-associative memory with
a hetero-associative memory.
Model 2:
 All weights are auto-associative except the
weights from module B to module A which are
hetero-associative. Thus, model 2 couples two
auto-associative memories with hetero-associa-
tions in one direction and auto-associations in
the other direction.
Model 1 is reminiscent of the cortico-hippocampal
architecture of Jensen and Lisman [7] and the hippocampal
model of Lisman [10]. For example, in [10] module A
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Fig. 2. Learning of intra-modular connections in model 2. A sequence of

four patterns is presented to both modules. The sequence of module B is

delayed with respect to module A. Learning of connections from A to B

and B to A are interleaved, resulting in auto-associative connections from

A to B (long arrows) and hetero-associations from B to A (short arrows).
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corresponds to a recurrent network formed by dentate
neurons contacting mossy cells that feed back to dentate
neurons, while module B would correspond to a CA3
network. Lisman states that the process of sequence recall
would work as follows. Upon external stimulation to the
first pattern x1 in the sequence, the recurrent hetero-
associative connections in the CA3 would tend to make it
converge towards a noisy version x2

0
of the next pattern x2

in the sequence. The connections from the CA3 would tend
to excite the pattern x2

0
in the dentate, which would then

use auto-association to reduce the noise and produce x2.
The pattern x2 would then be transmitted back to the CA3,
which would again tend to move towards the next pattern
in the sequence using its hetero-associative connections.

The intuition of model 2 during recall is that each
module works somewhat independently, cleaning up its
own representation of the current pattern in the sequence
xm. When module B has a ‘‘clean enough’’ representation of
xm, it can begin to push module A toward the next pattern
in the sequence, xmþ1, due to hetero-associations. In this
way a natural timing can be achieved from the competition
between the two modules:
(1)
 When both modules represent the same pattern, xm,
there is competition between the recurrent synapses of
module A, which want to continue attracting toward
xm, and between the inter-module synapses from B to A,
which want to push A toward xmþ1.
(2)
 When A and B represent xmþ1 and xm, respectively, there
is a competition between the recurrent synapses of
module B, which want to continue attracting toward
xm, and the inter-module synapses from A to B, which
want to push B toward xmþ1.
The temporal behaviour is a consequence of the growth
of these forces and their necessary alternation, in that,
when A’s strength is at a maximum B should be in a
transition and hence its strength is minimized, and vice
versa for when B’s strength is at a maximum. For example
in case 1 above, the strength of B pushing A toward xmþ1 is
related to how clearly xm is represented in B, i.e. how close
rBðtÞ, the firing rates of nodes in module B at time t, are to
xm. As module B draws closer to xm, eventually its strength
in moving A toward xmþ1 becomes large enough to push A
into the basin of attraction for pattern xmþ1. At this point A
has a small strength in affecting B as it is far away from,
but moving toward xmþ1. As A draws closer to this
attractor its strength in pushing B toward xmþ1 increases
until this occurs, at which point B’s strength becomes
minimized during its transition. To achieve these dynamics
the inter-module synapses must be weighted higher than
the recurrent synapses, so that the forces from module B
are sufficient to affect the course of module A when B is
sufficiently close to one of the stored patterns and vice-
versa. The time for which each pattern is stable can hence
be adjusted with the strength of the inter-module connec-
tions. When they are made stronger, B has more effect on
A (and vice versa), moving it from a stable pattern more
quickly and resulting in a smaller amount of time in which
a pattern is represented. Similarly, weaker inter-module
strengths will result in slower transitions between patterns,
or none at all when set too weak.
Although the placement of different connection types

is easy to implement in simulations, it is important to
note that their biological realization and interpretation
is somewhat different in models 1 and 2. In model 1 we
assume that during learning the same pattern is presented
simultaneously to both modules and that the time course of
plasticity is sufficiently fast in most pathways to result in
auto-associative learning. Only the plasticity of intra-
modular connections in module B need to be based on
ion channels with receptors that have a slow activation
kinetics (like NMDAR in CA3, see discussions in [7]) to
enable hetero-associative learning in the same module. This
is different in model 2 where hetero-associative learning
between modules does not require receptors that have a
slow activation kinetics. For example, it is possible to
present the time series of patterns with a fixed offset in the
different modules as shown in Fig. 2 which only requires a
fixed delay in the external pathways to the different
modules. With a further assumption that intra-modular
plasticity is modulated to specific time windows as
illustrated by the arrows in Fig. 2 we arrive naturally at
model 2.

4. Experimental results

All models were tested with a basic sequence recall
experiment in which we trained the network with a
sequence of p patterns and tried to adjust the relative
strength of the different pathways (ls) to enable correct
recall of the sequence. We also verified the stability of
sequence recall by using a noisy initial pattern and noisy
transmission, and explored the limits of the sequence
length when stable solutions were found. Each pattern xm is
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a string of binary numbers representing node activities, i.e.
xm 2 f�1; 1gN where N is the number of nodes. The
patterns are uniformly distributed so that the mean node
activity is zero, allowing us to use the simplified learning
rules of Eqs. (4 and 5. In our hetero-associative training we
associate x1 from xp, so that the sequence is cyclic.
Sequence recall is illustrated in the following by plotting
the inner product between the network states and the
training patterns.

4.1. Model 1

With model 1 we were not able to find appropriate
parameters to get consistent results. An example of
sequence recall using model 1 showing some transitions is
shown in Fig. 3. After extensive experimentation, this is an
example of the best progress towards a correctly recalled
sequence that we were able to achieve. Modules of N ¼

1000 nodes were used, and the model was trained on short
a sequence of only six patterns. Experiments on longer
sequences failed similarly. Both modules were initialized to
the first pattern without noise. Initializing the modules with
different patterns increased the difficulty in finding
satisfactory ls. Decreasing the number of nodes and
patterns adds some stability to the sequences, but this
may be an artefact of small networks. We found that
typically module B either attracts quickly to some stable
fixed point which does not represent any of the stored
patterns, or as lBB is increased, experiences very rapid
oscillations. module A meanwhile usually attracts to a fixed
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Fig. 3. Result of recall of a learned sequence of six random patterns using

model 1 with N ¼ 1000 nodes. The parameters used were lAA
¼ 1,

lBB ¼ 2:2, lBA ¼ 2, lAB
¼ 4. The simulation was performed in the same

way as that of Fig. 4. Both modules were initialized with the first pattern

without noise. The result shows the pattern oscillations of module B due to

its hetero-associative synapses (bottom), and the oscillations of module A

(top) due to (selective) interaction from B.
point, or will make transitions if B is oscillating and lAB is
large enough. However, A does not ever converge to a
pattern in this case, and its transitions do not recall the
patterns in order.
The problem with tuning the ls is as follows: increasing

lAB will give a greater chance that A can be brought into
the basin of attraction of a particular pattern in order to
clean up its representation of this pattern, but as B
continues to oscillate this brings a greater chance that A
will be disrupted from its process of cleaning up this
pattern. Thus the network does not quite behave according
to the intuitive notion of stages of hetero-association
followed by cleaning of the signal, since the activities of B
are not stable enough to affect A in a predictable manner.
These results reflect the known difficulties of previous

simulations with single module networks [6]. These net-
works have separate hetero- and auto-associative connec-
tions but constrain the response to input from these
connections by having only one class of neurons. The
results here show that removing this constraint does not
improve the recognition ability of the network. Also, while
model 1 reflects the principal architecture of the models
used by Jensen and Lisman [7,10], it is important to note
that the implementations in their work include synaptic
dynamics that can stabilize sequence recall in such
networks as discussed in Section 3.

4.2. Model 2

Fig. 4 shows the result of recall of a sequence of 20
random patterns using model 2 with 1000 nodes in each
module. It is easy to find strength parameters which lead to
reliable sequence recall. The values for the example shown
in Fig. 4 are lBB ¼ lAA

¼ lBA ¼ 1; lAB
¼ 2. The modules

were initialized with a noisy version of pattern x1 in module
A and a random pattern module B. The overlap between
the network states and the stored patterns, rAðtÞ0xm=N and
rBðtÞ0xm=N was measured, but is only shown for module A
(top figure) since the overlap of module B is very similar,
being only a slightly shifted version of the plot of module
A. It can be seen from Fig. 4(A) that each pattern is
perfectly recalled and is stable for some short period. Since
it is difficult to distinguish between the 20 different patterns
in Fig. 4 (A) even if different line styles were used, the index
m of the pattern for which rAðtÞ0xm=N is largest is plotted for
each time in Fig. 4(B), where it can be seen that the
patterns are indeed recalled in the correct order. It was
also possible to get a correct and stable sequence recall with
50 patterns in a network with 2000 nodes in each module
(Fig. 4(C)).
Since synaptic transmission is not perfect, and nodes

may fire with less input than normal, or may not fire when
given enough input, we also conducted experiments where
the transmission of signals is noisy. This was done by
negating a certain percentage of the ri values in Eq. (10) at
each time step during recall. We found that reliable recall
of 20 random patterns in a network of N ¼ 1000 nodes can
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Fig. 4. ðAþ BÞ Result of recall of a learned sequence of 20 random

patterns using model 1 with N ¼ 1000 nodes. The inter-module synapses

from A to B were given a weight of lBA ¼ 1, the same as the intra-module

(recurrent) synapses, and the inter-module synapses from B to A were

given a weight of lAB
¼ 2 times larger. Sequence recall was initiated by

setting the firing rates of nodes in module A to the first pattern with 30%

noise, and the firing rates of nodes in module B to random values. (A) The

overlap between the firing rates rAðtÞ of the nodes in module A and each of

the stored patterns at each time. (B) The pattern which has the highest

overlap with the firing rates of module A at each time. (C) Plot similar to

(B) for a network of 2000 nodes in each module that is trained on a

sequence of 50 patterns.
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Fig. 5. Overlap of the firing rates in module A with each of pattern during

recall of a length ten sequence. N ¼ 1000 nodes were used in both cases,

with lBB ¼ lAA
¼ 1 and ( top) lAB

¼ 2, lBA ¼ 1 and (bottom) lAB
¼ 2:1,

lBA ¼ 1:6. The period for which each pattern is stable is decreased with

higher inter-module synaptic strengths.
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of the interaction between the modules A and B can clearly be seen. As the

activation overlap rises for a particular pattern in B (bottom), A begins

moving toward the next pattern in the sequence (top) due to the B!A

hetero-associations. As the activation overlap rises for a particular pattern

in A, B follows shortly behind from the A!B auto-associations. Note that

because there are only four available line styles, some patterns (not

adjacent in the sequence) share the same line style.
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be performed with up to 30% noise. With 40% noise
perfect recall sometimes occurs, but is often disrupted. The
network still performs sequence recall to a degree, but does
not recall any pattern perfectly and often jumps between
different segments of the sequence.

Fig. 5 shows how the speed of recall can be increased by
increasing the intra-module synaptic strengths lAB and
lBA. The top figure shows the recall of a sequence of 10
patterns with the same parameters as in Fig. 4, while in the
bottom figure lBA is increased from 1 to 1:6, and lAB is
increased from 2 to 2.1. Increasing lAB any further causes
A to be preemptively disrupted from its auto-associative
recall of pattern xm for recall of pattern xmþ1. The patterns
are still recalled in order, but each pattern is not fully
recalled. Increasing all ls has little effect on the sequence
recall, it is the difference in strength between the inter- and
intra-module connections which is the major factor in
recall speed.
Fig. 6 shows the overlap of the net activation (hAðtÞ and
hBðtÞ) of nodes in both modules with the patterns in a
sequence of length 10 during recall. Here the interaction
between the two modules can clearly be seen. For example
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at time t ¼ 2, B is attracting towards the pattern indicated
by the dotted line, causing A to move away from this
pattern and attract to the next pattern in the sequence,
indicated by the dot-dashed line. As this happens B follows
closely behind, causing A to once again transition to the
next pattern in the sequence.

5. Conclusions and future work

Multi-modular approaches to sequence generation have
the property that the timing of transitions between items in
a sequence is a product of the dynamics of the interaction
between different modules. This is in contrast to ap-
proaches involving a single recurrent network, which
require an explicit temporal function which must be
chosen ahead of time. Recall speed in a single network
can be changed by adjusting the parameters of the chosen
temporal functions, which implies an adjustability of the
synaptic activation dynamics. The speed of recall in the
modular approach studied here can be altered by
modulating the overall strength between the modules.

The model presented in this paper that has hetero-
associative connections between the auto-associative mod-
ules is able to learn and generate simple sequences of
considerable length easily and reliably, even in the presence
of noise. This is in contrast to an architecture that connects
a hetero-associative module with an auto-associative
module. Our architecture permits storage of simple
sequences with arbitrary and varying time scales; it does
not require combining a trace of previous activity in a
recurrent network with new activity, as the pattern in
different networks can be timed differently and learning
occurs between these patterns.

In this paper we only consider simple sequences, but we
explored some extension of the models for complex
sequences. For example, in one extension we implemented
a trace rule as in Eq. (6) using an exponentially weighted
moving average, i.e. our hetero-association in Eq. (5)
becomes

wAB
ij ¼

1

N

X
m

xmþ1i xmj ,

with xmj being the exponentially weighted moving average
of all previous activity of node j

xmj ¼ ð1� ZÞxmj þ Zxm�1j . (14)

During simulation we then compute a trace of previous
node activity

rBj ðtÞ ¼ ð1� gÞrBj ðtÞ þ grBj ðt� dtÞ

as activity of module B in Eq. (10) , where dt is the time
step of the simulation. However, we were not able to find
values for g and Z to recall sequences when different
patterns in the sequence were more than 70% similar.

Another approach that we explored was to store with
each pattern some information which amounts to the
‘‘context’’ of that pattern. For example if the firing rates of
a small group of NP nodes represented the actual pattern,
and the other NC ¼ N �NP represented the context,
complex sequence recall should be possible if the different
contexts of a repeated pattern are unique. However, in
experiments with N ¼ 1000 nodes we were only able to
recall complex sequence in this approach for considerable
large context such as NC ¼ 800 nodes. Thus, reliable
storage and recall of complex sequences is still a major
challenge. Another direction for further research is the
learning of sequences whose items do not occur at regular
intervals.
The types of sequences this paper is concerned with are

of considerable length (larger than 7) and have variable
time frames. This is in contrast to the sequence memory
discussed by Jensen and Lisman and others in conjunction
with hippocampal functions. Sequence learning has also
been discussed in conjunction with the basal ganglia in the
framework of reward and temporal difference learning [20].
It is likely that several mechanisms and different roles
of temporal sequences processing are utilized in the brain,
and it is necessary to distinguish these different forms of
sequence processing and their mechanistic realization in
more detail.
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